
Massive C⇤
-algebras, Winter 2021, I. Farah, Lecture 21

Today:

1. Continuing the proof that OCAT implies � has a �-narrow
"-approximation on DX[E].

2. An example of an endomorphism of `1/c0 with a �-narrow
lifting, but no continuous (Borel, C-measurable) lifting.
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Our weapon of choice.

OCA1 Whenever X is a separable metrizable space and
[X]2 = L

n
0
t L

n
1
, for n � 0, are open colourings such that

L
n
0
◆ L

n+1

0
for all n, one of the following alternatives applies.

0.1 There exists an uncountable Z ✓ {0, 1}N and a continuous

f : Z ! X such that {f (a), f (b)} 2 L
�(a,b)
0

for all distinct a
and b in Z.

0.2 There are Xn ✓ X, for n 2 N, such that X =
S

n Xn and
[Xn]2 ✓ L

n
1
for all n.

(Recall that OCAT implies OCA1.)
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Recall the following definitions (throughout §17.6–§17.7, B(H)1

is considered with respect to the WOT.)

Def 17.6.1 A subset Z of B(H)21
is narrow if for all (a, b) and

(a, c) in Z we have b ⇡K
c .

It is "-narrow if for all (a, b) and (a, c) in Z we have b ⇡K
" c .

A function f : B(H)1 ! B(H)1 is �-narrow if its graph can be

covered by a countable family of narrow Borel sets.

It is �-"-narrow if its graph can be covered by a countable family

of "-narrow Borel sets.

An endomorphism � of Q(H) has a �-narrow lifting if its

restriction to the unit ball has a lifting which is �-narrow. It has a
�-narrow "-approximation if there is a �-"-narrow function ⇥ such

that every a 2 B(H)1 satisfies �⇤(a) ⇡K
" ⇥(a).

A �-narrow lifting on D[E] or D[E] and a �-narrow
"-approximation on D[E] or D[E] are defined analogously.

I owe you an example. It is coming shortly, after the proof of

Lemma 17.6.3.
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We now complete the proof of the following, started last time.

Lemma 17.6.3 Assume OCAT. If � is an endomorphism of Q(H)
and " > 0, then � has a �-narrow "-approximation on D

X̃
[E] for

some infinite X̃.

I.e., there is a function ⇥ such that
(a) every a 2 B(H)1 satisfies �⇤(a) ⇡K

" ⇥(a) and
(b) the graph of ⇥ can be covered by a countable family of Borel
sets Zn.

A few conventions for the proof of Lemma 17.6.3:

1. We’ll index the intervals in E 2 PartN by {0, 1}<N:
E = hEs : s 2 {0, 1}<Ni.

2. Fix E 2 PartN so that limn min|s|=n |Es | = 1.

3. If X ✓ {0, 1}<N is infinite and included in a single branch of
{0, 1}<N, then this branch is denoted B(X).

4. Fix a discretization D[E] of D[E].
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Proof of Lemma 17.6.3, that � has a �-narrow

"-approximation on DX̃[E] for some infinite X̃.

Fix d � (2")�1 and n � 1. Let

X := {(X, a) : B(X) is defined and a 2 DX}.

In order to topologize X , identify (X, a) 2 X with

(B(X),X, a, qX,�⇤(a)) 2 {0, 1}N ⇥ P({0, 1}<N)⇥ D⇥ B(H)21

Let {(X, a), (Y, b)} 2 M
d ,n
0

if the following conditions are satisfied:

(Md
0
1) B(X) 6= B(Y),

(Md
0
2) pXb = pYa, and

(Md ,n
0

3) kp[n,1)(�⇤(a)qY � qX�⇤(b))k > 1/d or
kp[n,1)(qY�⇤(a)� �⇤(b)qX)k > 1/d .
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{(X, a), (Y, b)} 2 Md,n
0

i↵ (Md
0
1) B(X) 6= B(Y), (Md

0
2) pXb = pYa, and

(Md,n
0

3) kp[n,1)(�⇤(a)qY � qX�⇤(b))k > 1

d or kp[n,1)(qY�⇤(a)� �⇤(b)qX)k > 1

d .

From the last time:

Claim. For every n, the partition [X ]2 = M
d ,n
0

[M
d ,n
1

is open.

Claim. There is no uncountable Z ✓ {0, 1}N such that some

continuous f : Z ! X satisfies {f (a), f (b)} 2 M
d ,�(a,b)
0

for all

distinct a and b in Z.

By OCA1, there are M
d ,n
1

-homogeneous sets X d
n , for n 2 N, such

that X ✓
S

n X d
n .
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{(X, a), (Y, b)} 2 Md,n
1

i↵ (Md
1
1) B(X) = B(Y) or (Md

1
2) pXb  pYa, or

(Md,n
1

3) kp[n,1)(�⇤(a)qY � qX�⇤(b))k  1

d and kp[n,1)(qY�⇤(a)� �⇤(b)qX)k  1

d .

Fix M
d ,n
1

-homogeneous sets X d
n , for n 2 N, such that X ✓

S
n X d

n .

For distinct (X, a) and (Y, b) in X and k 2 N write

�((X, a), (Y, b)) := min{k : (9s 2 {0, 1}k)(s 2 X�Y

or (s 2 X \ Y and a(s) 6= b(s)))}.

For k 2 N let ek := p[0,k).

For every n, fix a countable dense Ed
n ✓ X d

n . The closure of each
Ed
n is Md ,n

1
-homogeneous. Fix a branch B̃ of {0, 1}<N that does

not belong to the countable set {B(X) : (X, a) 2
S

n Ed
n }.
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Choose Fk,n b Ed
n so that for every (X, a) 2 Ed

n there is
(Y, b) 2 Fk,n such that �((X, a), (Y, b)) > k and
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Example

There is an endomorphism � of the Boolean algebra P(N)/Fin
with a �-narrow lifting, but no C-measurable (Borel,
continuous,. . . ) lifting.

Proof: Fix a nonprincipal ultrafilter U on N. Let �(A) := N if
A 2 U and �(A) := ; if A /2 U .
Then � has a lifting whose graph is covered by two constant
functions.
To prove that � does not have a continuous lifting, one uses the
fact that for every nonempty basic open subset V on P(N), both
V \ U and V \ U are nonmeager.

Question Is there an endomorphism of `1/c0 with a �-narrow
lifting but no continuous (Borel, C-measurable) lifting?
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We’ll need another result from the classical descriptive set theory.

Thm B.2.14 (Novikov) If X and Y are Polish spaces and

A ✓ X⇥ Y is analytic, then the set {x 2 X : Ax is nonmeager} is

analytic.
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Lemma 17.7.1 Suppose � is an endomorphism of Q(H), d � 1,
E 2 PartN, and there exists a 1/d-narrow analytic set

Z ✓ D
X̃
⇥ B(H)1. Then for every A ✓ X̃ such that both A and

X̃ \ A are infinite at least one of the following applies.

1. There is a C-measurable 3/d-approximation of � on DA.

2. There are B ✓ X̃ \ A, a 2 DA, and b 2 DB such that both B
and X̃ \ (A [ B) are infinite and every uniformization ⌅ of Z
and c 2 D

X̃\(A[B) such that a+ b + c 2 dom(⌅) satisfy

⌅(a+ b + c)qA 6⇡K
1/d �⇤(a).

Proof: Let

V := {(a, b, c) 2 DA ⇥ D
X̃\A ⇥ B(H)1 :

(9c 0 2 B(H)1)(a+ b, c 0) 2 Z, c ⇡K
1/d c

0
qA}.

W(a) := {b 2 D
X̃\A : (a, b,�⇤(a)) 2 V}, for a 2 DA.
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