Massive C*-algebras, Winter 2021, I. Farah, Lecture 21

Today:

1. The story so far.
2. OCA_{∞}.

Important: There will be no classes on Mark 29 or April 2.
There wall be clares on April 5 and April 9.

So far, we've proven the following $(\mathcal{B}(H)$ is considered with respect to the WOT).

Prop Suppose $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$ is such that for every $\varepsilon>0$ there are $E \in \operatorname{Part}_{\mathbb{N}}$, with $\left|E_{n}\right| \rightarrow \infty$, and an infinite $\mathrm{X} \subseteq \mathbb{N}$ such that Φ has a C-measurable $\bar{\varepsilon}$-approximation on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$. Then $\mathrm{OCA}_{\mathrm{T}}$ implies that Φ is inner.

$$
\left.\left\|\pi\left(\theta\left(\sigma_{1}\right)-\phi_{A}(a)\right)\right\| \leqslant \varepsilon, \forall a t\right)_{x}
$$

So far, we've proven the following $(\mathcal{B}(H)$ is considered with respect to the WOT).

Prop Suppose $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$ is such that for every $\varepsilon>0$ there are $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$, with $\left|E_{n}\right| \rightarrow \infty$, and an infinite $\mathrm{X} \subseteq \mathbb{N}$ such that Φ has a C-measurable ε-approximation on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$. Then $\mathrm{OCA}_{\mathrm{T}}$ implies that Φ is inner. $\quad \forall F \in \operatorname{Part} \pi$
Proof: Lemma 17.5.3 (3): Φ has a C-measurable ε-approximation on D [届 for every $\varepsilon>0$.

So far, we've proven the following $(\mathcal{B}(H)$ is considered with respect to the WOT).

Prop Suppose $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$ is such that for every $\varepsilon>0$ there are $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$, with $\left|E_{n}\right| \rightarrow \infty$, and an infinite $\mathrm{X} \subseteq \mathbb{N}$ such that Φ has a C-measurable ε-approximation on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$. Then $\mathrm{OCA}_{\mathrm{T}}$ implies that Φ is inner.

Proof: Lemma 17.5.3 (3): Φ has a C-measurable ε-approximation on $\mathrm{D}[\mathrm{E}]$ for every $\varepsilon>0$.
Lemma 17.4.5: Φ has a continuous lifting on $D_{Y}[E]$ for some infinite Y .

So far, we've proven the following $(\mathcal{B}(H)$ is considered with respect to the WOT).

Prop Suppose $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$ is such that for every $\varepsilon>0$ there are $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$, with $\left|E_{n}\right| \rightarrow \infty$, and an infinite $\mathrm{X} \subseteq \mathbb{N}$ such that Φ has a C-measurable ε-approximation on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$. Then $\mathrm{OCA}_{\mathrm{T}}$ implies that Φ is inner.

Proof: Lemma 17.5.3 (3): Φ has a C-measurable ε-approximation on $\mathrm{D}[\mathrm{E}]$ for every $\varepsilon>0$.
Lemma 17.4.5: Φ has a continuous lifting on $D_{Y}[E]$ for some infinite Y.
Proposition 17.5.4: it can be chosen to be of product type and such that its n-th component Ξ_{n} is a unital $1 / n$-approximate *-homomorphism for every n.

So far, we've proven the following $(\mathcal{B}(H)$ is considered with respect to the WOT).

Prop Suppose $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$ is such that for every $\varepsilon>0$ there are $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$, with $\left|E_{n}\right| \rightarrow \infty$, and an infinite $\mathrm{X} \subseteq \mathbb{N}$ such that Φ has a C-measurable ε-approximation on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$. Then $\mathrm{OCA}_{\mathrm{T}}$ implies that Φ is inner.

Proof: Lemma 17.5.3 (3): Φ has a C-measurable ε-approximation on $\mathrm{D}[\mathrm{E}]$ for every $\varepsilon>0$.
Lemma 17.4.5: Φ has a continuous lifting on $D_{Y}[E]$ for some infinite Y.
Proposition 17.5.4: it can be chosen to be of product type and such that its n-th component $\bar{\Xi}_{n}$ is a unital $1 / n$-approximate *-homomorphism for every n.
Theorem 17.2.6 (Corollary 17.5.5): for every $\mathrm{F} \in \mathrm{Part}_{\mathbb{N}}$, some *-homomorphism serves as a lifting of Φ on $\mathcal{D}[\mathrm{F}]$.
Proposition 17.5.7: it is implemented by a partial isometry for every $F \in$ Part $_{\mathbb{N}}$.

So far, we've proven the following $(\mathcal{B}(H)$ is considered with respect to the WOT).

Prop Suppose $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$ is such that for every $\varepsilon>0$ there are $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$, with $\left|E_{n}\right| \rightarrow \infty$, and an infinite $\mathrm{X} \subseteq \mathbb{N}$ such that Φ has a C-measurable ε-approximation on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$. Then $\mathrm{OCA}_{\mathrm{T}}$ implies that Φ is inner.

Proof: Lemma 17.5.3 (3): Φ has a C-measurable ε-approximation on $\mathrm{D}[\mathrm{E}]$ for every $\varepsilon>0$.
Lemma 17.4.5: Φ has a continuous lifting on $D_{Y}[E]$ for some infinite Y.
Proposition 17.5.4: it can be chosen to be of product type and such that its n-th component $\bar{\Xi}_{n}$ is a unital $1 / n$-approximate *-homomorphism for every n.
Theorem 17.2.6 (Corollary 17.5.5): for every $F \in \operatorname{Part}_{\mathbb{N}}$, some *-homomorphism serves as a lifting of Φ on $\mathcal{D}[\mathrm{F}]$.
Proposition 17.5.7: it is implemented by a partial isometry for every $\mathrm{F} \in$ Part $_{\mathbb{N}}$. (But we want a unitary!)

From C-measurable approximations to innerness

Fix E and v such that $A d \dot{v}$ and Φ agree on $\Pi(\mathcal{D}[E]$, and let $\Phi_{1}:=\operatorname{Ad} v^{*} \Phi$
Then the restriction of Φ_{1} to $\mathcal{D}[F]$ is implemented by a unitary for every $F \in$ Part $_{\mathbb{N}}$.

From C-measurable approximations to innerness

Fix E and v such that $\mathrm{Ad} \dot{v}$ and Φ agree on $\mathcal{D}[\mathrm{E}]$, and let $\Phi_{1}:=\operatorname{Ad} v^{*} \circ \Phi$
Then the restriction of Φ_{1} to $\mathcal{D}[F]$ is implemented by a unitary for every $F \in$ Part $_{\mathbb{N}}$.

Lemma 17.5.8 Suppose that $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}, u_{e}$ and u_{o} are in $\mathrm{U}\left(\ell_{\infty}(\mathbb{N})\right.$), and Ad u_{e} and Ad u_{0} agree on $\mathcal{D}[\mathrm{E}]$ modulo the compacts. Then there is $w \in \mathrm{U}\left(\ell_{\infty}(\mathbb{N})\right)$ such that $\mathrm{Ad} w$ agrees with $\operatorname{Ad} u_{e}$ on $\mathcal{D}\left[\mathrm{E}^{\mathrm{even}}\right]$ modulo the compacts and with $\operatorname{Ad} u_{0}$ on $\mathcal{D}\left[\mathrm{E}^{\text {odd }}\right]$ modulo the compacts.

The proof uses the same trick used at the end of the proof of Theorem 17.8.2.

$$
F[F]=|a|
$$

$$
a=c_{1}+c_{1},
$$

From C-measurable approximations to innerness

Fix E and v such that $\mathrm{Ad} \dot{v}$ and Φ agree on $\mathcal{D}[\mathrm{E}]$, and let $\Phi_{1}:=\operatorname{Ad} v^{*} \circ \Phi$
Then the restriction of Φ_{1} to $\mathcal{D}[F]$ is implemented by a unitary for every $F \in$ Part $_{\mathbb{N}}$.

Lemma 17.5.8 Suppose that $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}, u_{e}$ and u_{o} are in $\mathrm{U}\left(\ell_{\infty}(\mathbb{N})\right)$, and $\operatorname{Ad} u_{e}$ and $\operatorname{Ad} u_{o}$ agree on $\mathcal{D}[\mathrm{E}]$ modulo the compacts. Then there is $w \in \mathrm{U}\left(\ell_{\infty}(\mathbb{N})\right)$ such that $\mathrm{Ad} w$ agrees with $\operatorname{Ad} u_{e}$ on $\mathcal{D}\left[\mathrm{E}^{\mathrm{even}}\right]$ modulo the compacts and with $\mathrm{Ad} u_{o}$ on $\mathcal{D}\left[\mathrm{E}^{\text {odd }}\right]$ modulo the compacts.

The proof uses the same trick used at the end of the proof of Theorem 17.8.2.
$\mathrm{OCA}_{\mathrm{T}}$ and Theorem 17.8.2: Φ_{1} is inner, and therefore ea unable $\Phi=\operatorname{Ad} v \circ \Phi_{1}$ is inner.

$D x_{\varepsilon}[E]$

$O_{\infty} A_{\infty}$

It only remains to prove that OCA ${ }_{\mathrm{T}}$ implies Φ has a C -measurable ε-approximation on $\mathcal{D}[E]$ for some E .
OC ${ }_{T}$ Whenever X is a separable metrizable space and
$[X]^{2}=L_{0} \sqcup L_{1}$ is an open colouring, one of the following alternatives applies.
0.1 There exists an uncountable L_{0}-homogeneous $\mathrm{Y} \subseteq \mathrm{X}$.
0.2 There are L_{1}-homogeneous sets X_{n}, for $n \in \mathbb{N}$, such that $\bigcup_{n} X_{n}=X$.
We will need an apparent strengthening of this axiom.

OCA_{∞}

It only remains to prove that OCA ${ }_{\mathrm{T}}$ implies Φ has a C -measurable ε-approximation on $\mathcal{D}[\mathrm{E}]$ for some E .
OCA ${ }_{T}$ Whenever X is a separable metrizable space and $[X]^{2}=L_{0} \sqcup L_{1}$ is an open colouring, one of the following alternatives applies.
0.1 There exists an uncountable L_{0}-homogeneous $\mathrm{Y} \subseteq \mathrm{X}$.
0.2 There are L_{1}-homogeneous sets X_{n}, for $n \in \mathbb{N}$, suct tbat $L_{0} / \$

$$
\bigcup_{n} X_{n}=X
$$

We will need an apparent strengthening of this axiom.
OCA $_{\infty}$ Whenever X is a separable metrizable space and $[\mathrm{X}]^{2}=L_{0}^{n} \sqcup L_{1}^{n}$, for $n \geq 0$, are open colourings such that $L_{0}^{n} \supseteq L_{0}^{n+1}$ for all n, one of the following alternatives applies.
0.1 There exists an uncountable $Z \subseteq\{0,1\}^{\mathbb{N}}$ and a continuous $f: Z \rightarrow X$ such that $\{f(a), f(b)\} \in L_{0}^{\Delta(a, b)}$ for all distinct a and b in Z.
0.2 There are $X_{n} \subseteq X$, for $n \in \mathbb{N}$, such that $\left[X_{n}\right]^{2} \subseteq L_{1}^{n}$ for all n.

Thy 8.6.6 OLA $_{\text {T }}$ implies OCA $_{\infty}$.
Proof: Fix X and open colourings $[X]^{2}=L_{0}^{n} \cup L_{1}^{n}$ for $d \geq 0$ such that $L_{0}^{n} \supseteq L_{0}^{n+1}$ for all n. Define a partition $\left[\{0,1\}^{\mathbb{N}} \times X\right]^{2}=M_{0} \cup M_{1}$ by
$\{(a, x),(b, y)\} \in M_{0}$ if and only if

$a \neq b, x \neq y$, and $\{x, y\} \in L_{0}^{\Delta(a, b)}$.
M. is open

$$
\text { core } 1 \exists Y \leq\{0,1\}^{N} \times X \text {, unctlle }
$$

$$
[\zeta]^{2} \subseteq M_{0}
$$

($0 . x_{1},(4,4)$ in 4

$$
\begin{aligned}
& (0, x),(b, y) \text { in }\} \\
& z=|a| \exists x \quad(0, x) \in Y\} \text {-uncthl, } \leq \zeta 0,1)^{N}
\end{aligned}
$$

y is the sral of $f: z \rightarrow x$
If Coge, fails, then OCAT \Rightarrow
Coser $\quad\langle 0,1\}^{N} \times X=\bigcup_{4} / Y_{4},\left[y_{n}\right]^{2} \leq M_{1}$.

$$
\begin{aligned}
& \text { Fi. o. d. } x^{\prime} \in X^{\frac{1}{n} \text { is slored. }} \\
& \left.Z_{n}(x)=\langle a|(a, x) \in y_{n}\right\} . \\
& \{0,1\}^{N} \subseteq U Z_{m}(x)
\end{aligned}
$$

Baire (at yoy $\Rightarrow \exists u_{x} \exists s_{x} \in\{0,1\}<N$

$$
\left.z_{n}(x) \supseteq[s](=\langle c| s \subseteq c\}\right)
$$

There wo ct(l) unc.o poiry ($n y, S_{k}$).

$$
\begin{aligned}
\bar{X}_{(n, s)} & =\left\{x \mid u_{x}=4, s_{x}=s\right\} \\
u_{x} & =u_{y}, s_{x}=s_{y}, \Rightarrow\left\{x, s \mid \in L_{1}^{|s|}\right.
\end{aligned}
$$

s. $\left[\underline{X}_{(u, s)}\right]^{2} \subseteq L_{1}^{1 s /}$
since $L_{1}^{n} \geq L_{1}^{n+1}$ we \quad.. reenumercte $\left(\bar{X}_{(0, s)}^{\prime}\right)$ os $\left(\bar{X}_{j}\right)$ s. \quad let $\left(X_{i}\right)^{2} \leq L_{1}^{j}$
(addr $\bar{X}_{j}=\varnothing$, if necesres)

The following definition describes some intermediates between an arbitrary lifting and a Borel-measurable lifting. (Throughout $\S 17.6-\S 17.7, \mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)
Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)_{<1}^{2}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c . \quad(\quad b-c \in \mathbb{K}(\nmid y) \quad\| \|(b-c) \mid l \leq \Omega$ It is ε-narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$.

$$
z=\left\{(0, b) \mid G \approx{ }^{k} \phi_{A}(a)\right\}
$$

The following definition describes some intermediates between an arbitrary lifting and a Borel-measurable lifting. (Throughout $\S 17.6-\S 17.7, \mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)
Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)_{\leq 1}^{2}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$. It is ε-narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$. A function $f: \mathcal{B}(H)_{\leq 1} \rightarrow \mathcal{B}(H)_{\leq 1}$ is σ-narrow if its graph can be covered by a countable family of narrow Borel sets. It is σ - ε-narrow if its graph can be covered by a countable family of ε-narrow Borel sets.

The following definition describes some intermediates between an arbitrary lifting and a Borel-measurable lifting. (Throughout $\S 17.6-\S 17.7, \mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)
Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)_{\leq 1}^{2}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$. It is ε-narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$. A function $f: \mathcal{B}(H)_{\leq 1} \rightarrow \mathcal{B}(H)_{\leq 1}$ is σ-narrow if its graph can be covered by a countable family of narrow Borel sets.
It is σ - ε-narrow if its graph can be covered by a countable family of ε-narrow Borel sets.
An endomorphism Φ of $\mathcal{Q}(H)$ has a σ-narrow lifting if its restriction to the unit ball has a lifting which is σ-narrow. It has a σ-narrow ε-approximation if there is a σ - ε-narrow function Θ such that every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_{*}(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$.

The following definition describes some intermediates between an arbitrary lifting and a Borel-measurable lifting. (Throughout $\S 17.6-\S 17.7, \mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)
Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H){ }_{\leq 1}^{2}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$.
It is ε-narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$. A function $f: \mathcal{B}(H)_{\leq 1} \rightarrow \mathcal{B}(H)_{\leq 1}$ is σ-narrow if its graph can be covered by a countable family of narrow Borel sets.
It is σ - ε-narrow if its graph can be covered by a countable family of ε-narrow Borel sets.
An endomorphism Φ of $\mathcal{Q}(H)$ has a σ-narrow lifting if its restriction to the unit ball has a lifting which is σ-narrow. It has a σ-narrow ε-approximation if there is a σ - ε-narrow function Θ such that every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_{*}(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$.
A σ-narrow lifting on $\mathcal{D}[\mathrm{E}]$ or $\mathrm{D}[\mathrm{E}]$ and a σ-narrow
ε-approximation on $\mathcal{D}[\mathrm{E}]$ or $\mathrm{D}[\mathrm{E}]$ are defined analogously.

Example
There is an endomorphism Φ of ℓ_{∞} / c_{0} with 昰-narrow lifting, but no C-measurable (Borel, continuous,...) lifting.

$$
\begin{aligned}
& \left(l_{\infty}\right), \leadsto L^{*}-t_{0}, C_{0}^{*} \\
& \text { Let } U_{n}, \quad n \in 20,1 \text { be nonproncillal } \\
& \text { ultrafilters on } N_{,} x_{u} \in U_{n} \\
& \text { Lef } f: l \alpha \rightarrow l_{\infty} \quad l_{1} \\
& f(a) f(n)=\lim _{j \rightarrow u_{Q}^{\infty}} a_{j} \quad u \text { even } \\
& f(a)(n)=\lim _{j \rightarrow u_{i}} a_{j} \quad \text { u odr }
\end{aligned}
$$

$$
\begin{aligned}
\text { f lift, a } \\
\phi: l_{\infty} / c_{0} \rightarrow l_{\infty} / c_{0}
\end{aligned}
$$

It ha, c - -Boml lotting bat no Bourl liftivg (HW: Fix this!)

Lemma 17.6.3 Assume OCA $_{\mathrm{T}}$. If Φ is an endomorphism of $\mathcal{Q}(H)$ and $\varepsilon>0$, then Φ has a σ-narrow ε-approximation on $\mathrm{D}_{\tilde{\mathrm{x}}}[\mathrm{E}]$ for some infinite $\tilde{\mathrm{X}}$.

Lemma 17.6.3 Assume OCA $_{\boldsymbol{\top}}$. If Φ is an endomorphism of $\mathcal{Q}(H)$ and $\varepsilon>0$, then Φ has a σ-narrow ε-approximation on $\mathrm{D}_{\tilde{\mathrm{x}}}[\mathrm{E}]$ for some infinite $\tilde{\mathrm{X}}$.
I.e., there is a function Θ such that
(a) every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_{*}(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$ and
(b) the graph of Θ can be covered by a countable family of Borel sets \mathcal{Z}_{n}.

Lemma 17.6.3 Assume OCA ${ }_{\top}$. If Φ is an endomorphism of $\mathcal{Q}(H)$ and $\varepsilon>0$, then Φ has a σ-narrow ε-approximation on $\mathrm{D}_{\tilde{\mathrm{x}}}[\mathrm{E}]$ for some infinite \tilde{X}. $O_{1} ل$ fore E.
I.e., there is a function Θ such that
(a) every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_{*}(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$ and
(b) the graph of Θ can be covered by a countable family of Borel sets \mathcal{Z}_{n}.
A few conventions for the proof of Lemma 17.6.3:

1. We'll index the intervals in $E \in \operatorname{Part}_{\mathbb{N}}$ by $\{0,1\}<\mathbb{N}$: $\mathrm{E}=\left\langle E_{s}: s \in\{0,1\}^{<\mathbb{N}}\right\rangle$.
2. Fix $E \in \operatorname{Part}_{\mathbb{N}}$ so that $\lim _{n} \min _{|s|=n}\left|E_{s}\right|=\infty$.
3. If $X \subseteq\{0,1\}<\mathbb{N}$ is infinite and included in a single branch of $\{0,1\}^{<\mathbb{N}}$, then this branch is denoted $B(X)$.
4. Fix a discretization $D[E]$ of $\mathcal{D}[E]$.

$$
E_{S}=1, j
$$

Proof of Lemma 17.6.3, that Φ has a σ-narrow

 ε-approximation on $D_{\tilde{x}}[E]$ for some infinite \tilde{X}.Fix $d \geq(2 \varepsilon)^{-1}$ and $n \geq 1$. Let

$$
0_{x} \leq 10
$$

$$
\begin{aligned}
\mathcal{X}:=\left\{(X, a): B(X) \text { is defined and } a \in D_{x}\right\} . & P_{x} G
\end{aligned}=a_{x}
$$

$$
P_{x}=\operatorname{proj} \operatorname{sic} \int \xi_{j} \mid j \in\left(\underset{n \in x}{E_{L}}\right.
$$

Proof of Lemma 17.6.3, that Φ has a σ-narrow ε-approximation on $D_{\tilde{x}}[E]$ for some infinite \tilde{X}.

Fix $d \geq(2 \varepsilon)^{-1}$ and $n \geq 1$. Let

$$
\mathcal{X}:=\left\{(\mathrm{X}, a): \mathrm{B}(\mathrm{X}) \text { is defined and } a \in \mathrm{D}_{\mathrm{X}}\right\} .
$$

In order to topologize \mathcal{X}, identify $(X, a) \in \mathcal{X}$ with

$$
\left(\mathrm{B}(\mathrm{X}), \mathrm{X}, a, q_{\mathrm{X}}, \Phi_{*}(a)\right) \in\{0,1\}^{\mathbb{N}} \times \mathcal{P}\left(\{0,1\}^{<\mathbb{N}}\right) \times \mathrm{D} \times \mathcal{B}(H)_{\leq 1}^{2}
$$

Proof of Lemma 17.6.3, that Φ has a σ-narrow

 ε-approximation on $D_{\tilde{x}}[E]$ for some infinite \tilde{X}.Fix $d \geq(2 \varepsilon)^{-1}$ and $n \geq 1$. Let

$$
\mathcal{X}:=\left\{(\mathrm{X}, a): \mathrm{B}(\mathrm{X}) \text { is defined and } a \in \mathrm{D}_{\mathrm{X}}\right\} .
$$

In order to topologize \mathcal{X}, identify $(\mathrm{X}, a) \in \mathcal{X}$ with

$$
\left(\mathrm{B}(\mathrm{X}), \mathrm{X}, a, q_{\mathrm{X}}, \Phi_{*}(a)\right) \in\{0,1\}^{\mathbb{N}} \times \mathcal{P}\left(\{0,1\}^{<\mathbb{N}}\right) \times \mathrm{D} \times \mathcal{B}(H)_{\leq 1}^{2}
$$

Let $\{(\mathrm{X}, a),(\mathrm{Y}, b)\} \in M_{0}^{d, \square}$ if the following conditions are satisfied:

$$
\begin{aligned}
& \{(\mathrm{X}, a),(\mathrm{Y}, b)\} \in M_{0}^{d, n} \text { iff }\left(M_{0}^{d} 1\right) \mathrm{B}(\mathrm{X}) \neq \mathrm{B}(\mathrm{Y}),\left(M_{0}^{d} 2\right) p_{X} b=p_{Y} a, \text { and } \\
& \left(M_{0}^{d, n} 3\right)\left\|p_{[n, \infty)}\left(\Phi_{*}(a) q_{Y}-q_{X} \Phi_{*}(b)\right)\right\|>\frac{1}{d} \text { or }\left\|p_{[n, \infty)}\left(q_{Y} \Phi_{*}(a)-\Phi_{*}(b) q_{X}\right)\right\|>\frac{1}{d} .
\end{aligned}
$$

Claim. For every n, the partition $[\mathcal{X}]^{2}=M_{0}^{d, n} \cup M_{1}^{d, n}$ is open.

$$
M_{0}^{d u} 2 M_{0}^{d n+1}
$$

$\{(\mathrm{X}, a),(\mathrm{Y}, b)\} \in M_{0}^{d, n}$ iff $\left(M_{0}^{d} 1\right) \mathrm{B}(\mathrm{X}) \neq \mathrm{B}(\mathrm{Y}),\left(M_{0}^{d} 2\right) p_{X} b=p_{Y} a$, and $\left(M_{0}^{d, n} 3\right)\left\|p_{[n, \infty)}\left(\Phi_{*}(a) q_{Y}-q_{X} \Phi_{*}(b)\right)\right\|>\frac{1}{d}$ or $\left\|p_{[n, \infty)}\left(q_{Y} \Phi_{*}(a)-\Phi_{*}(b) q_{X}\right)\right\|>\frac{1}{d}$.

Claim. There is no uncountable $\mathrm{Z} \subseteq\{0,1\}^{\mathbb{N}}$ such that some continuous $f: Z \rightarrow \mathcal{X}$ satisfies $\{f(a), f(b)\} \in M_{0}^{d, \Delta(a, b)}$ for all distinct a and b in Z .
Pf Assume otherwise, fix Z, f.
re, $\forall x, y$ is $z, x \neq y \Rightarrow\{f(x), f(y)\} \in M_{0}^{d, \Delta(x, y)}$

$$
f(x)=(x, a) \quad f(y)=(y, b)
$$

Define $c \in D[E]$ s that $\forall s \in\left[0,15^{<N}\right.$
$c_{s}=a_{s} \quad$ fo $\operatorname{son}_{\mathrm{c}} \quad$ if $\operatorname{soch} \frac{(x, 0) \in f[z] \text {, }}{(x, c) \text { exits. }}$ $\left(0 / \omega \quad c_{s}=0\right)$.
Then $c_{s}=a_{s}$ bs $\forall(x, 0) \in f(7)$
(if exist)

$$
\begin{aligned}
& \text { The, <n, } \forall x(x, a) \in f[z] \\
& P_{x} c=a, \underline{\underline{c P_{x}}=a} \\
& \phi_{*}\left(p_{x} c\right)={ }^{k} \phi_{t}(0) \\
& q_{x} \phi_{*}(c)-\phi_{t}(d) \in K(H) \text {. }
\end{aligned}
$$

Find $u=u(x, c)$

$$
\begin{aligned}
& \text { Find } n=u(x, 0) \text { so that } \\
& \left\|P_{(n, \infty)}\left(\varepsilon_{x} \phi_{A}(c)-\phi_{*}(0)\right)\right\|<\frac{1}{d}
\end{aligned}
$$

w log, Jun

$$
n=u(x, c) \text {. }
$$

Find x, y in $t, \Delta(u, s)>24$
Then $\left\|P_{[n, \infty)}\left(\varepsilon_{x} \phi_{*}(b)-\phi_{E}(c) \varepsilon_{y}\right)\right\|>\frac{1}{24}$

$$
\left(\begin{array}{ll}
f(x)=(x, 0), & f(4)=(\xi, b)) . \\
0, & \left\|P_{[n, \infty)}\left(\phi_{x}(h) \varepsilon_{x}-\varepsilon_{y} \phi_{x}(0)\right)\right\|>\frac{1}{24}
\end{array}\right.
$$

$$
\left\|l_{(n, \infty)}{ }^{n} \varepsilon_{x}\left(\varepsilon_{x} \phi_{A}(c)-\phi_{*}(0)\right)\right\|<\frac{1}{d}
$$

Fix $(x, 0),(v, b)$ in $f[t]$.
Then (write $\left.d=\varepsilon_{\varepsilon}^{n} e \Leftrightarrow\left\|\rho_{(u, \alpha)}(d-e)\right\|<\varepsilon\right)$.

$$
\begin{aligned}
& \varepsilon_{y} \phi_{*}(a) \approx_{1 / 2}^{\prime} \varepsilon_{y} \phi_{*}(c) \varepsilon_{x} \approx_{\frac{1}{d}}^{n} \phi_{k}(b) \varepsilon_{x} \\
& \text { s } \quad \varepsilon_{3} \phi_{A}(c) \varepsilon_{I / d}^{n} \phi_{A}(b) \varepsilon_{x} \\
& \text { so } \left.\| p_{[u, \infty}\right)\left(\varepsilon_{y} \phi_{t}(0)-\phi_{t}(b) \varepsilon_{x}\right) \|>\frac{2}{d} \\
& \text { Siaillols, } \\
& { }^{11} \sum_{[1, \infty)}\left(\left.\phi_{*}(a) \varepsilon_{s}-\varepsilon_{x} \phi_{*}(b) \|>\frac{2}{I} \right\rvert\,\right.
\end{aligned}
$$

theretore, si.s. $\left\{\begin{array}{c}f(x) \\ (x, 1) \\ (l)\end{array}\right) \in \mu_{0}^{d, \Delta(x, y)}$

$$
(x, 0) \quad(\geqslant, 6)
$$

we love $\Delta(2 x, y)<\frac{d}{2}$.
pot f is unctlere!

