
Massive C⇤-algebras, Winter 2021, I. Farah, Lecture 19

Today: Ulam-stability. . . but first, a shorter—and much more
reasonable—proof of Lemma 17.4.8.

 



Stabilizers done right
Recall � 2 Aut(Q(H)).

Lemma 17.4.8 If � has a strongly continuous lifting ⇥ on D[E] for
some E 2 PartN, then it has a lifting of product type on DX[E] for
some infinite X ✓ N.
To do this right, we’ll need two useful lemmas.

Lemma A If r is a projection, then for every a we have

k[a, r ]k = ka� rar � (1� r)a(1� r)k.

Lemma B Suppose a 2 B(H) and rj , for j 2 N, is an increasing
sequence of finite rank projections such that rj ! 1B(H) (in SOT)
and

P
j
k[a, rj ]k < 1. Then

a�
X

j

(rj+1 � rj)a(rj+1 � rj)

is compact.
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A good proof of Lemma 17.4.8: As in the last minutes of class 17,
recursively find an increasing sequence (n(j))j , s(j) 2 D(n(j),n(j+1)) (with
n(0) := 0), and an increasing sequence of finite-rank projections (rj)j so
that for all j , all a and b in D[0,n(j)], and all c and d in D[n(j+1),1):

1. k(⇥(a+ s(j) + c)�⇥(b + s(j) + c))(1� rj)k  2�j ,

2. k(1� rj)(⇥(a+ s(j) + c)�⇥(b + s(j) + c))k  2�j ,

3. k(⇥(a+ s(j) + c)�⇥(a+ s(j) + d))rjk  2�j ,

4. krj(⇥(a+ s(j) + c)�⇥(a+ s(j) + d))k  2�j .

Let X := {n(j)|j 2 N} and s :=
P

j
s(j).

For every x 2 DX and every j we have

k[⇥(x + s)�⇥(x), rj ]k  2�j+2.

For j 2 N, define ⌅j(a) for a 2 D{n(j)} by

⌅j(a) := (rj+1 � rj)(⇥(x + s)�⇥(x))(rj+1 � rj).

By Lemma B, the product type function ⌅ determined by (⌅j) satisfies

⌅(x) ⇡K(H) ⇥(x + s)�⇥(s) ⇡K(H) �⇤(x),

completing the proof.

I

if

0 0



A good proof of Lemma 17.4.8: As in the last minutes of class 17,
recursively find an increasing sequence (n(j))j , s(j) 2 D(n(j),n(j+1)) (with
n(0) := 0), and an increasing sequence of finite-rank projections (rj)j so
that for all j , all a and b in D[0,n(j)], and all c and d in D[n(j+1),1):

1. k(⇥(a+ s(j) + c)�⇥(b + s(j) + c))(1� rj)k  2�j ,

2. k(1� rj)(⇥(a+ s(j) + c)�⇥(b + s(j) + c))k  2�j ,

3. k(⇥(a+ s(j) + c)�⇥(a+ s(j) + d))rjk  2�j ,

4. krj(⇥(a+ s(j) + c)�⇥(a+ s(j) + d))k  2�j .

Let X := {n(j)|j 2 N} and s :=
P

j
s(j).

For every x 2 DX and every j we have

k[⇥(x + s)�⇥(x), rj ]k  2�j+2.

For j 2 N, define ⌅j(a) for a 2 D{n(j)} by

⌅j(a) := (rj+1 � rj)(⇥(x + s)�⇥(x))(rj+1 � rj).

By Lemma B, the product type function ⌅ determined by (⌅j) satisfies

⌅(x) ⇡K(H) ⇥(x + s)�⇥(s) ⇡K(H) �⇤(x),

completing the proof.

O

e e



A good proof of Lemma 17.4.8: As in the last minutes of class 17,
recursively find an increasing sequence (n(j))j , s(j) 2 D(n(j),n(j+1)) (with
n(0) := 0), and an increasing sequence of finite-rank projections (rj)j so
that for all j , all a and b in D[0,n(j)], and all c and d in D[n(j+1),1):

1. k(⇥(a+ s(j) + c)�⇥(b + s(j) + c))(1� rj)k  2�j ,

2. k(1� rj)(⇥(a+ s(j) + c)�⇥(b + s(j) + c))k  2�j ,

3. k(⇥(a+ s(j) + c)�⇥(a+ s(j) + d))rjk  2�j ,

4. krj(⇥(a+ s(j) + c)�⇥(a+ s(j) + d))k  2�j .

Let X := {n(j)|j 2 N} and s :=
P

j
s(j).

For every x 2 DX and every j we have

k[⇥(x + s)�⇥(x), rj ]k  2�j+2.

For j 2 N, define ⌅j(a) for a 2 D{n(j)} by

⌅j(a) := (rj+1 � rj)(⇥(x + s)�⇥(x))(rj+1 � rj).

By Lemma B, the product type function ⌅ determined by (⌅j) satisfies

⌅(x) ⇡K(H) ⇥(x + s)�⇥(s) ⇡K(H) �⇤(x),

completing the proof.



A good proof of Lemma 17.4.8: As in the last minutes of class 17,
recursively find an increasing sequence (n(j))j , s(j) 2 D(n(j),n(j+1)) (with
n(0) := 0), and an increasing sequence of finite-rank projections (rj)j so
that for all j , all a and b in D[0,n(j)], and all c and d in D[n(j+1),1):

1. k(⇥(a+ s(j) + c)�⇥(b + s(j) + c))(1� rj)k  2�j ,

2. k(1� rj)(⇥(a+ s(j) + c)�⇥(b + s(j) + c))k  2�j ,

3. k(⇥(a+ s(j) + c)�⇥(a+ s(j) + d))rjk  2�j ,

4. krj(⇥(a+ s(j) + c)�⇥(a+ s(j) + d))k  2�j .

Let X := {n(j)|j 2 N} and s :=
P

j
s(j).

For every x 2 DX and every j we have

k[⇥(x + s)�⇥(x), rj ]k  2�j+2.

For j 2 N, define ⌅j(a) for a 2 D{n(j)} by

⌅j(a) := (rj+1 � rj)(⇥(x + s)�⇥(x))(rj+1 � rj).

By Lemma B, the product type function ⌅ determined by (⌅j) satisfies

⌅(x) ⇡K(H) ⇥(x + s)�⇥(s) ⇡K(H) �⇤(x),

completing the proof.

S



Ulam-stability of approximate ⇤-homorphisms

The following definition and theorem are used in order to set the
stage.

Def 17.2.1 An "-representation of a group G in a unital
C⇤-algebra A is a function ⇥ : G ! U(A) such that
supx ,y2G k⇥(xy)�⇥(x)⇥(y)k  " and ⇥(1) = 1.

Thm 17.2.2 (Kazhdan, Grove–Karcher–Roh,
Alekseev–Glebsky–Gordon) Assume G is a compact group and A
is a von Neumann algebra. If " < 1/10 then for every
Borel-measurable "-representation ⇥ : G ! U(A) there exists a
unitary representation ⇤ : G ! U(A) such that k⇤�⇥k  2".

(A proof of Thm 17.2.2 can be extracted from the proof of the
following theorem.)
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Thm 17.2.3 (Burger–Ozawa–Thom) Assume A and B are
C⇤-algebras, A is finite-dimensional, " < 1/28, and ⇥ : A1 ! B2 is
a uniformly bounded, Borel-measurable function that satisfies
⇥[U(A)] ✓ U(B) and

k⇥(ga)�⇥(g)⇥(a)k  "

for all g 2 U(A) and all a 2 A1, and ⇥(1) = 1. Then there exists a
uniformly bounded, Borel-measurable function ⇤ : A1 ! B2 which
satisfies k⇤�⇥k  4" and

⇤(ga)� ⇤(g)⇤(a) = 0

for all g 2 U(A) and all a 2 A1.

Proof: Let µ denote the (right) Haar measure on U(A) and let
(Bochner integral)

⇥0(a) :=

Z
⇥(x)⇤⇥(xa)dµ(x).
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Thm 17.2.3: Assuming ⇥[U(A)] ✓ U(B) and

k⇥(ga)�⇥(g)⇥(a)k  "

for all g 2 U(A) and all a 2 A1, and ⇥(1) = 1. Let g and x range
over U(A) and a 2 A1. Define

⇥0(a) :=

Z
⇥(x)⇤⇥(xa)dµ(x).

Then Z
⇥(xg�1)⇤⇥(xa)dµ(x) = ⇥0(ga).

hence ⇥0(g�1) = ⇥0(g)⇤. Consider

I :=

Z
(⇥(xg�1)�⇥(x)⇥(g�1))⇤(⇥(xa)�⇥(x)⇥(a))dµ(x)
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Given unital operator algebras A and B , when can a group
homomorphism from U(A) into U(B) be extended to a
⇤-homomorphism from A into B?

Exercise 1.11.16: Every a 2 A can be written as a linear
combination of four unitaries

Lemma 17.2.4 Suppose A and B are unital C⇤-algebras and
⇤ : U(A) ! U(B) is a group homomorphism. If A has a faithful
tracial state ⌧ , B has a faithful tracial state �, and
�(⇤(u)) = ⌧(u), then ⇤ has a unique extension to a
⇤-homomorphism.

Proof: We need to prove that the obvious map

�(
P

j<n
�juj) :=

P
j<n

�j⇤(uj)

is well-defined.
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We will need Stone’s one-parameter group theorem:
If R ! U(B) : t 7! ut is a norm-continuous group homomorphism,
then there exists a self-adjoint b 2 B such that ut = exp(itb) for
all t. I



Recall:

Def 17.2.5 Given " > 0 and C⇤-algebras A and B , some
⇥ : A1 ! B1 is an "-⇤-homomorphism if for all x , y in A1 and
� 2 C, |�|  1, each one of ⇥(x⇤)�⇥(x)⇤,
⇥(x + y)�⇥(x)�⇥(y), ⇥(xy)�⇥(x)⇥(y), and ⇥(�x)� �⇥(x)
has norm not greater than ". It is unital if in addition
⇥[U(A)] ✓ U(B) and ⇥(1) = 1.

t



Thm 17.2.6 Suppose " < 1/28, m � 1, A is a C⇤-algebra with a
faithful tracial state �, and ⇥ : Mm(C) ! A is a unital
"-⇤-homomorphism. Then there exists a ⇤-homomorphism
� : Mm(C) ! A such that k⇥� �k  16".

Proof: By Theorem 17.2.3, there is a Borel-measurable
⇤ : U(Mm(C)) ! A such that ⇤(uv) = ⇤(u)⇤(v) for all u and v ,
and k⇤�⇥k  4".
Using Stone, there is ⇤̃ : Asa ! Bsa such that

⇤(exp(ira)) = exp(ir ⇤̃(a))

for all r 2 R.
1. ⇤̃(1) = 1.

2. If p is a projection, then ⇤̃(p) is a projection.

runity
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Theorem 17.2.6: ⇥ : Mm(C) ! A unital "-⇤-homo. So far, we
have:
(i) A homomorphism ⇤ : U(Mm(C)) ! U(A) such that
k⇤�⇥k  4".
(ii) ⇤̃ : Asa ! Bsa such that ⇤(exp(ira)) = exp(ir ⇤̃(a)) for r 2 R.

Claim. Suppose p and q are projections.

1. We have ⇤̃(p) = 1
2(1� ⇤(up)).

2. If p and q are Murray–von Neumann equivalent,then so are
⇤̃(p) and ⇤̃(q).

3. If p and q commute, then so do ⇤̃(p) and ⇤̃(q).

4. If pq = 0, then ⇤̃(p)⇤̃(q) = 0 and ⇤̃(p + q) = ⇤̃(p) + ⇤̃(q).

5. If
P

j<m
pj = 1 for projections pj , for j < m, then

P
j<m

⇤̃(pj) = 1.
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(i) A homomorphism ⇤ : U(Mm(C)) ! U(A) such that
k⇤�⇥k  4".
(ii) ⇤̃ : Asa ! Bsa such that ⇤(exp(ira)) = exp(ir ⇤̃(a)) for r 2 R.

Claim. Suppose p and q are projections.

1. We have ⇤̃(p) = 1
2(1� ⇤(up)).

2. If p and q are Murray–von Neumann equivalent,then so are
⇤̃(p) and ⇤̃(q).

3. If p and q commute, then so do ⇤̃(p) and ⇤̃(q).

4. If pq = 0, then ⇤̃(p)⇤̃(q) = 0 and ⇤̃(p + q) = ⇤̃(p) + ⇤̃(q).

5. If
P

j<m
pj = 1 for projections pj , for j < m, then

P
j<m

⇤̃(pj) = 1.
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Recall that A has a faithful tracial state �. By Lemma 17.2.4,
su�ces to prove ⌧(u) = �(⇤(u)) for every u 2 U(Mm(C)). By the
Spectral Theorem,

u =
P

j<m
exp(i�j)pj =

Q
j<m

exp(i�jpj),

and pi ⇠MvN pj for all i , j .
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