Massive C*-algebras, Winter 2021, I. Farah, Lecture 19

Today: Ulam-stability. . . but first, a shorter-and much more reasonable—proof of Lemma 17.4.8.

Stabilizers done right

Recall $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$.

Lemma 17.4.8 If Φ has a strongly continuous lifting Θ on $\mathrm{D}[\mathrm{E}]$ for some $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$, then it has a lifting of product type on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$ for some infinite $\mathrm{X} \subseteq \mathbb{N}$.
To do this right, weill need two useful lemmas.

Stabilizers done right

Recall $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$.
Lemma 17.4.8 If Φ has a strongly continuous lifting Θ on $\mathrm{D}[\mathrm{E}]$ for some $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$, then it has a lifting of product type on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$ for some infinite $\mathrm{X} \subseteq \mathbb{N}$.
To do this right, we'll need two useful lemmas.
Lemma A If r is a projection, then for every a we have

$$
\|[a, r]\|=\|a-r a r-(1-r) a(1-r)\| .
$$

Lemma B Suppose $a \in \mathcal{B}(H)$ and r_{j}, for $j \in \mathbb{N}$, is an increasing sequence of finite rank projections such that $r_{j} \rightarrow 1_{\mathcal{B}(H)}$ (in SOT) and $\sum_{j}\left\|\left[a, \overline{r_{j}}\right]\right\|<\infty$. Then

$$
a-\sum_{j}\left(r_{j+1}-r_{j}\right) a\left(r_{j+1}-r_{j}\right)
$$

is compact.

A good proof of Lemma 17.4.8: As in the last minutes of class 17, recursively find an increasing sequence $(n(j))_{j}, s(j) \in \mathrm{D}_{(n(j), n(j+1))}$ (with $n(0):=0)$, and an increasing sequence of finite-rank projections $\left(r_{j}\right)_{j}$ so that for all j, all a and b in $\mathrm{D}_{[0, n(j)]}$, and all c and d in $\mathrm{D}_{[n(j+1), \infty)}$:

$$
\begin{aligned}
& \text { 1. } \|(\Theta(a+s(j)+c)-\widehat{\Theta(b+s(j)}+c))\left(1-r_{j}\right) \| 2^{-j} \\
& \text { 2. }\left\|\left(1-r_{j}\right)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\right\| \leq 2^{\prime} \text {, } \\
& \text { 3. } \left.\left\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d)) \epsilon_{i}\right\| \leq 2^{-j}\right) \\
& \text { 4. }\left\|r_{j}(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))\right\| \leq 2^{-j} \text {. }
\end{aligned}
$$

Let $\mathrm{X}:=\{n(j) \mid j \in \mathbb{N}\}$ and $s:=\sum_{j} s(j)$.

A good proof of Lemma 17.4.8: As in the last minutes of class 17, recursively find an increasing sequence $(n(j))_{j}, s(j) \in \mathrm{D}_{(n(j), n(j+1))}$ (with $n(0):=0)$, and an increasing sequence of finite-rank projections $\left(r_{j}\right)_{j}$ so that for all j, all a and b in $\mathrm{D}_{[0, n(j)]}$, and all c and d in $\mathrm{D}_{[n(j+1), \infty)}$:

$$
\begin{aligned}
& \text { 1. }\left\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\left(1-r_{j}\right)\right\| \leq 2^{-j} \text {, } \\
& \text { 2. }\left\|\left(1-r_{j}\right)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\right\| \leq 2^{-j} \\
& \text { 3. }\left\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d)) r_{j}\right\| \leq 2^{-j} . \\
& \text { 4. }\left\|r_{j}(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))\right\| 2^{-j} .
\end{aligned}
$$

Let $\mathrm{X}:=\{n(j) \mid j \in \mathbb{N}\}$ and $s:=\sum_{j} s(j)$.
For every $x \in D_{x}$ and every \underline{j} we have

$$
\left\|\left[\Theta(x+s)-\Theta(x), r_{j}\right]\right\| \leq \underline{2^{-j+2}} .
$$

A good proof of Lemma 17.4.8: As in the last minutes of class 17, recursively find an increasing sequence $(n(j))_{j}, s(j) \in \mathrm{D}_{(n(j), n(j+1))}$ (with $n(0):=0)$, and an increasing sequence of finite-rank projections $\left(r_{j}\right)_{j}$ so that for all j, all a and b in $\mathrm{D}_{[0, n(j)]}$, and all c and d in $\mathrm{D}_{[n(j+1), \infty)}$:

$$
\begin{aligned}
& \text { 1. }\left\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\left(1-r_{j}\right)\right\| \leq 2^{-j} \text {, } \\
& \text { 2. }\left\|\left(1-r_{j}\right)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\right\| \leq 2^{-j} \text {, } \\
& \text { 3. }\left\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d)) r_{j}\right\| \leq 2^{-j}, \\
& \text { 4. }\left\|r_{j}(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))\right\| \leq 2^{-j} .
\end{aligned}
$$

Let $\mathrm{X}:=\{n(j) \mid j \in \mathbb{N}\}$ and $s:=\sum_{j} s(j)$.
For every $x \in D_{x}$ and every j we have

$$
\left\|\left[\Theta(x+s)-\Theta(x), r_{j}\right]\right\| \leq 2^{-j+2} .
$$

For $j \in \mathbb{N}$, define $\bar{\Xi}_{j}(a)$ for $a \in \mathrm{D}_{\{n(j)\}}$ by

$$
\bar{\Xi}_{j}(a):=\left(r_{j+1}-r_{j}\right)(\underline{\Theta(x+s)-\Theta(x)})\left(\underline{r_{j+1}-r_{j}}\right) .
$$

A good proof of Lemma 17.4.8: As in the last minutes of class 17, recursively find an increasing sequence $(n(j))_{j}, s(j) \in \mathrm{D}_{(n(j), n(j+1))}$ (with $n(0):=0)$, and an increasing sequence of finite-rank projections $\left(r_{j}\right)_{j}$ so that for all j, all a and b in $\mathrm{D}_{[0, n(j)]}$, and all c and d in $\mathrm{D}_{[n(j+1), \infty)}$:

$$
\begin{aligned}
& \text { 1. }\left\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\left(1-r_{j}\right)\right\| \leq 2^{-j} \text {, } \\
& \text { 2. }\left\|\left(1-r_{j}\right)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\right\| \leq 2^{-j} \text {, } \\
& \text { 3. }\left\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d)) r_{j}\right\| \leq 2^{-j}, \\
& \text { 4. }\left\|r_{j}(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))\right\| \leq 2^{-j} .
\end{aligned}
$$

Let $\mathrm{X}:=\{n(j) \mid j \in \mathbb{N}\}$ and $s:=\sum_{j} s(j)$.
For every $x \in D_{x}$ and every j we have

$$
\left\|\left[\Theta(x+s)-\Theta(x), r_{j}\right]\right\| \leq 2^{-j+2} .
$$

For $j \in \mathbb{N}$, define $\bar{\Xi}_{j}(a)$ for $a \in \mathrm{D}_{\{n(j)\}}$ by

$$
\bar{\Xi}_{j}(a):=\left(r_{j+1}-r_{j}\right)(\Theta(x+s)-\Theta(\xi))\left(r_{j+1}-r_{j}\right) .
$$

By Lemma B, the product type function \equiv determined by $\left(\bar{\Xi}_{j}\right)$ satisfies

$$
\equiv(x) \approx^{\mathcal{K}(H)} \underline{\Theta(x+s)-\Theta(s)} \approx^{\mathcal{K}(H)} \Phi_{*}(x),
$$

completing the proof.

Ulam-stability of approximate *-homorphisms

The following definition and theorem are used in order to set the stage.

Def 17.2.1 An ε-representation of a group G in a unital C^{*}-algebra A is a function $\Theta: G \rightarrow \mathrm{U}(A)$ such that
$\overline{\sup }_{x, y \in G}\|\Theta(x y)-\Theta(x) \Theta(y)\| \leq \varepsilon$ and $(\Theta(1)=1$.

Ulam-stability of approximate *-homorphisms

The following definition and theorem are used in order to set the stage.

Def 17.2.1 An ε-representation of a group G in a unital C^{*}-algebra A is a function $\Theta: G \rightarrow \mathrm{U}(A)$ such that $\sup _{x, y \in G}\|\Theta(x y)-\Theta(x) \Theta(y)\| \leq \varepsilon$ and $\Theta(1)=1$.

Thm 17.2.2 (Kazhdan, Grove-Karcher-Roh, Gmenable Alekseev-Glebsky-Gordon) Assume G is a compact group and A is a von Neumann algebra. If $\varepsilon<1 / 10$ then for every Borel-measurable ε-representation $\Theta: G \rightarrow \mathrm{U}(A)$ there exists a unitary representation $\Lambda: G \rightarrow U(A)$ such that $\|\Lambda-\Theta\| \leq 2 \varepsilon$. (A proof of Thm 17.2.2 can be extracted from the proof of the following theorem.)

Thm 17.2.3 (Burger-Ozawa-Thom) Assume A and B are unitol C^{*}-algebras, A is finite-dimensional, $\varepsilon<1 / 28$, and $\Theta: \underline{A_{1}} \rightarrow \underline{B_{2}}$ is a uniformly bounded, Borel-measurable function that satisfies $\Theta[U(A)]) \subseteq U(B)$ and

$$
\|\underline{\Theta(g a)}-\underline{\Theta(g) \Theta(a)}\| \leq \underline{\varepsilon}
$$

for all $g \in U(A)$ and all $\underline{a} \in A_{1}$, and $\Theta(1)=1$. Then there exists a uniformly bounded, Borel-measurable function $\Lambda: \underline{A_{1}} \rightarrow \underline{B_{2}}$ which satisfies $\|\underline{\Lambda}-\underline{\Theta}\| \leq \underline{4 \varepsilon}$ and

$$
\Lambda(g a)-\Lambda(g) \Lambda(a)=0
$$

for all $g \in U(A)$ and all $a \in A_{1}$.

Thm 17.2.3 (Burger-Ozawa-Thom) Assume A and B are C^{*}-algebras, A is finite-dimensional, $\varepsilon<1 / 28$, and $\Theta: A_{1} \rightarrow B_{2}$ is a uniformly bounded, Borel-measurable function that satisfies $\Theta[\mathrm{U}(A)] \subseteq \mathrm{U}(B)$ and

$$
\|\Theta(g a)-\Theta(g) \Theta(a)\| \leq \varepsilon
$$

for all $g \in U(A)$ and all $a \in A_{1}$, and $\Theta(1)=1$. Then there exists a uniformly bounded, Borel-measurable function $\Lambda: A_{1} \rightarrow B_{2}$ which satisfies $\|\Lambda-\Theta\| \leq 4 \varepsilon$ and

$$
\Lambda(g a)-\Lambda(g) \wedge(a)=0
$$

for all $g \in U(A)$ and all $a \in A_{1}$.
Proof: Let μ denote the (rigit) Haar measure on $\mathrm{U}(A)$ and let (Bochner integral)

$$
\Theta^{\prime}(a):=\int \Theta_{\bullet}(x)^{*} \Theta(x a) d \mu(x)
$$

Thm 17.2.3: Assuming $\Theta[U(A)] \subseteq U(B)$ and

$$
\|\Theta(g a)-\Theta(g) \Theta(a)\| \leq \varepsilon
$$

for all $g \in U(A)$ and all $a \in A_{1}$, and $\Theta(1)=1$. Let g and x range over $\mathrm{U}(A)$ and $a \in A_{1}$. Define

$$
\Theta^{\prime}(a):=\int \Theta(x)^{*} \Theta(x a) d \mu(x)
$$

Tho 17.2.3: Assuming $\Theta[U(A)] \subseteq U(B)$ and

$$
\|\Theta(g a)-\Theta(g) \Theta(a)\| \leq \varepsilon
$$

for all $g \in \mathrm{U}(A)$ and all $a \in A_{1}$, and $\Theta(1)=1$. Let g and x range over $\mathrm{U}(A)$ and $a \in A_{1}$. Define

$$
\Theta^{\prime}(a):=\int \Theta(x)^{*} \Theta(x a) d \mu(x) .
$$

Then

$$
\int \Theta\left(x g^{-1}\right)^{*} \Theta(x a) d \mu(x)=\Theta^{\prime}(g a) .
$$

hence $\Theta^{\prime}\left(g^{-1}\right)=\Theta^{\prime}(g)^{*}$.
$\int \theta(x)^{*} \theta\left(x \delta^{a}\right) d r(\mu)$
θ^{\prime} (gal) $=\theta^{\prime}\left(g^{-1}\right)$
$g \rightarrow g^{-1}$

Thm 17.2.3: Assuming $\Theta[U(A)] \subseteq \mathrm{U}(B)$ and

$$
\|\Theta(g a)-\Theta(g) \Theta(a)\| \leq \varepsilon
$$

for all $g \in U(A)$ and all $a \in A_{1}$, and $\Theta(1)=1$. Let g and x range over $U(A)$ and $a \in A_{1}$. Define

$$
\Theta^{\prime}(a):=\int \Theta(x)^{*} \Theta(x a) d \mu(x)
$$

Then

$$
\int \Theta\left(x g^{-1}\right)^{*} \Theta(x a) d \mu(x)=\Theta^{\prime}(g a)
$$

hence $\Theta^{\prime}\left(g^{-1}\right)=\Theta^{\prime}(g)^{*}$. Consider

$$
\mathcal{I}:=\int(\underbrace{\Theta\left(x g^{-1}\right.}_{\|\cdot\| ฐ \varepsilon} \underbrace{)-\Theta(x) \Theta\left(g^{-1}\right)}_{\|\cdot\| \subseteq \varepsilon})^{*}(\underbrace{\Theta(x)}_{\|(x a)-\Theta(x) \Theta(a)} d \mu(x)
$$

$$
\left.\begin{array}{rl}
& \|I\| \Sigma \varepsilon^{*} \\
I= & \int \theta\left(x g^{-1}\right)^{*} \theta(x a) d \mu(\mu)-\int \theta\left(x g^{-1}\right)^{*} \theta(x \theta(c) d \mu(x) \\
-\int \theta(g)^{*} \theta(x)^{*} \theta(x a) d r(x)+\int \theta\left(g^{-1}\right)^{*} \theta(x) \theta \theta(x) \\
\theta(c) d p(x)
\end{array}\right) .
$$

Tcoim $\left\|\theta-\theta^{\prime}\right\| \leq \varepsilon$
陁 $\left\|\theta(x)^{*} \theta(x a)-\theta(0)\right\|$

$$
=\|\theta(x a)-\theta(x) \theta(0)\| \leq \varepsilon .
$$

Therefor, $\left\|\theta^{\prime}\left(x_{0}\right)-\theta^{\prime}(x) \theta(0)\right\| \leq 2 \varepsilon^{2}$ $\forall x \in U(A), \forall a \in A$.

Q: $\theta^{\prime}[U(A)] \subseteq U(B)$?
Not Euite, hut dmost.

$$
\begin{aligned}
& \text { Fix } g \in U(A) \text {. } \\
& \left\|\theta^{\prime}(g 0)-\theta^{\prime}(j) \theta^{\prime}(0)\right\| \leq 2 \varepsilon^{2} \\
& \begin{array}{l}
a \rightarrow g^{-1} \theta^{\prime}(\delta)^{*} \\
\text { 多 }
\end{array} \\
& \left\|1-\theta^{\prime}(f) \theta^{\prime}\left(g^{-1}\right)\right\| \leq 2 \varepsilon^{\prime} \\
& \left\|1-\theta^{\prime}(g) \theta^{\prime}(g)^{A}\right\| \leqslant 2 \varepsilon^{2} \\
& 1-2 \varepsilon^{z} \leqslant \theta^{\prime}(\delta) \theta^{\prime}(z)^{*} \leq 1 \\
& \left\|1-\left|\theta^{\prime}(g)\right|\right\| \leqslant 2 \varepsilon^{\varepsilon} \quad 2 \varepsilon^{2}<1 \\
& \text { Ler }\left.\left|\theta^{\prime \prime}(g)=\theta^{\prime}(g) \cdot\right| \theta^{\prime}(\delta)\right|^{-1} \\
& \theta^{\prime \prime}(a)=\theta^{\prime}(a), \quad a \notin U(t) \text {. }
\end{aligned}
$$

Then $\left\|\theta^{\prime \prime}(g a)-\theta^{\prime \prime}(\delta) \theta^{\prime \prime}(c)\right\|$

$$
\left\|\theta^{\prime \prime}-\theta\right\| \leqslant 2 \xi
$$

Detire $\theta^{\prime \prime \prime}$, ssio, tho scme trick

$$
\begin{aligned}
& \left\|\theta^{\prime \prime \prime}-\theta\right\| \leq 2 \cdot\left(2 \varepsilon^{2}\right) \\
& \| \theta^{\prime \prime \prime}\left(g(x)-\theta^{\prime \prime \prime}(f) \theta^{\prime \prime \prime}(a) \| \leq 2\left(2 \varepsilon^{2}\right)^{2}=8 \varepsilon^{3}\right. \\
& \text { etc., find } \theta^{(n)} \\
& \quad \lim _{n \rightarrow \infty} \theta^{(n)} \longrightarrow \Lambda, \text { c, ressirad. }
\end{aligned}
$$

Given unital operator algebras A and B, when can a group homomorphism from $\mathcal{U}(A)$ into $\mathcal{U}(B)$ be extended to a *-homomorphism from A into B ?
united
Do
Exercise 1.11.16: Every $a \in A^{\Downarrow}$ can be written as a linear combination of four unitaries.
Foot: $0 \leq a \leq 1$ then $a=\frac{1}{2}(u+v)$,
for unitaries u, v.

$$
\begin{aligned}
& u=a+i\left(1-a^{2}\right)^{1 / 2} \\
& v=a-i\left(1-a^{2}\right)^{1 / 2}
\end{aligned}
$$

Given unital operator algebras A and B, when can a group homomorphism from $\mathcal{U}(A)$ into $\mathcal{U}(B)$ be extended to a *-homomorphism from A into B ?

Exercise 1.11.16: Every $a \in A$ can be written as a linear combination of four unitaries

Lemma 17.2.4 Suppose A and B are unital C^{*}-algebras and
$\Lambda: \mathrm{U}(A) \rightarrow \mathrm{U}(B)$ is a group homomorphism. If A has a faithful tracial state τ, B has a faithful) tracial state σ, and $\widetilde{\sigma(\Lambda(u))=\tau(u)}$, then Λ has a unique extension to a *-homomorphism.
$\tau\left(a^{*} c\right)=0$

$$
\Leftrightarrow a=0
$$

Given unital operator algebras A and B, when can a group homomorphism from $\mathcal{U}(A)$ into $\mathcal{U}(B)$ be extended to a *-homomorphism from A into B ?

Exercise 1.11.16: Every $a \in A$ can be written as a linear combination of four unitaries

Lemma 17.2.4 Suppose A and B are unital C^{*}-algebras and $\Lambda: \mathrm{U}(A) \rightarrow \mathrm{U}(B)$ is a group homomorphism. If A has a faithful tracial state τ, B has a faithful tracial state σ, and $\overline{\sigma(\Lambda(u))=\tau}(u)$, then Λ has a unique extension to a *-homomorphism.

Proof: We need to prove that the obvious map
is well-defined.

$$
\Phi\left(\underline{\left.\underline{\sum_{j<n} \lambda_{j} u_{j}}\right)}:=\sum_{j<n} \lambda_{j} \Lambda\left(u_{j}\right)\right.
$$

$$
\begin{aligned}
& \text { 介 } \\
& \frac{\left(\sum_{i<c_{i}} \lambda_{i} u_{i}\right)^{A}}{\hat{\mathbb{U}}}\left(\sum_{i=u_{i}} \lambda_{i} u_{i}\right)=0 \\
& \tau(\quad)=0 \\
& \Leftrightarrow \sum_{i=n} \sum_{i=n} \bar{\lambda}_{i} \lambda_{i} \tau\left(u_{j}{ }_{j} u_{i}\right)=0 \\
& \Leftrightarrow \sum_{i=n} \sum_{i<n} \bar{\lambda}_{i} \lambda_{1} \sigma\left(\Lambda\left(u_{i}^{*} u_{i}\right)\right)=0 \\
& \Leftrightarrow \quad \sum_{i<n} \lambda_{i} \Lambda\left(u_{i}\right)=0 \text {. }
\end{aligned}
$$

We will need Stone's one-parameter group theorem: If $\left(\mathbb{R}_{\uparrow} \mapsto \rightarrow \mathrm{U}(B): t \mapsto u_{t}\right.$ is a norm-continuous group homomorphism, then there exists a self-adjoint $b \in B$ such that $u_{t}=\widetilde{\exp (i t b)}$ for all t.

Recall:
Def 17.2.5 Given $\varepsilon>0$ and C^{*}-algebras A and B, some $\Theta: A_{1} \rightarrow B_{1}$ is an ε -*-homomorphism if for all x, y in A_{1} and $\lambda \in \mathbb{C},|\lambda| \leq 1$, each one of $\Theta\left(x^{*}\right)-\Theta(x)^{*}$, $\Theta \Theta(x+y)-\Theta(x)-\Theta(y), \Theta(x y)-\Theta(x) \Theta(y)$, and $\Theta(\lambda x)-\lambda \Theta(x)$
has norm not greater than ε. (It is unital if in addition $\Theta[\mathrm{U}(A)] \subseteq \mathrm{U}(B)$ and $\Theta(1)=1$.
unitol

Thm 17.2.6 Suppose $\varepsilon<1 / 28, m \geq 1, A$ is a/ C^{*}-algebra with a faithful tracial state σ, and $\Theta: M_{m}(\mathbb{C}) \rightarrow A$ is a unital ε-*-homomorphism. Then there exists a *-homomorphism $\Phi: M_{m}(\mathbb{C}) \rightarrow A$ such that $\|\Theta-\Phi\| \leq 16 \varepsilon$.

Thm 17.2.6 Suppose $\varepsilon<1 / 28, m \geq 1, A$ is a C^{*}-algebra with a faithful tracial state σ, and $\Theta: M_{m}(\mathbb{C}) \rightarrow A$ is a unital ε-*-homomorphism. Then there exists a *-homomorphism $\Phi: M_{m}(\mathbb{C}) \rightarrow A$ such that $\|\Theta-\Phi\| \leq 16 \varepsilon$.

Proof: By Theorem 17.2.3, there is a Borel-measurable $\Lambda: \mathrm{U}\left(M_{m}(\mathbb{C})\right) \rightarrow$ A such that $\Lambda(u v)=\Lambda(u) \Lambda(v)$ for all u and v, and $\|\Lambda-\Theta\| \leq 4 \varepsilon$.

Thy 17.2.6 Suppose $\varepsilon<1 / 28, m \geq 1, A$ is a C^{*}-algebra with a faithful tracial state σ, and $\Theta: M_{m}(\mathbb{C}) \rightarrow A$ is a unital ε-*-homomorphism. Then there exists a *-homomorphism $\Phi: M_{m}(\mathbb{C}) \rightarrow A$ such that $\|\Theta-\Phi\| \leq 16 \varepsilon$.

Proof: By Theorem 17.2.3, there is a Borel-measurable $\Lambda: \mathrm{U}\left(M_{m}(\mathbb{C})\right) \rightarrow A$ such that $\Lambda(u v)=\Lambda(u) \Lambda(v)$ for all u and v, and $\|\Lambda-\Theta\| \leq 4 \varepsilon$.
Using Stone, there is $\tilde{\Lambda}: A_{\mathrm{sa}} \rightarrow B_{\mathrm{s} a}$ such that

$$
\underbrace{\stackrel{(\exp (i r a))}{=}}_{a \in A_{s_{c}}}=\exp (i r \tilde{\Lambda}(a))
$$

for all $r \in \mathbb{R}$.

Thy 17.2.6 Suppose $\varepsilon<1 / 28, m \geq 1, A$ is a C^{*}-algebra with a faithful tracial state σ, and $\Theta: M_{m}(\mathbb{C}) \rightarrow A$ is a unital ε -*-homomorphism. Then there exists a *-homomorphism $\Phi: M_{m}(\mathbb{C}) \rightarrow A$ such that $\|\Theta-\Phi\| \leq 16 \varepsilon$.

Proof: By Theorem 17.2.3, there is a Borel-measurable $\Lambda: \mathrm{U}\left(M_{m}(\mathbb{C})\right) \rightarrow A$ such that $\Lambda(u v)=\Lambda(u) \Lambda(v)$ for all u and v, and $\|\Lambda-\Theta\| \leq 4 \varepsilon$.
Using Stone, there is $\tilde{\Lambda}: A_{\mathrm{sa}} \rightarrow B_{\mathrm{sa}}$ such that

$$
\Lambda(\exp (i r a))=\exp (i r \tilde{\Lambda}(a))
$$

for all $r \in \mathbb{R}$.

1. $\tilde{\Lambda}(1)=1$.
2. If p is a projection, then $\tilde{\Lambda}(p)$ is a projection.

$$
\begin{aligned}
& \text { (1) Ler } b_{i}=\tilde{\Lambda}(1) \text { Suppose } \exists r \in S p(b) \backslash\{1 S \text {. } \\
& F_{i x} \quad t \in \mathbb{R}, \quad \begin{array}{l}
\epsilon(r-1)=\pi
\end{array} r \mathbb{R} \\
& \operatorname{Sp}\left(\exp \left(i \in \underset{\left\{\delta^{\prime}\right.}{ }\right) \neq-1\left|e^{i t r}-e^{i t}\right|=2\right. \\
& \begin{array}{c}
(i t) \\
(\delta)
\end{array} \\
& \text { it } \\
& \theta(i t) \sim \text { scdor. }
\end{aligned}
$$

Theorem 17.2.6: $\Theta: M_{m}(\mathbb{C}) \rightarrow A$ unital ε -*-homo. So far, we have:
(i) A homomorphism $\wedge: ~ \mathrm{U}\left(M_{m}(\mathbb{C})\right) \rightarrow \mathrm{U}(A)$ such that $\|\Lambda-\Theta\| \leq 4 \varepsilon$.
(ii) $\tilde{\Lambda}: A_{\text {sa }} \rightarrow B_{\text {sa }}$ such that $\Lambda(\exp ($ ira $))=\exp (i r \tilde{\Lambda}(a))$ for $r \in \mathbb{R}$.

Claim. Suppose p and q are projections.

1. We have $\underline{\Lambda}(p)=\underline{\frac{1}{2}\left(1-\Lambda\left(u_{p}\right)\right) .} \begin{aligned} u_{p} & =1-2 p \\ & =(1-p) \cdot e^{0}+p \cdot e^{i \pi}\end{aligned}$

Theorem 17.2.6: $\Theta: M_{m}(\mathbb{C}) \rightarrow A$ unital ε -*-homo. So far, we have:
(i) A homomorphism $\Lambda: \mathrm{U}\left(M_{m}(\mathbb{C})\right) \rightarrow \mathrm{U}(A)$ such that $\|\Lambda-\Theta\| \leq 4 \varepsilon$.
(ii) $\tilde{\Lambda}: A_{\mathrm{sa}} \rightarrow B_{\mathrm{sa}}$ such that $\Lambda(\exp ($ ira $))=\exp ($ ir $\tilde{\Lambda}(a))$ for $r \in \mathbb{R}$.

Claim. Suppose p and q are projections.

1. We have $\tilde{\Lambda}(p)=\frac{1}{2}\left(1-\Lambda\left(u_{p}\right)\right)$.
2. If p and q are Murray-von Neumann equivalent, the -

$$
\begin{aligned}
& \text { (} \left.\exists v \quad v^{*} v=P, \quad v v^{*}=\varepsilon\right) \Leftrightarrow \exists u \in C\left(M_{m} \mathbb{C}\right) \\
& \hat{\Lambda}(M) \sim_{\mu_{S N}} \bar{\Lambda}(\xi) \\
& \wedge(1-2 \varepsilon) \quad \underline{u p n^{*}=\varepsilon} \\
& \Lambda(u(1-2 p) u \text { K) } \\
& =\Lambda(4) \Lambda(1-29) \quad \Lambda\left(u^{*}\right)
\end{aligned}
$$

Theorem 17.2.6: $\Theta: M_{m}(\mathbb{C}) \rightarrow A$ unital ε -*-homo. So far, we have:
(i) A homomorphism $\wedge: ~ \mathrm{U}\left(M_{m}(\mathbb{C})\right) \rightarrow \mathrm{U}(A)$ such that $\|\Lambda-\Theta\| \leq 4 \varepsilon$.
(ii) $\tilde{\Lambda}: A_{\text {sa }} \rightarrow B_{\text {sa }}$ such that $\Lambda(\exp ($ ira $))=\exp (i r \tilde{\Lambda}(a))$ for $r \in \mathbb{R}$.

Claim. Suppose p and q are projections.

1. We have $\tilde{\Lambda}(p)=\frac{1}{2}\left(1-\Lambda\left(u_{p}\right)\right)$.
2. If p and q are Murray-von Neumann equivalent, then so are $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$.
3. If p and q commute, then so do $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$.

$$
p+\varepsilon-p \varepsilon \text { is self-atioint }
$$

Theorem 17.2.6: $\Theta: M_{m}(\mathbb{C}) \rightarrow A$ unital ε-*-homo. So far, we * have:
(i) A homomorphism $\wedge: ~ \mathrm{U}\left(M_{m}(\mathbb{C})\right) \rightarrow \mathrm{U}(A)$ such that $\|\Lambda-\Theta\| \leq 4 \varepsilon$.
(ii) $\tilde{\Lambda}: A_{\text {sa }} \rightarrow B_{\text {sa }}$ such that $\Lambda(\exp ($ ira $))=\exp (i r \tilde{\Lambda}(a))$ for $r \in \mathbb{R}$.

Claim. Suppose p and q are projections.

1. We have $\tilde{\Lambda}(p)=\frac{1}{2}\left(1-\Lambda\left(u_{p}\right)\right)$.
2. If p and q are Murray-von Neumann equivalent, then so are $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$.
3. If p and q commute, then so do $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$.
4. If $p q=0$, then $\tilde{\Lambda}(p) \tilde{\Lambda}(q)=0$ and $\tilde{\Lambda}(p+q)=\tilde{\Lambda}(p)+\tilde{\Lambda}(q)$.
$\rho+\varepsilon$ is a flor. $1-2(\rho+\varepsilon)$

Theorem 17.2.6: $\Theta: M_{m}(\mathbb{C}) \rightarrow A$ unital ε-*-homo. So far, we * have:
(i) A homomorphism $\wedge: ~ \mathrm{U}\left(M_{m}(\mathbb{C})\right) \rightarrow \mathrm{U}(A)$ such that $\|\Lambda-\Theta\| \leq 4 \varepsilon$.
(ii) $\tilde{\Lambda}: A_{\text {sa }} \rightarrow B_{\text {sa }}$ such that $\Lambda(\exp ($ ira $))=\exp (i r \tilde{\Lambda}(a))$ for $r \in \mathbb{R}$.

Claim. Suppose p and q are projections.

1. We have $\tilde{\Lambda}(p)=\frac{1}{2}\left(1-\Lambda\left(u_{p}\right)\right)$.
2. If p and q are Murray-von Neumann equivalent, then so are $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$.
3. If p and q commute, then so do $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$.
4. If $p q=0$, then $\tilde{\Lambda}(p) \tilde{\Lambda}(q)=0$ and $\tilde{\Lambda}(p+q)=\tilde{\Lambda}(p)+\tilde{\Lambda}(q)$.
5. If $\sum_{j<m} p_{j}=1$ for projections p_{j}, for $j<m$, then

$$
\sum_{j<m} \tilde{\Lambda}\left(p_{j}\right) \doteq 1
$$

$$
M_{m}(\mathbb{E})
$$

Recall that A has a faithful racial state σ. By Lemma 17.2.4, suffices to prove $\tau(u)=\sigma(\Lambda(u))$ for every $u \in U\left(M_{m}(\mathbb{C})\right)$. By the Spectral Theorem,

$$
u=\sum_{j<m} \exp \left(i \lambda_{j}\right) p_{j}=\prod_{j<m} \exp \left(i \lambda_{j} p_{j}\right)
$$

and $p_{i} \sim_{M v N} p_{j}$ for all i, j.

$$
\begin{aligned}
\sum_{j} \tilde{\Lambda}\left(l_{j}\right)=1 & =\sum_{i} i \lambda_{j} \\
& \Lambda(u)=\prod_{i<m} \Lambda\left(e \times v\left(i \lambda_{j} n_{j}\right)\right)
\end{aligned}
$$

