Massive C^* -algebras, Winter 2021, I. Farah, Lecture 21

Today:

1. The story so far. 2. OCA_{∞} . Important: There will be no classes On Manh 29 Or Alvil 2. There will be closes on April 5 and April 9.

Prop Suppose $\Phi \in \operatorname{Aut}(Q(H))$ is such that for every $\varepsilon > 0$ there are $E \in \operatorname{Part}_{\mathbb{N}}$, with $|E_n| \to \infty$, and an infinite $X \subseteq \mathbb{N}$ such that Φ has a *C*-measurable ε -approximation on $D_X[E]$. Then OCA_T implies that Φ is inner. $\|T(\Theta(O_1) - \phi_{\star}(A))\| \leq \varepsilon \quad \text{facl}_{\chi}$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ の�?

Prop Suppose $\Phi \in Aut(\mathcal{Q}(H))$ is such that for every $\varepsilon > 0$ there are $E \in Part_{\mathbb{N}}$, with $|E_n| \to \infty$, and an infinite $X \subseteq \mathbb{N}$ such that Φ has a *C*-measurable ε -approximation on $D_X[E]$. Then OCA_T implies that Φ is inner. Proof: Lemma 17.5.3 (3): Φ has a C-measurable ε -approximation on $D[\mathbf{F}]$ for every $\varepsilon > 0$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Prop Suppose $\Phi \in Aut(\mathcal{Q}(H))$ is such that for every $\varepsilon > 0$ there are $E \in Part_{\mathbb{N}}$, with $|E_n| \to \infty$, and an infinite $X \subseteq \mathbb{N}$ such that Φ has a C-measurable ε -approximation on $D_X[E]$. Then OCA_T implies that Φ is inner.

Proof: Lemma 17.5.3 (3): Φ has a C-measurable ε -approximation on D[E] for every $\varepsilon > 0$. Lemma 17.4.5: Φ has a continuous lifting on D_Y[E] for some infinite Y.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Prop Suppose $\Phi \in Aut(\mathcal{Q}(H))$ is such that for every $\varepsilon > 0$ there are $E \in Part_{\mathbb{N}}$, with $|E_n| \to \infty$, and an infinite $X \subseteq \mathbb{N}$ such that Φ has a C-measurable ε -approximation on $D_X[E]$. Then OCA_T implies that Φ is inner.

Proof: Lemma 17.5.3 (3): Φ has a C-measurable ε -approximation on D[E] for every $\varepsilon > 0$.

Lemma 17.4.5: Φ has a continuous lifting on $D_{Y}[E]$ for some infinite Y.

Proposition 17.5.4: it can be chosen to be of product type and such that its *n*-th component Ξ_n is a unital 1/n-approximate *-homomorphism for every *n*. \mathcal{E}_{4} -

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < < </p>

Prop Suppose $\Phi \in Aut(\mathcal{Q}(H))$ is such that for every $\varepsilon > 0$ there are $E \in Part_{\mathbb{N}}$, with $|E_n| \to \infty$, and an infinite $X \subseteq \mathbb{N}$ such that Φ has a C-measurable ε -approximation on $D_X[E]$. Then OCA_T implies that Φ is inner.

Proof: Lemma 17.5.3 (3): Φ has a C-measurable ε -approximation on D[E] for every $\varepsilon > 0$.

Lemma 17.4.5: Φ has a continuous lifting on $D_{Y}[E]$ for some infinite Y.

Proposition 17.5.4: it can be chosen to be of product type and such that its *n*-th component Ξ_n is a unital 1/n-approximate *-homomorphism for every *n*.

Theorem 17.2.6 (Corollary 17.5.5): for every $F \in Part_{\mathbb{N}}$, some *-homomorphism serves as a lifting of Φ on $\mathcal{D}[F]$. Proposition 17.5.7: it is implemented by a partial isometry for every $F \in Part_{\mathbb{N}}$.

Prop Suppose $\Phi \in Aut(\mathcal{Q}(H))$ is such that for every $\varepsilon > 0$ there are $E \in Part_{\mathbb{N}}$, with $|E_n| \to \infty$, and an infinite $X \subseteq \mathbb{N}$ such that Φ has a C-measurable ε -approximation on $D_X[E]$. Then OCA_T implies that Φ is inner.

Proof: Lemma 17.5.3 (3): Φ has a C-measurable ε -approximation on D[E] for every $\varepsilon > 0$.

Lemma 17.4.5: Φ has a continuous lifting on $D_{Y}[E]$ for some infinite Y.

Proposition 17.5.4: it can be chosen to be of product type and such that its *n*-th component Ξ_n is a unital 1/n-approximate *-homomorphism for every *n*.

Theorem 17.2.6 (Corollary 17.5.5): for every $F \in Part_{\mathbb{N}}$, some *-homomorphism serves as a lifting of Φ on $\mathcal{D}[F]$.

Proposition 17.5.7: it is implemented by a partial isometry for every $F \in Part_{\mathbb{N}}$. (But we want a unitary!)

From C-measurable approximations to innerness

Fix E and v such that Ad \dot{v} and Φ agree on $\mathcal{D}[E]$, and let $\Phi_1 := Ad v^* \Phi$ Then the restriction of Φ_1 to $\mathcal{D}[F]$ is implemented by a unitary for every $F \in Part_N$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

From C-measurable approximations to innerness

Fix E and v such that Ad \dot{v} and Φ agree on $\mathcal{D}[E]$, and let $\Phi_1 := \operatorname{Ad} v^* \circ \Phi$ Then the restriction of Φ_1 to $\mathcal{D}[F]$ is implemented by a unitary for every $F \in \operatorname{Part}_{\mathbb{N}}$.

Lemma 17.5.8 Suppose that $E \in Part_{\mathbb{N}}$, u_e and u_o are in $U(\ell_{\infty}(\mathbb{N}))$, and Ad u_e and Ad u_o agree on $\mathcal{D}[E]$ modulo the compacts. Then there is $w \in U(\ell_{\infty}(\mathbb{N}))$ such that Ad w agrees with Ad u_e on $\mathcal{D}[E^{even}]$ modulo the compacts and with Ad u_o on $\mathcal{D}[E^{odd}]$ modulo the compacts.

The proof uses the same trick used at the end of the proof of Theorem 17.8.2.

 $FFT= |a| a=c, tc, a \in \mathcal{E}$ $c, \in \mathcal{E}$

From C-measurable approximations to innerness

Fix E and v such that Ad \dot{v} and Φ agree on $\mathcal{D}[E]$, and let $\Phi_1 := \operatorname{Ad} v^* \circ \Phi$ Then the restriction of Φ_1 to $\mathcal{D}[F]$ is implemented by a unitary for every $F \in \operatorname{Part}_{\mathbb{N}}$.

Lemma 17.5.8 Suppose that $E \in Part_{\mathbb{N}}$, u_e and u_o are in $U(\ell_{\infty}(\mathbb{N}))$, and Ad u_e and Ad u_o agree on $\mathcal{D}[E]$ modulo the compacts. Then there is $w \in U(\ell_{\infty}(\mathbb{N}))$ such that Ad w agrees with Ad u_e on $\mathcal{D}[E^{even}]$ modulo the compacts and with Ad u_o on $\mathcal{D}[E^{odd}]$ modulo the compacts.

The proof uses the same trick used at the end of the proof of Theorem 17.8.2. OCA_T and Theorem 17.8.2: Φ_1 is inner, and therefore ϕ unchlowed by $\Phi = \operatorname{Ad} v_{\circ} \Phi_1$ is inner. $\forall \mathcal{E} \xrightarrow{\mathcal{AE}} \mathcal{E} \xrightarrow{\mathcal{E}} \Phi_1$ is inner. $\forall \mathcal{E} \xrightarrow{\mathcal{E}} \varphi_2$

It only remains to prove that OCA_T implies Φ has a C-measurable ε -approximation on $\mathcal{D}[\mathsf{E}]$ for some E.

- OCA_T Whenever X is a separable metrizable space and $[X]^2 = L_0 \sqcup L_1$ is an open colouring, one of the following alternatives applies. [4] [4] -
 - 0.1 There exists an uncountable L_0 -homogeneous $Y \subseteq X$.
 - 0.2 There are L_1 -homogeneous sets X_n , for $n \in \mathbb{N}$, such that $\bigcup_{n} X_{n} = X.$

We will need an apparent strengthening of this axiom.

 OCA_{∞}

It only remains to prove that OCA_T implies Φ has a C-measurable ε -approximation on $\mathcal{D}[E]$ for some E.

- OCA_T Whenever X is a separable metrizable space and $[X]^2 = L_0 \sqcup L_1$ is an open colouring, one of the following alternatives applies.
 - 0.1 There exists an uncountable L_0 -homogeneous $Y \subseteq X$. 0.2 There are L_1 -homogeneous sets X_n , for $n \in \mathbb{N}$, such that
 - U.2 There are L_1 -homogeneous sets X_n , for $n \in \mathbb{N}$, such that $\bigcup_n X_n = X$.

We will need an apparent strengthening of this axiom. OCA_∞ Whenever X is a separable metrizable space and $[X]^2 = L_0^n \sqcup L_1^n$, for $n \ge 0$, are open colourings such that $L_0^n \supseteq L_0^{n+1}$ for all n, one of the following alternatives applies. 0.1 There exists an uncountable $Z \subseteq \{0,1\}^{\mathbb{N}}$ and a continuous $f: Z \to X$ such that $\{f(a), f(b)\} \in L_0^{\Delta(a,b)}$ for all distinct aand b in Z. 0.2 There are $X_n \subseteq X$, for $n \in \mathbb{N}$, such that $[X_n]^2 \subseteq L_1^n$ for all n.

Thm 8.6.6 OCA_T inplies OCA_{∞}.

Proof: Fix X and open colourings $[X]^2 = L_0^n \cup L_1^n$ for $n \ge 0$ such that $L_0^n \supseteq L_0^{n+1}$ for all n. Define a partition $[\{0,1\}^{\mathbb{N}} \times X]^2 = M_0 \cup M_1$ by $\{(a,x), (b,y)\} \in M_0$ if and only if $a \ne b, x \ne y$, and $\{x,y\} \in L_0^{\Delta(a,b)}$.

345 So, 15 XX Unethe

(_0)e

(0, k), (4, 4), i44 $Z = \{ a \mid \exists x \mid (0, k) \in Y \} - Uhctfilg \leq 20, 1 \}^{N}$ Y in the srall of f: 7-7X If Core I fail, then OCAT =1 $\frac{COJEL}{V.1.0.J.} \begin{array}{c} \langle v, l \rangle \times \chi = \left(\begin{array}{c} V_{4} \\ V_{4} \end{array}\right)^{2} \mathcal{M}_{4} \\ \overline{V.1.0.J.} \\ \overline{Fix} \times \mathcal{E} \end{array}$ $Z_{\mu}(x) = \langle \alpha | (q, x) \in \mathcal{F}_{\mu} \rangle.$ $s_{0,1}^{N} \subseteq \bigcup \mathcal{Z}_{m}(x)$ • ロ ト • 母 ト • 王 ト • 王 · りへで

Roive (at yoy => Jux JSx ESo/15 ~~~ $Z_n(x) \ge [s] (= \langle c | s = c \rangle)$ There are allo man point (My, Sx). $\underline{X}_{(n,s)} = \left\{ x \middle| u_x = 4, s_x = s \right\}$ $M_{x} = M_{y}$, $S_{x} = S_{y} = 2 [x, y] \in [1]$ $S_{2} \left[X_{(u,s)} \right]^{2} \leq \binom{1}{1}$ since l'21,4th Le con reenvenerche (X1,5) c, (X3) 5. Hlot (X;)'SL (add X; = ø, if necesser)

The following definition describes some intermediates between an arbitrary lifting and a Borel-measurable lifting. (Throughout §17.6–§17.7, $\mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)

Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)^2_{\leq 1}$ is narrow if for all (\underline{a}, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$. ($b \cdot c \in \mathcal{K}(\mathcal{M})$ It is ε -narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}}_{\varepsilon} c$.

0(17)

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

 $2 = \langle (0, L) | L \approx {}^{k} \phi_{+} (9) \rangle$

The following definition describes some intermediates between an arbitrary lifting and a Borel-measurable lifting. (Throughout §17.6–§17.7, $\mathcal{B}(H)_{<1}$ is considered with respect to the WOT.)

Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)^2_{\leq 1}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$.

It is ε -narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$. A function $f : \mathcal{B}(H)_{\leq 1} \to \mathcal{B}(H)_{\leq 1}$ is σ -narrow if its graph can be covered by a countable family of narrow Borel sets. It is σ - ε -narrow if its graph can be covered by a countable family

of ε -narrow Borel sets.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

The following definition describes some intermediates between an arbitrary lifting and a Borel-measurable lifting. (Throughout §17.6–§17.7, $\mathcal{B}(H)_{<1}$ is considered with respect to the WOT.)

Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)^2_{\leq 1}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$.

It is ε -narrow if for all (a, b) and (a, c) in \mathbb{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$. A function $f : \mathcal{B}(H)_{\leq 1} \to \mathcal{B}(H)_{\leq 1}$ is σ -narrow if its graph can be covered by a countable family of narrow Borel sets.

It is σ - ε -narrow if its graph can be covered by a countable family of ε -narrow Borel sets.

An endomorphism Φ of Q(H) has a σ -narrow lifting if its restriction to the unit ball has a lifting which is σ -narrow. It has a σ -narrow ε -approximation if there is a σ - ε -narrow function Θ such that every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_*(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$. The following definition describes some intermediates between an arbitrary lifting and a Borel-measurable lifting. (Throughout §17.6–§17.7, $\mathcal{B}(H)_{<1}$ is considered with respect to the WOT.)

Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)^2_{\leq 1}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$.

It is ε -narrow if for all (a, b) and (a, c) in \mathbb{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$. A function $f : \mathcal{B}(H)_{\leq 1} \to \mathcal{B}(H)_{\leq 1}$ is σ -narrow if its graph can be covered by a countable family of narrow Borel sets.

It is σ - ε -narrow if its graph can be covered by a countable family of ε -narrow Borel sets.

An endomorphism Φ of Q(H) has a σ -narrow lifting if its restriction to the unit ball has a lifting which is σ -narrow. It has a σ -narrow ε -approximation if there is a σ - ε -narrow function Θ such that every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_*(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$. A σ -narrow lifting on $\mathcal{D}[\mathsf{E}]$ or $\mathsf{D}[\mathsf{E}]$ and a σ -narrow ε -approximation on $\mathcal{D}[\mathsf{E}]$ or $\mathsf{D}[\mathsf{E}]$ are defined analogously.

Example

There is an endomorphism Φ of ℓ_{∞}/c_0 with \mathbb{Z}_{-} narrow lifting, but no C-measurable (Borel, continuous,...) lifting.

(lo), ~, ~, c.+ Lit Un, nelois be nonProacival ultrefilters on N, XueUn Lef f: la -> la 6. n even $f(a)(n) = \lim_{x \to ugs} a_j$ n odd $f(a)(h) = \lim_{j \to U_{f}} a_{j}$

 $C - L \in C_{0} = 1 + (0) - T (1)$ f lift a K-hour $\phi : l_{\infty} / \zeta \rightarrow l_{\infty} / \zeta$ It has a B-Brown lofting but to Bourd lifting (Hh: Fix His!)

Lemma 17.6.3 Assume OCA_T. If Φ is an endomorphism of Q(H)and $\varepsilon > 0$, then Φ has a σ -narrow ε -approximation on $D_{\tilde{X}}[E]$ for some infinite \tilde{X} .

Lemma 17.6.3 Assume OCA_T. If Φ is an endomorphism of Q(H)and $\varepsilon > 0$, then Φ has a σ -narrow ε -approximation on D_{X̃}[E] for some infinite \tilde{X} .

I.e., there is a function Θ such that (a) every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_*(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$ and (b) the graph of Θ can be covered by a countable family of Borel sets \mathcal{Z}_n .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Lemma 17.6.3 Assume OCA_T. If Φ is an endomorphism of Q(H)and $\varepsilon > 0$, then Φ has a σ -narrow ε -approximation on $D_{\tilde{X}}[E]$ for some infinite X. Or J Ame F

I.e., there is a function Θ such that (a) every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_*(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$ and (b) the graph of Θ can be covered by a countable family of Borel sets \mathbb{Z}_n .

A few conventions for the proof of Lemma 17.6.3:

1. We'll index the intervals in $E \in Part_{\mathbb{N}}$ by $\{0,1\}^{<\mathbb{N}}$: $\mathsf{E} = \langle E_s : s \in \{0,1\}^{<\mathbb{N}} \rangle.$

2. Fix $E \in Part_{\mathbb{N}}$ so that $\lim_{n \to \infty} \min_{|s|=n} |E_s| = \infty$.

3. If $X \subseteq \{0,1\}^{<\mathbb{N}}$ is infinite and included in a single branch of $\{0,1\}^{<\mathbb{N}}$, then this branch is denoted B(X). E.= (1)

4. Fix a discretization D[E] of $\mathcal{D}[E]$.

Proof of Lemma 17.6.3, that Φ has a σ -narrow ε -approximation on $D_{\tilde{x}}[E]$ for some infinite X.
$$\begin{split} \varepsilon)^{-1} \text{ and } n \geq 1. \text{ Let} & \underset{X := \{(X, a) : B(X) \text{ is defined and } \underline{a} \in D_X\}. \end{split} \\ \mathcal{E} \\ \mathcal{E$$
Fix $d \ge (2\varepsilon)^{-1}$ and $n \ge 1$. Let $\frac{B(M)}{777} 1 \circ 15 \qquad P_{X} = Proisin 19; |iel/E$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Proof of Lemma 17.6.3, that Φ has a σ -narrow ε -approximation on $D_{\tilde{X}}[E]$ for some infinite \tilde{X} . Fix $d \ge (2\varepsilon)^{-1}$ and $n \ge 1$. Let

 $\mathcal{X} := \{(X, a) : B(X) \text{ is defined and } a \in D_X\}.$

In order to topologize \mathcal{X} , identify $(X, a) \in \mathcal{X}$ with

 $(\mathsf{B}(\mathsf{X}),\mathsf{X},a,q_{\mathsf{X}},\Phi_{*}(a)) \in \{0,1\}^{\mathbb{N}} \times \mathcal{P}(\{0,1\}^{<\mathbb{N}}) \times \mathsf{D} \times \mathcal{B}(H)^{2}_{\leq 1}$

Proof of Lemma 17.6.3, that Φ has a σ -narrow ε -approximation on $D_{\tilde{X}}[E]$ for some infinite \tilde{X} . Fix $d \ge (2\varepsilon)^{-1}$ and $n \ge 1$. Let

 $\mathcal{X} := \{ (X, a) : B(X) \text{ is defined and } a \in D_X \}.$

In order to topologize \mathcal{X} , identify $(X, a) \in \mathcal{X}$ with

$$(\mathsf{B}(\mathsf{X}),\mathsf{X},\textit{a},\textit{q}_{\mathsf{X}},\Phi_{*}(\textit{a}))\in\{0,1\}^{\mathbb{N}}\times\mathcal{P}(\{0,1\}^{<\mathbb{N}})\times\mathsf{D}\times\mathcal{B}(\mathcal{H})^{2}_{\leq1}$$

Let $\{(X, a), (Y, b)\} \in M_0^{d,n}$ if the following conditions are satisfied: $(M_0^d 1) B(X) \neq B(Y), \qquad \phi_X([Y, f(Y)]) = 0$ $(M_0^d 2) p_X b = p_Y a, \text{ and } (f(Y)) = 0$ $(M_0^{d,n} 3) \|p_{[n,\infty)}(\Phi_*(a)q_Y - q_X\Phi_*(b))\| > 1/d \text{ or } \|p_{[n,\infty)}(q_Y\Phi_*(a) - \Phi_*(b)q_X)\| > 1/d.$

$$\{ (X, a), (Y, b) \} \in M_0^{d,n} \text{ iff } (M_0^d 1) \text{ B}(X) \neq \text{B}(Y), (M_0^d 2) \text{ } p_X b = p_Y a, \text{ and} \\ \underline{(M_0^{d,n} 3) \| p_{[n,\infty)}(\Phi_*(a)q_Y - q_X \Phi_*(b)) \| > \frac{1}{d} \text{ or } \| p_{[n,\infty)}(q_Y \Phi_*(a) - \Phi_*(b)q_X) \| > \frac{1}{d}. \\ \hline \text{Claim.} \quad \text{For every } n, \text{ the partition } [\mathcal{X}]^2 = M_0^{d,n} \cup M_1^{d,n} \text{ is open.} \\ \hline M_0^{d, M} \xrightarrow{\mathcal{A}}_{\mathcal{A}} M_{\mathcal{A}}^{\mathcal{A}} \xrightarrow{\mathcal{A}}_{\mathcal{A}} M_{\mathcal{A}}^{\mathcal{A}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

 $\{ (X, a), (Y, b) \} \in M_0^{d,n} \text{ iff } (M_0^d 1) \ B(X) \neq B(Y), \ (M_0^d 2) \ p_X b = p_Y a, \text{ and} \\ (M_0^{d,n} 3) \ \|p_{[n,\infty)}(\Phi_*(a)q_Y - q_X \Phi_*(b))\| > \frac{1}{d} \text{ or } \|p_{[n,\infty)}(q_Y \Phi_*(a) - \Phi_*(b)q_X)\| > \frac{1}{d}.$

Claim. There is no uncountable $Z \subseteq \{0,1\}^{\mathbb{N}}$ such that some continuous $f: \mathbb{Z} \to \mathcal{X}$ satisfies $\{f(a), f(b)\} \in M_0^{d,\Delta(a,b)}$ for all distinct a and b in Z. $f(\mathbf{x}) = (X, a)$ f(y) = (Y, b)Define CED[E] & Hld HSElo,15 N < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

S= 4c (X, 0) E +[7] $c_s = \alpha_s$ such (X, or exist. (\mathcal{N}) c_s = as the $F(x, c) \in f(x)$ Then $C_s =$ (if exot) {0,15 Then, 4(x, c) Ef[7] $l_{X} c = a, cl_{X} = G$ $\phi_{\star}(P_{X}C) = {}^{\kappa} \phi_{\star}(o)$ Then $\mathbf{J}_{\mathbf{X}} \phi_{\mathbf{x}}(\mathbf{c}) - \phi_{\mathbf{x}}(\mathbf{a}) \in \mathcal{K}(\mathcal{H}).$ u = u (X, 01 so + Let Find $\left\| f_{(u, \phi)} \left(\mathcal{Z}_{\chi} \phi_{\chi} \left(c \right) - \phi_{\chi} \left(o \right) \right) \right\| < \frac{1}{d}$ W 09, J4 + (X, C) F 4 7] u = u(X, c).x, y is $t, \Delta(x, y)$ Fird $|_{[u, \infty)} (\xi_{x} \phi_{x}(b) - \phi_{z}(c) \xi_{y}) || > \frac{1}{2u}$ Thon II $f(x) = (x, 0), \quad f(y) = (y, b)).$ 11 Prin, a) (\$\$ (4) 2x - 2, \$\$ (0)) > 1 0-

14 (X, o) $\left\| \mathcal{L}_{x,\infty} \left(\mathcal{L}_{x} \phi_{x} \left(\mathcal{L}_{I} - \phi_{x} \left(\mathbf{o} \right) \right) \right\| < \frac{1}{d} \right\}$ $\| f_{\Sigma^{n}, \infty} \left(\phi_{\mathcal{X}} (c) \mathcal{E}_{\mathcal{X}} - \phi_{\mathcal{X}} (c) \| \leq \frac{1}{2} \right)$ Fix (X,0), (Y, 61 in f[7]. Then (write $d = \frac{\pi}{\epsilon} e \in \mathcal{P}[r, a]$ (d-e)//< ϵ). $\mathcal{Z}_{\gamma} \phi_{\mathcal{X}}(a) \approx_{ij}^{u} \mathcal{Z}_{\gamma} \phi_{\mathcal{X}}(c) \mathcal{Z}_{\mathcal{X}} \approx_{ij}^{u} \phi_{\mathcal{X}}(b) \mathcal{Z}_{\mathcal{X}}$ E, \$x (c) = b, (6) Ex $\|\|_{\Gamma_{u,\infty}} (\{ \xi_{y} | \xi_{x}(c) - \phi_{x}(t_{y}) | t_{x}) \| > \frac{2}{J}$ Similarly, $\| l_{\mathcal{L}_{v},\infty} \left(\phi_{\mathcal{X}}(a) \mathcal{E}_{\mathcal{Y}} - \mathcal{E}_{\mathcal{X}} \phi_{\mathcal{X}}(u) \| \right) \frac{1}{T}$ suce $(f(\alpha), f(\gamma)) \in M_{o}^{d}, \Delta(\alpha, \gamma)$ there torc, (X,0) (7,4) we have $\Delta(x_{ij}) < \frac{d}{2}$. t is unctile! J-1