Massive C*-algebras, Winter 2021, I. Farah, Lecture 21

Today:

1. Continuing the proof that OCA_{\top} implies Φ has a σ-narrow ε-approximation on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$.

2. An example of an endomorphism of with a σ-narrow lifting, but no continuous (Borel, C-measurable) lifting.

Our weapon of choice.
OCA_{∞} Whenever X is a separable metrizable space and
$[X]^{2}=L_{0}^{n} \sqcup L_{1}^{n}$, for $n \geq 0$, are open colourings such that $L_{0}^{n} \supseteq L_{0}^{n+1}$ for all n, one of the following alternatives applies.
0.1 There exists an uncountable $Z \subseteq\{0,1\}^{\mathbb{N}}$ and a continuous $f: Z \rightarrow X$ such that $\{f(a), f(b)\} \in L_{0}^{\Delta(a, b)}$ for all distinct a and b in Z.
0.2 There are $X_{n} \subseteq X$, for $n \in \mathbb{N}$, such that $X=\bigcup_{n} X_{n}$ and $\left[X_{\text {(I) }}\right]^{2} \subseteq L_{1}^{L_{1}^{(1)}}$ for all n.
(Recall that OCA O_{T} implies OCA_{∞}.)

Recall the following definitions (throughout §17.6-§17.7, $\mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)
Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)_{\leq 1}^{2}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$.

$$
\|\pi(b-c)\| \leq \varepsilon
$$

It is ε-narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$.

Recall the following definitions (throughout $\S 17.6$ - $§ 17.7, \mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)
Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)_{\leq 1}^{2}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$.
It is ε-narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$.
A function $f: \mathcal{B}(H)_{\leq 1} \rightarrow \mathcal{B}(H)_{\leq 1}$ is σ-narrow if its graph can be covered by a countable family of narrow Borel sets.
It is σ - ε-narrow if its graph can be covered by a countable family of ε-narrow Borel sets.

Recall the following definitions (throughout $\S 17.6$ - $§ 17.7, \mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)
Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)_{\leq 1}^{2}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$.
It is ε-narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$.
A function $f: \mathcal{B}(H)_{\leq 1} \rightarrow \mathcal{B}(H)_{\leq 1}$ is σ-narrow if its graph can be covered by a countable family of narrow Borel sets.
It is σ - ε-narrow if its graph can be covered by a countable family of ε-narrow Borel sets.
An endomorphism Φ of $\mathcal{Q}(H)$ has a σ-narrow lifting if its restriction to the unit ball has a lifting which is σ-narrow. It has a σ-narrow ε-approximation if there is a σ - ε-narrow function Θ such that every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_{*}(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$.

Recall the following definitions (throughout $\S 17.6$ - $§ 17.7, \mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)
Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)_{\leq 1}^{2}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$.
It is ε-narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$.
A function $f: \mathcal{B}(H)_{\leq 1} \rightarrow \mathcal{B}(H)_{\leq 1}$ is σ-narrow if its graph can be covered by a countable family of narrow Borel sets.
It is σ - ε-narrow if its graph can be covered by a countable family of ε-narrow Borel sets.
An endomorphism Φ of $\mathcal{Q}(H)$ has a σ-narrow lifting if its restriction to the unit ball has a lifting which is σ-narrow. It has a σ-narrow ε-approximation if there is a σ - ε-narrow function Θ such that every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\phi_{*}(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$.
A σ-narrow lifting on (DES or (D[E) and a σ-narrow ε-approximation on $\mathcal{D}[\mathrm{E}]$ or $\mathrm{D}[\mathrm{E}]$ are defined analogously.
lowe you an example. It is coming shortly, after the proof of Lemma 17.6.3.

We now complete the proof of the following, started last time. Lemma 17.6.3 Assume OCA . If Φ is an endomorphism of $\mathcal{Q}(H)$ and $\varepsilon>0$, then Φ has a σ-narrow ε-approximation on $\mathrm{D}_{\tilde{\mathrm{x}}}[\mathrm{E}]$ for some infinite $\tilde{X} . \quad \theta: B(H) \rightarrow B(H) \leq 1$
I.e., there is a function Θ such that
(a) every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_{*}(a) \approx \mathcal{K} \hat{\mathcal{K}} \Theta(a)$ and
(b) the graph of Θ can be covered by a countable family of Bore sets \mathcal{Z}_{n}.

We now complete the proof of the following, started last time.
Lemma 17.6.3 Assume OCA . If Φ is an endomorphism of $\mathcal{Q}(H), ~(H)^{\text {. }}$. and $\varepsilon>0$, then Φ has a σ-narrow ε-approximation on $\mathrm{D}_{\tilde{\mathrm{x}}}[\mathrm{E}]$ for some infinite $\tilde{\mathrm{X}}$.
I.e., there is a function Θ such that
(a) every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_{*}(a) \approx_{\mathcal{E}}^{\mathcal{K}} \Theta(a)$ and
(b) the graph of Θ can be covered by a countable family of Borel sets \mathcal{Z}_{n}.
A few conventions for the proof of Lemma 17.6.3:

1. We'll index the intervals in $E \in$ Part $_{\mathbb{N}}$ by $\{0,1\}^{<\mathbb{N}}$:

$$
\underline{E}=\left\langle\widehat{E_{s}} ; s \in\{0,1\}^{<\mathbb{N}}\right\rangle .
$$

2. Fix $E \in \operatorname{Part}_{\mathbb{N}}$ so that $\lim _{n} \min _{|s|=n}\left|E_{s}\right|=\infty$.

3. If $X \subseteq\{0,1\}^{<\mathbb{N}}$ is infinite and included in a single branch of $\{0,1\}^{<\mathbb{N}}$, then this branch is denoted $B(X)$.
4. Fix a discretization $\mathrm{D}[\mathrm{E}]$ of $\mathcal{D}[\mathrm{E}]$.

Proof of Lemma 17．6．3，that Φ has a σ－narrow ε－approximation on $D_{\tilde{x}}[E]$ for some infinite \tilde{X} ．

Fix $d \geq(2 \varepsilon)^{-1}$ a躇点家 1 ．Let

$$
\mathcal{X}:=\left\{(\mathrm{X}, a): \mathrm{B}(\mathrm{X}) \text { is defined and } a \in \mathrm{D}_{\mathrm{X}}\right\} .
$$

Proof of Lemma 17.6.3, that Φ has a σ-narrow ε-approximation on $D_{\tilde{x}}[E]$ for some infinite \tilde{X}.

Fix $d \geq(2 \varepsilon)^{-1}$ and $n \geq 1$. Let

$$
\mathcal{X}:=\left\{(\mathrm{X}, a): B(X) \text { is defined and } a \in \mathrm{D}_{\mathrm{X}}\right\} .
$$

In order to topologize \mathcal{X}, identify $(X, a) \in \mathcal{X}$ with

$$
\frac{(\mathrm{B}(\mathrm{X}), \mathrm{X}, a}{q_{\mathrm{X}},} \frac{\Phi_{*}(a)}{\phi_{*}\left(P_{\mathrm{X}}\right)} \in\left\{\underline{\{0,1\}^{\mathbb{N}} \times \mathcal{P}\left(\{0,1\}^{<\mathbb{N}}\right) \times \mathrm{D} \times \mathcal{B}(H)_{\leq 1}^{2}}\right.
$$

Proof of Lemma 17.6.3, that Φ has a σ-narrow

 ε-approximation on $D_{\tilde{x}}[E]$ for some infinite \tilde{X}.Fix $d \geq(2 \varepsilon)^{-1}$ and $n \geq 1$. Let

$$
\mathcal{X}:=\left\{(\mathrm{X}, a): \mathrm{B}(\mathrm{X}) \text { is defined and } a \in \mathrm{D}_{\mathrm{X}}\right\} .
$$

In order to topologize \mathcal{X}, identify $(X, a) \in \mathcal{X}$ with

$$
\left(\mathrm{B}(\mathrm{X}), \mathrm{X}, a, q_{\mathrm{X}}, \Phi_{*}(a)\right) \in\{0,1\}^{\mathbb{N}} \times \mathcal{P}\left(\{0,1\}^{<\mathbb{N}}\right) \times \mathrm{D} \times \mathcal{B}(H)_{\leq 1}^{2}
$$

$\forall u \geqslant 1$
$\overline{\text { Let }}\{(\mathrm{X}, a),(\mathrm{Y}, b)\} \in M_{0}^{d, n}$ if the following conditions are satisfied:

$$
\begin{aligned}
\left(M_{0}^{d} 1\right) & \mathrm{B}(\mathrm{X}) \neq \mathrm{B}(\mathrm{Y}), \\
\left(M_{0}^{d} 2\right) & p_{\mathrm{X}} b=p_{\mathrm{Y}} a, \text { and } \\
\left(M_{0}^{d, n} 3\right) & \left\|p_{[n, \infty)}\left(\Phi_{*}(a) q_{\mathrm{Y}}-q_{\mathrm{X}} \Phi_{*}(b)\right)\right\|>1 / d \text { or } \\
& \left\|p_{[n, \infty)}\left(q_{\mathrm{Y}} \Phi_{*}(a)-\Phi_{*}(b) q_{\mathrm{X}}\right)\right\|>1 / d .
\end{aligned}
$$

$$
\begin{aligned}
& \{(\mathrm{X}, a),(\mathrm{Y}, b)\} \in M_{0}^{d, n} \text { iff }\left(M_{0}^{d} 1\right) \mathrm{B}(\mathrm{X}) \neq \mathrm{B}(\mathrm{Y}),\left(M_{0}^{d} 2\right) p_{\mathrm{X}} b=p_{\mathrm{Y}} a, \text { and } \\
& \left(M_{0}^{d, n} 3\right)\left\|p_{[n, \infty)}\left(\Phi_{*}(a) q_{\mathrm{Y}}-q_{\mathrm{X}} \Phi_{*}(b)\right)\right\|>\frac{1}{d} \text { or }\left\|p_{[n, \infty)}\left(q_{\mathrm{Y}} \Phi_{*}(a)-\Phi_{*}(b) q_{\mathrm{X}}\right)\right\|>\frac{1}{d} .
\end{aligned}
$$

From the last time:

Claim. For every n, the partition $[\mathcal{X}]^{2}=M_{0}^{d, n} \cup M_{1}^{d, n}$ is open. |
Claim. There is no uncountable $Z \subseteq\{0,1\}^{\mathbb{N}}$ such that some continuous $f: Z \rightarrow \mathcal{X}$ satisfies $\{f(a), f(b)\} \in M_{0}^{d, \Delta(a, b)}$ for all distinct a and b in Z .

$$
\begin{aligned}
& \{(\mathrm{X}, a),(\mathrm{Y}, b)\} \in M_{0}^{d, n} \text { iff }\left(M_{0}^{d} 1\right) \mathrm{B}(\mathrm{X}) \neq \mathrm{B}(\mathrm{Y}),\left(M_{0}^{d} 2\right) p_{\mathrm{X}} b=p_{\mathrm{Y}} a, \text { and } \\
& \left(M_{0}^{d, n} 3\right)\left\|p_{[n, \infty)}\left(\Phi_{*}(a) q_{\mathrm{Y}}-q_{\mathrm{X}} \Phi_{*}(b)\right)\right\|>\frac{1}{d} \text { or }\left\|p_{[n, \infty)}\left(q_{\mathrm{Y}} \Phi_{*}(a)-\Phi_{*}(b) q_{\mathrm{X}}\right)\right\|>\frac{1}{d} .
\end{aligned}
$$

From the last time:

Claim. For every n, the partition $[\mathcal{X}]^{2}=M_{0}^{d, n} \cup M_{1}^{d, n}$ is open.
Claim. There is no uncountable $Z \subseteq\{0,1\}^{\mathbb{N}}$ such that some continuous $f: Z \rightarrow \mathcal{X}$ satisfies $\{f(a), f(b)\} \in M_{0}^{d, \Delta(a, b)}$ for all distinct a and b in Z .
By OCA_{∞}, there are $M_{1}^{d, n}$-homogeneous sets \mathcal{X}_{n}^{d}, for $n \in \mathbb{N}$, such that $\mathcal{X} \subseteq \bigcup_{n} \mathcal{X}_{n}^{d}$.
$\mid\{(\mathrm{X}, \mathrm{a}),(\mathrm{Y}, \underline{b})\} \in M_{1}^{d, n}$ iff $\left(M_{1}^{d} 1\right) \mathrm{B}(\mathrm{X})=\mathrm{B}(\mathrm{Y})$ or $\left(M_{1}^{d} 2\right) p_{X} b \neq p_{Y} a$, or

$\left(M_{1}^{d, n} 3\right)\left\|p_{[n, \infty)}\left(\Phi_{*}(a) q_{Y}-q_{X} \Phi_{*}(b)\right)\right\| \frac{\frac{1}{d}}{d}$ and $\left\|p_{[n, \infty)}\left(q_{Y} \Phi_{*}(a)-\Phi_{*}(b) q_{X}\right)\right\| \leq \frac{1}{d}$.
Fix $M_{1}^{d, n}$-homogeneous sets \mathcal{X}_{n}^{d}, for $n \in \mathbb{N}$, such that $\mathcal{X} \subseteq \bigcup_{n} \mathcal{X}_{n}^{d}$.
$\{(\mathrm{X}, \mathrm{a}),(\mathrm{Y}, b)\} \in M_{1}^{d, n}$ ff $\left(M_{1}^{d} 1\right) \mathrm{B}(\mathrm{X})=\mathrm{B}(\mathrm{Y})$ or $\left(M_{1}^{d} 2\right) p_{\mathrm{X}} b \leq p_{Y} a$, or $\left(M_{1}^{d, n} 3\right)\left\|p_{[n, \infty)}\left(\Phi_{*}(a) q_{Y}-q_{X} \Phi_{*}(b)\right)\right\| \leq \frac{1}{d}$ and $\left\|p_{[n, \infty)}\left(q_{Y} \Phi_{*}(a)-\Phi_{*}(b) q_{X}\right)\right\| \leq \frac{1}{d}$.
Fix $M_{1}^{d, n}$-homogeneous sets \mathcal{X}_{n}^{d}, for $n \in \mathbb{N}$, such that $\mathcal{X} \subseteq \bigcup_{n} \mathcal{X}_{n}^{d}$. For distinct (X, a) and (Y, b) in \mathcal{X} and $k \in \mathbb{N}$ write

$$
\begin{aligned}
& \Delta((X, a),(Y, b)):=\min \left\{k:\left(\exists s \in\{0,1\}^{k}\right)(s \in X \Delta Y\right. \\
& \text { or }(s \in X \cap Y \text { and } a(s) \neq b(s)))\} \text {. } \\
& \text { For } k \in \mathbb{N} \text { let } \underline{e_{k}}:=p_{[0, k)} \text {. }
\end{aligned}
$$

$\{(\mathrm{X}, \mathrm{a}),(\mathrm{Y}, b)\} \in M_{1}^{d, n}$ if $\left(M_{1}^{d} 1\right) \mathrm{B}(\mathrm{X})=\mathrm{B}(\mathrm{Y})$ or $\left(M_{1}^{d} 2\right) p_{\mathrm{X}} b \leq p_{\gamma} a$, or
$\left(M_{1}^{d, n} 3\right)\left\|p_{[n, \infty)}\left(\Phi_{*}(a) q_{Y}-q_{X} \Phi_{*}(b)\right)\right\| \leq \frac{1}{d}$ and $\left\|p_{[n, \infty)}\left(q_{Y} \Phi_{*}(a)-\Phi_{*}(b) q_{X}\right)\right\| \leq \frac{1}{d}$.
Fix $M_{1}^{d, n}$-homogeneous sets \mathcal{X}_{n}^{d}, for $n \in \mathbb{N}$, such that $\mathcal{X} \subseteq \bigcup_{n} \mathcal{X}_{n}^{d}$. For distinct (X, a) and (Y, b) in \mathcal{X} and $k \in \mathbb{N}$ write

$$
\begin{aligned}
\Delta((\mathrm{X}, a),(\mathrm{Y}, b)):=\min \{k: & \left(\exists s \in\{0,1\}^{k}\right)(s \in \mathrm{X} \Delta \mathrm{Y} \\
& \text { or }(s \in \mathrm{X} \cap \mathrm{Y} \text { and } a(s) \neq b(s)))\} .
\end{aligned}
$$

For $k \in \mathbb{N}$ let $e_{k}:=p_{[0, k)}$.
For every n, fix a countable dense $\mathcal{E}_{n}^{d} \mathcal{X _ { n } ^ { d }}$ The closure of each E_{n}^{d}) is $M_{1}^{d, n}$-homogeneous. Fix a branch B of $\{0,1\}<\mathbb{N}$ that does not belong to the countable set $\left\{\mathrm{B}(\mathrm{X}):(\mathrm{X}, a) \in \bigcup_{n} \mathcal{E}_{n}^{d}\right\}$
$\frac{\text { Note: }}{(b, b)}$ If $\tilde{\beta}=B(x)$,
ε_{4}^{d}, then

$$
(x, c) \in X_{4}^{C},
$$

$$
B(x) \neq B(\})
$$

$$
\begin{aligned}
& \{(\mathrm{X}, a),(\mathrm{Y}, b)\} \in M_{1}^{d, n} \text { iff }\left(M_{1}^{d} 1\right) \mathrm{B}(\mathrm{X})=\mathrm{B}(\mathrm{Y}) \text { or }\left(M_{1}^{d} 2\right) p_{\mathrm{X}} b \not p_{\mathrm{Y} a} \text {, or } \\
& \left(M_{1}^{d, n} 3\right)\left\|p_{[n, \infty)}\left(\Phi_{*}(a) q_{\mathrm{Y}}-q_{\mathrm{X}} \Phi_{*}(b)\right)\right\| \leq \frac{1}{d} \text { and }\left\|p_{[n, \infty)}\left(q_{\mathrm{Y}} \Phi_{*}(a)-\Phi_{*}(b) q_{\mathrm{X}}\right)\right\| \leq \frac{1}{d} .
\end{aligned}
$$

$$
\begin{aligned}
\Delta((X, a),(Y, b)):=\min \left\{k:\left(\exists s \in\{0,1\}^{k}\right)(s \in\right. & X \Delta Y \\
& \quad \text { or }(s \in X \cap Y \text { and } a(s) \neq b(s)))\} .
\end{aligned}
$$

$e_{k}:=p_{[0, k)} . \quad \mathcal{E}_{n}^{d} \subseteq \mathcal{X}_{n}^{d}$ countable dense.
$\underline{\tilde{B}} \in\{0,1\}^{\mathbb{N}} \backslash\left\{\mathrm{B}(\mathrm{X}):(\mathrm{X}, a) \in \bigcup_{n} \mathcal{E}_{n}^{d}\right\}$.
$\{(\mathrm{X}, a),(\mathrm{Y}, b)\} \in M_{1}^{d, n}$ iff $\left(M_{1}^{d} 1\right) \mathrm{B}(\mathrm{X})=\mathrm{B}(\mathrm{Y})$ or $\left(M_{1}^{d} 2\right) p_{\mathrm{X}} b \leq p_{\mathrm{Y}} a$, or $\left(M_{1}^{d, n} 3\right)\left\|p_{[n, \infty)}\left(\Phi_{*}(a) q_{Y}-q_{X} \Phi_{*}(b)\right)\right\| \leq \frac{1}{d}$ and $\left\|p_{[n, \infty)}\left(q_{Y} \Phi_{*}(a)-\Phi_{*}(b) q_{X}\right)\right\| \leq \frac{1}{d}$.

$$
\Delta((X, a),(Y, b)):=\min \left\{k:\left(\exists s \in\{0,1\}^{k}\right)(s \in X \Delta Y\right.
$$

or $(s \in X \cap Y$ and $a(s) \neq b(s)))\}$.
$\forall K$ Choose $\left.\mathrm{F}_{k, n}\right) \Subset \mathcal{E}_{n}^{d}$ so that for every $(\mathrm{X}, \mathrm{a}) \in \mathcal{E}_{n}^{d}$ there is $(\mathrm{Y}, b) \in \mathrm{F}_{k, n}$ such that $\Delta((\mathrm{X}, a),(\mathrm{Y}, b))>k$ and

The som. holds $i^{i \prime \prime}{ }^{n \prime}$ ($\left.x, a\right) \in X_{n}^{d}$.

Note: $\bigcup_{n<1} F_{k, n}=X_{n}^{d}, \quad \forall z \leqslant N$, nez

Detin. $k(j), j \in N:$
$k(0)=0, \quad k(j+1)>k(i)$, ond
$h(j+1)$ is the minimol sueh thot $f=$

Let $\tilde{x}=\{\tilde{\beta}|n(j+1)| j \in N\}$

$$
W(y, b, k):=\left\{(a, c) \in D_{\tilde{x}} \times b(H) \leq 1\right)
$$

$$
\left.(\hat{x}, a) \in X_{n}^{d}, \Delta((\hat{x}, a),(y, b)) \geq \hat{a}\right)
$$

oud $\operatorname{moc}\left(\left\|e_{k}\left(\phi_{*}(b)-c\right) e_{u}\right\|\right.$,
This oot is cl.sed.

$$
\left.\left.\left.\frac{\left.\sigma_{*}(b)-c\right)}{\| e_{k}\left(\varepsilon_{x}-\varepsilon_{y} \|\right.}\right) e_{k} \|\right) \leq \frac{1}{k}\right)
$$

Let $\quad z_{n}:=\bigcap_{m} \bigcup_{j \geqslant m}\left\{W(\zeta, b, k(j)):(y, b) \in F_{k(0) \cdot n}\right\}$
Borel

$$
z_{n} \in I_{\tilde{x}} \times B(H)_{\leq 1}
$$

cloim $\forall n \quad(\hat{x}, a) \in \mathbb{X}_{n}^{d}$ then
Pt $\in \forall^{\infty} ; \frac{\left(a, \phi_{*}(a)\right) \in Z_{n}}{\left(c, \phi_{*}(a)\right) \in W(4, b, k(j))}$
for sime $(b, b) \in F_{k(i), n}$.
$\underline{d \operatorname{lom}}(a, c) \in z_{n} \Rightarrow \varepsilon_{\tilde{x}} c \approx \frac{1}{d} \phi_{*}(0)$.
if we'll proue

$$
\left\|P(n, \infty)\left(\phi_{*}(a) \varepsilon_{\hat{x}}-\varepsilon_{\bar{x}} c\right)\right\| \leqslant \frac{1}{d}
$$

otherwise, fix $\delta>$. s. that

$$
\text { Then } \max \left(\left\|e_{(a, \infty)}\left(\phi_{*}(b)-c\right) e_{k(i)}\right\|\right. \text {, }
$$

$$
\left\{\begin{array}{c}
\left.\left\|\sum_{[n, a)}\left(\varepsilon_{\bar{x}}-\varepsilon_{y}\right) e_{k(0)}\right\|\right) \leq \frac{1}{k(i)}<\delta \\
\{(\tilde{x}, a),(b, \underline{k})\}\left(-M_{1} d, u\right.
\end{array}\right.
$$

hence $\left\|p_{(4, \alpha)}\left(\phi_{t}(a) \varepsilon_{y}-\varepsilon_{x} \phi_{x}(b)\right)\right\| \leqslant \frac{1}{d}$

$$
\begin{aligned}
& \left\|\rho_{[n, \infty)}\left(\phi_{*}(a) \varepsilon_{x}-\varepsilon_{\bar{x}} c\right)\right\|>\frac{1}{d}+\delta \\
& \text { and } ; \geqslant \operatorname{mcx}(4,2 / 8) \text {; cad } \\
& (b, b) \in F_{k(i), n} \text { s. thor } \\
& (a, c) \in W(4, b, k(i)) \text {. } \\
& \left.w(\underline{y} b, b):=\{(a, c) \in)_{x}^{x} \times b(t) \leq 1\right\} \\
& \left.(\hat{x}, a) \in x_{n}^{d}, \Delta \overline{\Delta(\hat{x}, a,},(y, b)\right\rangle \vec{a}
\end{aligned}
$$

$\begin{array}{ll}(\text { olsn symm,tric..) } \\ \text { writ.s } & \left.x \approx_{\delta, k} \text { s if } \| p x-7\right) e_{k} \|<\delta\end{array}$

$$
\begin{aligned}
& P_{[u, \infty)} \phi_{x}(0) \varepsilon_{\tilde{x}} \approx d, b(j) P_{[u, \infty)} \phi_{x}(a) \varepsilon_{y} \\
& \approx 1 / d P_{(G, a)} \varepsilon_{\bar{x}} \phi_{x}(b) \approx \tilde{S}, u(i) P_{[b, \infty)} \varepsilon_{\bar{x}} c
\end{aligned}
$$

S.

$$
\phi_{*}(0) \simeq 1 / d<\sum_{\tilde{x}} c
$$

claim $Z_{4}^{\prime}=\left\{\left(a, \varepsilon_{\bar{x}} c\right) \mid(a, c) \in \dot{Z}_{n}\right\}^{D_{\tilde{x}}}$

Moceover, $\quad \cup z_{4}^{\prime} \geq\left\{\left(a, \phi_{x}(a)\right): a \in D_{\tilde{x}}\right\}$ $\forall a \in D_{\bar{x}}$
$\exists n \quad(x, a) \in x_{n}$

$$
\begin{aligned}
& \{(\mathrm{X}, a),(\mathrm{Y}, b)\} \in M_{1}^{d, n} \text { iff }\left(M_{1}^{d} 1\right) \mathrm{B}(\mathrm{X})=\mathrm{B}(\mathrm{Y}) \text { or }\left(M_{1}^{d} 2\right) p_{\mathrm{X}} b \leq p_{\mathrm{Y} a, \text { or }} \\
& \left(M_{1}^{d, n} 3\right)\left\|p_{[n, \infty)}\left(\Phi_{*}(a) q_{\mathrm{Y}}-q_{\mathrm{X}} \Phi_{*}(b)\right)\right\| \leq \frac{1}{d} \text { and }\left\|p_{[n, \infty)}\left(q_{\mathrm{Y}} \Phi_{*}(a)-\Phi_{*}(b) q_{\mathrm{X}}\right)\right\| \leq \frac{1}{d} .
\end{aligned}
$$

$$
\Delta((X, a),(Y, b)):=\min \left\{k:\left(\exists s \in\{0,1\}^{k}\right)(s \in X \Delta Y\right.
$$

$$
\text { or }(s \in \mathrm{X} \cap \mathrm{Y} \text { and } a(s) \neq b(s)))\} .
$$

$e_{k}:=p_{[0, k)} . \quad \mathcal{E}_{n}^{d} \subseteq \mathcal{X}_{n}^{d}$ countable dense.
$\tilde{\mathrm{B}} \in\{0,1\}^{\mathbb{N}} \backslash\left\{\mathrm{B}(\mathrm{X}):(\mathrm{X}, a) \in \bigcup_{n} \mathcal{E}_{n}^{d}\right\}$.
Choose $\mathrm{F}_{k, n} \Subset \mathcal{E}_{n}^{d}$ so that for every $(\mathrm{X}, a) \in \mathcal{E}_{n}^{d}$ there is $(Y, b) \in \mathrm{F}_{k, n}$ such that $\Delta((\mathrm{X}, a),(\mathrm{Y}, b))>k$ and

$$
\max \left(\left\|\left(\Phi_{*}\left(p_{\mathrm{X}}\right)-\Phi_{*}\left(p_{\mathrm{Y}}\right)\right) e_{k}\right\|,\left\|\left(\Phi_{*}(a)-\Phi_{*}(b)\right) e_{k}\right\|\right)<1 / k
$$

Example

There is an endomorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N}) /$ Fin
 continuous,...) lifting.

Example

There is an endomorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N}) /$ Fin with a σ-narrow lifting, but no C-measurable (Botel, continuous,... Lifting.
Proof: Fix a nonprincipal ultrafilter \mathcal{U} on \mathbb{N}. Let $\Phi_{A}(A):=\mathbb{N}$ if
$A \in \mathcal{U}$ and $\Phi_{A}(A):=\emptyset$ if $A \notin \mathcal{U}$.
Then Φ has a lifting whose graph is covered by two constant functions.
To prove that Φ does not have a continuous lifting, one uses the fact that for every nonempty basic open subset V on $\mathcal{P}(\mathbb{N})$, both $V \cap \mathcal{U}$ and $V \backslash \mathcal{U}$ are nonmeager.

$$
\begin{aligned}
& \phi_{*} P(N) \rightarrow \gamma(N) \\
&\{\phi, N\rangle \\
& \phi_{*} \text { i } a \operatorname{homp} \quad \operatorname{kor}(\phi / 2 F i n .
\end{aligned}
$$

$$
p: \gamma^{\prime}\left(\mathbb{N} / \mathrm{Fin} \rightarrow \gamma^{\prime}(\mathbb{N} / \text { Fin }\right.
$$

$A \rightarrow \mathbb{N} \backslash A \quad$ homeo,
$u \rightarrow \gamma(N / X)$

$$
\begin{aligned}
& \text { Fin } \xlongequal[N]{\oplus} \neq Z / 2 Z \\
& \text { Fin } \curvearrowright \gamma(N) \\
& B \cdot A=B \Delta A \\
& \text { U } 1 \text { Fin-in sorignt } \\
& =\rightarrow \forall \quad \forall s, t \in\{0,1\}^{\prime \prime} \\
& u \cap[s] \text { is n.m } \\
& \Leftrightarrow u \cap[t] \| \text { n.m. }
\end{aligned}
$$

Example
There is an endomorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N}) /$ Fin with a σ-narrow lifting, but no C-measurable (Borel, continuous,...) lifting.
Proof: Fix a nonprincipal ultrafilter \mathcal{U} on \mathbb{N}. Let $\Phi(A):=\mathbb{N}$ if $A \in \mathcal{U}$ and $\Phi(A):=\emptyset$ if $A \notin \mathcal{U}$.
Then Φ has a lifting whose graph is covered by two constant functions.
To prove that Φ does not have a continuous lifting, one uses the fact that for every nonempty basic open subset V on $\mathcal{P}(\mathbb{N})$, both $V \cap \mathcal{U}$ and $V \backslash \mathcal{U}$ are nonmeager.
| Question Is there an endomorphism of ℓ_{∞} / c_{0} with a σ-narrow lifting but no continuous (Borel, C-measurable) lifting?

$$
\text { Note: } \phi \frac{\text { sires }}{}
$$

$$
\psi \cdot l_{\alpha} \rightarrow l_{\alpha}
$$

$$
\psi(f)=\lim _{u \rightarrow u} f(n)
$$

We'll need another result from the classical descriptive set theory. Thm B.2.14 (Novikov) If X and Y are Polish spaces and $\mathrm{A} \subseteq \mathrm{X} \times \mathrm{Y}$ is analytic, then the set $\left\{x \in \mathrm{X}: \mathrm{A}_{x}\right.$ is nonmeager $\}$ is analytic.
$A_{x}=\{y \mid \quad(x, y / \in A\}$

Lemma 17.7.1 Suppose Φ is an endomorphism of $\mathcal{Q}(H), d \geq 1$, $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$, and there exists a $1 / d$-narrow analytic set $\mathcal{Z} \subseteq \mathrm{D}_{\tilde{\mathrm{X}}} \times \mathcal{B}(H)_{\leq 1}$. Then for every $\mathrm{A} \subseteq \tilde{\mathrm{X}}$ such that both A and

1. There is a C-measurable 3/d-approximation of Φ on D{A}.
2. There are $B \subseteq \tilde{X} \backslash A,(\hat{a}) \in D_{A}$, and $b \in D_{B}$ such that both B and $\tilde{\mathrm{X}} \backslash(\mathrm{A} \cup \mathrm{B})$ are infinite and every uniformization \equiv of \mathcal{Z} and $C \subset \in \mathrm{D}_{\tilde{\mathrm{x}} \backslash(\mathrm{A} \cup \mathrm{B})}$ such that $a+\overline{b+c \in \operatorname{dom}(\equiv) \text { satisfy }}$ $\frac{\equiv(a+b+c)}{l /} q_{\mathrm{A}} \not \overbrace{1 / d}^{\mathcal{K}} \Phi_{*}(a)$.
$\phi_{t}(a)$

Lemma 17.7.1 Suppose Φ is an endomorphism of $\mathcal{Q}(H), d \geq 1$,
$\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$, and there exists a $1 / d$-narrow analytic set
$\mathcal{Z} \subseteq \mathrm{D}_{\tilde{\mathrm{x}}} \times \mathcal{B}(H)_{\leq 1}$. Then for every $\mathrm{A} \subseteq \tilde{\mathrm{X}}$ such that both A and
$\tilde{X} \backslash A$ are infinite at least one of the following applies.

1. There is a C-measurable 3/d-approximation of Φ on D_{A}.
2. There are $B \subseteq \tilde{X} \backslash A, a \in D_{A}$, and $b \in D_{B}$ such that both B and $\tilde{\mathrm{X}} \backslash(\mathrm{A} \cup \mathrm{B})$ are infinite and every uniformization \equiv of \mathcal{Z} and $c \in \mathrm{D}_{\tilde{\mathrm{x}} \backslash(\mathrm{A} \cup \mathrm{B})}$ such that $a+b+c \in \operatorname{dom}(\equiv)$ satisfy

$$
\equiv(a+b+c) q_{\mathrm{A}} \not \nsim 1 / d_{\mathcal{K}}^{\mathcal{K}} \Phi_{*}(a)
$$

Proof: Let

$$
\begin{aligned}
\mathcal{V}:=\{(a, b, \underline{c}) \in & \mathrm{D}_{\mathrm{A}} \times \mathrm{D}_{\tilde{\mathrm{x}} \backslash \mathrm{~A}} \times \underline{\mathcal{B}(H)} \leq 1 \\
& \left(\exists c^{\prime} \in \mathcal{B}(H)_{\leq 1}\right) \underline{\left(a+b, c^{\prime}\right) \in \mathcal{Z}, \underline{\left.\approx_{1 / d}^{\mathcal{K}} c^{\prime} \underline{q_{A}}\right\} .}} .
\end{aligned}
$$

$$
\mathcal{W}(a):=\left\{b \in \mathrm{D}_{\tilde{\mathrm{x}} \backslash \mathrm{~A}}:\left(a, b, \Phi_{*}(a)\right) \in \mathcal{V}\right\}, \text { for } a \in \mathrm{D}_{\mathrm{A}} .
$$

