Massive C*-algebras, Winter 2021, I. Farah, Lecture 19

Today: Ulam-stability...but first, a shorter—and much more reasonable—proof of Lemma 17.4.8.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Stabilizers done right

Recall $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$.

Lemma 17.4.8 If Φ has a strongly continuous lifting Θ on D[E] for some $E \in Part_{\mathbb{N}}$, then it has a lifting of product type on $D_X[E]$ for some infinite $X \subseteq \mathbb{N}$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● のへで

To do this right, we'll need two useful lemmas.

Stabilizers done right

Recall $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$.

Lemma 17.4.8 If Φ has a strongly continuous lifting Θ on D[E] for some $E \in Part_{\mathbb{N}}$, then it has a lifting of product type on $D_X[E]$ for some infinite $X \subseteq \mathbb{N}$.

To do this right, we'll need two useful lemmas.

Lemma A If r is a projection, then for every a we have

$$\|[a,r]\| = \|a - rar - (1-r)a(1-r)\|.$$

Lemma B Suppose $a \in \mathcal{B}(H)$ and r_j , for $j \in \mathbb{N}$, is an increasing sequence of finite rank projections such that $r_j \to 1_{\mathcal{B}(H)}$ (in SOT) and $\sum_j \|[a, r_j]\| < \infty$. Then

$$a - \sum_{j} (r_{j+1} - r_j) a(r_{j+1} - r_j)$$

is compact.

1.
$$\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))(1-r_j)\| \leq 2^{-1}$$

2.
$$\|(1-r_j)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\| \leq 2^{c_j}$$

3.
$$\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))|_{j}\| \leq 2^{-j}$$

4.
$$||r_j(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))|| \le 2^{-j}$$
.

Let $X := \{n(j) | j \in \mathbb{N}\}$ and $s := \sum_j s(j)$.

Sci

1.
$$\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))(1-r_j)\| \le 2^{-j},$$

2. $\|(1-r_i)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\| \le 2^{-j}.$

2.
$$||(1-r_j)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))|| \leq 2^{-j}$$
,

3.
$$\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))r_j\| \leq 2^{-j}$$

4.
$$||r_j(\Theta(a+s(j)+c) - \Theta(a+s(j)+d))|| \leq 2^{-j}$$
.

Let X := $\{n(j)|j \in \mathbb{N}\}$ and $s := \sum_j s(j)$. For every $x \in D_X$ and every j we have

$$\|[\underline{\Theta(x+s)}-\underline{\Theta(x)},\underline{r_j}]\| \leq 2^{-j+2}$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● のへで

1.
$$\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))(1-r_j)\| \leq 2^{-j}$$
,

2.
$$||(1-r_j)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))|| \le 2^{-j}$$
,

3. $\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))r_j\| \leq 2^{-j}$,

4.
$$||r_j(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))|| \le 2^{-j}$$
.

Let $X := \{n(j) | j \in \mathbb{N}\}$ and $s := \sum_j s(j)$. For every $x \in D_X$ and every j we have

$$\|[\Theta(x+s)-\Theta(x),r_j]\| \leq 2^{-j+2}$$

For $j \in \mathbb{N}$, define $\Xi_j(a)$ for $a \in D_{\{n(j)\}}$ by $\Xi_j(a) := (r_{j+1} - r_j)(\Theta(x + s) - \Theta(x))(r_{j+1} - r_j).$

1.
$$\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))(1-r_j)\| \leq 2^{-j}$$
,

2.
$$||(1-r_j)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))|| \le 2^{-j}$$
,

3. $\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))r_j\| \leq 2^{-j}$,

4.
$$||r_j(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))|| \le 2^{-j}$$
.

Let $X := \{n(j) | j \in \mathbb{N}\}$ and $s := \sum_j s(j)$. For every $x \in D_X$ and every j we have

$$\left\|\left[\Theta(x+s)-\Theta(x),r_j\right]\right\|\leq 2^{-j+2}$$

For $j \in \mathbb{N}$, define $\Xi_j(a)$ for $a \in D_{\{n(j)\}}$ by $\Xi(a) := (r - r)(\Theta(x + c) - \Theta(c))$

$$\Xi_j(a) := (r_{j+1} - r_j)(\Theta(x+s) - \Theta(\boldsymbol{s}))(r_{j+1} - r_j).$$

By Lemma B, the product type function Ξ determined by (Ξ_i) satisfies

$$\Xi(x) \approx^{\mathcal{K}(H)} \Theta(x+s) - \Theta(s) \approx^{\mathcal{K}(H)} \Phi_*(x)$$

completing the proof.

Ulam-stability of approximate *-homorphisms

The following definition and theorem are used in order to set the stage.

Def 17.2.1 An ε -representation of a group G in a unital C^* -algebra A is a function $\Theta: G \to U(A)$ -such that $\sup_{x,y\in G} \|\Theta(xy) - \Theta(x)\Theta(y)\| \le \varepsilon$ and $\Theta(1) = 1$.

B(H)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Ulam-stability of approximate *-homorphisms

The following definition and theorem are used in order to set the stage.

Def 17.2.1 An ε -representation of a group G in a unital C^* -algebra A is a function $\Theta: G \to U(A)$ such that $\sup_{x,y\in G} \|\Theta(xy) - \Theta(x)\Theta(y)\| \le \varepsilon$ and $\Theta(1) = 1$.

Thm 17.2.2 (Kazhdan, Grove–Karcher–Roh, Gmene G is a compact group and A is a von Neumann algebra. If $\varepsilon < 1/10$ then for every Borel-measurable ε -representation $\Theta: G \rightarrow U(A)$ there exists a unitary representation $\Lambda: G \rightarrow U(A)$ such that $||\Lambda - \Theta|| \le 2\varepsilon$.

(A proof of Thm 17.2.2 can be extracted from the proof of the following theorem.)

Thm 17.2.3 (Burger–Ozawa–Thom) Assume A and B are $\forall n_1 \neq o \in C^*$ -algebras, A is finite-dimensional, $\varepsilon < 1/28$, and $\Theta: A_1 \rightarrow B_2$ is a uniformly bounded, Borel-measurable function that satisfies $\Theta[U(A)] \subseteq U(B)$ and

 $\|\Theta(ga) - \Theta(g)\Theta(a)\| \leq \varepsilon$

for all $g \in U(A)$ and all $\underline{a} \in A_1$, and $\Theta(1) = 1$. Then there exists a uniformly bounded, Borel-measurable function $\Lambda : A_1 \to B_2$ which satisfies $\|\Lambda - \Theta\| \leq 4\varepsilon$ and

$$\Lambda(ga) - \Lambda(g)\Lambda(a) = 0$$

for all $g \in U(A)$ and all $a \in A_1$.

Thm 17.2.3 (Burger–Ozawa–Thom) Assume A and B are C*-algebras, A is finite-dimensional, $\varepsilon < 1/28$, and $\Theta: A_1 \rightarrow B_2$ is a uniformly bounded, Borel-measurable function that satisfies $\Theta[U(A)] \subseteq U(B)$ and

$$\|\Theta(ga) - \Theta(g)\Theta(a)\| \leq \varepsilon$$

for all $g \in U(A)$ and all $a \in A_1$, and $\Theta(1) = 1$. Then there exists a uniformly bounded, Borel-measurable function $\Lambda \colon A_1 \to B_2$ which satisfies $\|\Lambda - \Theta\| \le 4\varepsilon$ and

$$\Lambda(ga) - \Lambda(g)\Lambda(a) = 0$$

for all $g \in U(A)$ and all $a \in A_1$.

Proof: Let μ denote the (right) Haar measure on U(A) and let (Bochner integral) $\times \in O(A)$

$$\Theta'(a) := \int \Theta(x)^* \Theta(xa) d\mu(x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ♪

Thm 17.2.3: Assuming $\Theta[U(A)] \subseteq U(B)$ and

$$\|\Theta(ga) - \Theta(g)\Theta(a)\| \leq \varepsilon$$

for all $g \in U(A)$ and all $a \in A_1$, and $\Theta(1) = 1$. Let g and x range over U(A) and $a \in A_1$. Define

$$\Theta'(a) := \int \Theta(x)^* \Theta(xa) d\mu(x).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Thm 17.2.3: Assuming $\Theta[U(A)] \subseteq U(B)$ and

$$\|\Theta(ga) - \Theta(g)\Theta(a)\| \le \varepsilon$$

for all $g \in U(A)$ and all $a \in A_1$, and $\Theta(1) = 1$. Let g and x range over U(A) and $a \in A_1$. Define

$$\Theta'(a) := \int \Theta(x)^* \Theta(xa) d\mu(x).$$

Thm 17.2.3: Assuming $\Theta[U(A)] \subseteq U(B)$ and

$$\|\Theta(ga) - \Theta(g)\Theta(a)\| \le \varepsilon$$

for all $g \in U(A)$ and all $a \in A_1$, and $\Theta(1) = 1$. Let g and x range over U(A) and $a \in A_1$. Define

$$\Theta'(a) := \int \Theta(x)^* \Theta(xa) d\mu(x).$$

Then

$$\int \Theta(xg^{-1})^*\Theta(xa)d\mu(x) = \Theta'(ga).$$

hence $\Theta'(g^{-1}) = \Theta'(g)^*$. Consider

T

$$\mathcal{I} := \int (\Theta(xg^{-1}) - \Theta(x)\Theta(g^{-1}))^* (\Theta(xa) - \Theta(x)\Theta(a)) d\mu(x)$$

(I(5 2° $I = \int \Theta(xg')^{*} \Theta(xg) dr(u) - \int \Theta(xg')^{*} \Theta(xg) dr(u)$ $-\int \Theta(g^{-}y^{*}\Theta(X))^{*} \Theta(XG) dy(X) + \int \Theta(g^{-}y^{*}\Theta(X) \Theta(X)) \Theta(XG) dy(X) + \int \Theta(g^{-}y^{*}\Theta(X) \Theta(X)) \Theta(XG) dy(X) + \int \Theta(g^{-}y^{*}\Theta(X)) \Theta(XG) \Theta(XG) + \int \Theta(g^{-}y^{*}\Theta(X)) \Theta(XG) + \int \Theta(g^{-}y^{*}\Theta(XG)) + \int \Theta(g^{-}y^{*}\Theta(XG) +$ $= \Theta'(g_{\alpha}) - \Theta'(g_{\alpha}) \Theta(g_{\alpha}) - \Theta(g_{\alpha}) + \Theta(g_{\alpha}$ $= \Theta'(8^{\alpha}) - \Theta'(8)\Theta'(9) + \Theta'(8)(\Theta'(0) - \Theta(0)) - \Theta(8^{-1})^{*}(\Theta'(0) - \Theta(0))$ $= \Theta'(8^{\alpha}) - \Theta'(8)O(^{\alpha}) + (\Theta'(8) - \Theta(8^{-1})^{-1}) - \Theta(8^{-1})^{-1} - \Theta(8^{$ 25, Tcloim 110-D/1 5 E $\frac{14}{10} \frac{10}{(x)^{*}} \frac{10}{(xa)^{-}} \frac{1$ $= \left(\left| \Theta(x\alpha) - \Theta(x) \Theta(0) \right| \right) \leq \varepsilon.$ Therefor, $\|\Theta'(x_0) - \Theta'(x_1 \Theta(0))\| \leq 2\varepsilon^2$ $\forall x \in U(A), \forall a \in A_1.$

 Θ' Q: $\Theta[U(A)] \leq U(B)]$ Not Evite, but almost. Fix SEU(A). $\| \Theta'(SO) - \Theta'(J) \Theta'(O) \| \leq 2E^{2}$ $\begin{array}{c} \alpha & -7 g^{-\prime} \\ g \\ g \\ \end{array} \begin{array}{c} \phi'(\varsigma) \\ \eta'(\varsigma) \end{array}$ $|| - \theta'(g) \theta'(g') || \le 2 \varepsilon$ ll 1- θ'(g)θ'(g)^{\$} |l ≤ 2 ε⁻ $|-2\varepsilon^{*} = \theta'(s)\theta'(s)^{*} = 1$ $\| | - | \theta'(s) \| \| \leq 2 \varepsilon^{2} (2 \varepsilon^{2} - 1)$ $L_{\ell} = \Theta'(S) = \Theta'(S) \cdot |\Theta'(S)|^{-1}$ $\Theta''(S) = \Theta'(S) \cdot |\Theta'(S)|^{-1}$ $\Theta''(S) = \Theta'(S) \cdot |\Theta'(S)|^{-1}$ $\Theta''(S) = \Theta'(S) \cdot |\Theta'(S)|^{-1}$ They 110"(ga) - 0"(s) 0"(9/11 5(1452 $\| \theta'' - \theta \| \leq 2 \epsilon$

Petre O'' sing the Scene trick $((\Theta^{(r)} - \Theta (\leq 2 \cdot (2 \epsilon^2))))$ $\| \Theta''(S \otimes | - \Theta''(g) O''(a) \| \leq 2(2E^2) = 8E^2$ etc., find 0" lim 6⁽¹⁾ - , c, refired.

Given unital operator algebras A and B, when can a group homomorphism from $\mathcal{U}(A)$ into $\mathcal{U}(B)$ be extended to a *-homomorphism from A into B? Exercise 1.11.16: Every $a \in A^{c}$ can be written as a linear

Exercise 1.11.16: Every $a \in A^{\nu}$ can be written as a linear combination of four unitaries

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少♀?

Foot: $0 \le \alpha \le 1$ then $\alpha = \frac{1}{2}(\alpha + \sigma)$, for unitaries α, σ . $\alpha = \alpha + i(1 - \alpha^2)^{\frac{1}{2}}$ $\sigma = \alpha - i(1 - \alpha^2)^{\frac{1}{2}}$ Given unital operator algebras A and B, when can a group homomorphism from $\mathcal{U}(A)$ into $\mathcal{U}(B)$ be extended to a *-homomorphism from A into B?

Exercise 1.11.16: Every $a \in A$ can be written as a linear combination of four unitaries

Lemma 17.2.4 Suppose A and B are unital C*-algebras and $\Lambda: U(A) \rightarrow U(B)$ is a group homomorphism. If A has a faithful tracial state τ , B has a faithful tracial state σ , and $\sigma(\Lambda(u)) = \tau(u)$, then Λ has a unique extension to a *-homomorphism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めへぐ

Given unital operator algebras A and B, when can a group homomorphism from $\mathcal{U}(A)$ into $\mathcal{U}(B)$ be extended to a *-homomorphism from A into B?

Exercise 1.11.16: Every $a \in A$ can be written as a linear combination of four unitaries

Lemma 17.2.4 Suppose A and B are unital C*-algebras and $\Lambda: U(A) \rightarrow U(B)$ is a group homomorphism. If A has a faithful tracial state τ , B has a faithful tracial state σ , and $\overline{\sigma(\Lambda(u))} = \tau(u)$, then Λ has a unique extension to a *-homomorphism.

Proof: We need to prove that the obvious map

$$\Phi(\sum_{j< n} \lambda_j u_j) := \sum_{j< n} \lambda_j \Lambda(u_j)$$

is well-defined.

This means:

 $\Sigma_{j < n}$ $\lambda_{j} \mathcal{U}_{j} = 0$ II, $\left(\sum_{j \in \mathcal{L}} \mathcal{N}_{j} \mathcal{U}_{j}\right)^{+} \left(\sum_{j \in \mathcal{L}} \mathcal{N}_{j} \mathcal{U}_{j}\right)^{+} = 0$ $\mathcal{T}\left(\right)$ 10 $(=) \sum_{j < n} \sum_{j < n} \overline{\lambda_j} \lambda_i \overline{\mathcal{L}}(\mathcal{U}_j^{\dagger} \mathcal{U}_i) = 0$ (=) ∑ ∑ ∑, Z, Z(∧(u, u:)) = 0 $\sum_{i \in \mathcal{U}} \mathcal{N}_i \bigwedge (\mathcal{U}_i) = 0,$. ج>

We will need Stone's one-parameter group theorem: If $(\mathbb{R}_t) \rightarrow U(B)$: $t \mapsto u_t$ is a norm-continuous group homomorphism, then there exists a self-adjoint $b \in B$ such that $u_t = \exp(itb)$ for all t.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ りへぐ

Recall:

Def 17.2.5 Given
$$\varepsilon > 0$$
 and C*-algebras A and B, some
 $\Theta: A_1 \to B_1$ is an ε -*-homomorphism if for all x, y in A_1 and
 $\lambda \in \mathbb{C}, |\lambda| \leq 1$, each one of $\Theta(x^*) - \Theta(x)^*$,
 $\Theta(x+y) - \Theta(x) - \Theta(y), \Theta(xy) - \Theta(x)\Theta(y)$, and $\Theta(\lambda x) - \lambda\Theta(x)$
has norm not greater than ε . (It is unital if in addition
 $\Theta[U(A)] \subseteq U(B)$ and $\Theta(1) = 1$.)

・ロト・4回ト・4回ト・4回ト・4日ト

Thm 17.2.6 Suppose $\varepsilon < 1/28$, $m \ge 1$, A is a C*-algebra with a faithful tracial state σ , and $\Theta: M_m(\mathbb{C}) \to A$ is a unital ε -*-homomorphism. Then there exists a *-homomorphism $\Phi: M_m(\mathbb{C}) \to A$ such that $\|\Theta - \Phi\| \le 16\varepsilon$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Thm 17.2.6 Suppose $\varepsilon < 1/28$, $m \ge 1$, A is a C*-algebra with a faithful tracial state σ , and $\Theta: M_m(\mathbb{C}) \to A$ is a unital ε -*-homomorphism. Then there exists a *-homomorphism $\Phi: M_m(\mathbb{C}) \to A$ such that $\|\Theta - \Phi\| \le 16\varepsilon$.

Proof: By Theorem 17.2.3, there is a Borel-measurable $\Lambda: U(M_m(\mathbb{C})) \to A$ such that $\Lambda(uv) = \Lambda(u)\Lambda(v)$ for all u and v, and $||\Lambda - \Theta|| \le 4\varepsilon$.

Thm 17.2.6 Suppose $\varepsilon < 1/28$, $m \ge 1$, A is a C^{*}-algebra with a faithful tracial state σ , and $\Theta: M_m(\mathbb{C}) \to A$ is a unital ε -*-homomorphism. Then there exists a *-homomorphism $\Phi: M_m(\mathbb{C}) \to A \text{ such that } \|\Theta - \Phi\| \leq 16\varepsilon.$

Proof: By Theorem 17.2.3, there is a Borel-measurable $\Lambda: U(M_m(\mathbb{C})) \to A$ such that $\Lambda(uv) = \Lambda(u)\Lambda(v)$ for all u and v, and $\|\Lambda - \Theta\| < 4\varepsilon$. Using Stone, there is $\tilde{\Lambda}: A_{sa} \to B_{sa}$ such that

$$\Lambda(\exp(ira)) = \exp(ir\tilde{\Lambda}(a))$$

a E Hsn

for all $r \in \mathbb{R}$.

Pettis => 1 , ctus

Thm 17.2.6 Suppose $\varepsilon < 1/28$, $m \ge 1$, A is a C*-algebra with a faithful tracial state σ , and $\Theta: M_m(\mathbb{C}) \to A$ is a unital ε -*-homomorphism. Then there exists a *-homomorphism $\Phi: M_m(\mathbb{C}) \to A$ such that $\|\Theta - \Phi\| \le 16\varepsilon$.

Proof: By Theorem 17.2.3, there is a Borel-measurable $\Lambda: U(M_m(\mathbb{C})) \to A$ such that $\Lambda(uv) = \Lambda(u)\Lambda(v)$ for all u and v, and $\|\Lambda - \Theta\| \leq 4\varepsilon$. Using Stone, there is $\tilde{\Lambda}: A_{sa} \to B_{sa}$ such that

$$\Lambda(\exp(ira)) = \exp(ir\tilde{\Lambda}(a))$$

for all $r \in \mathbb{R}$. 1. $\tilde{\Lambda}(1) = 1$. 2. If p is a projection, then $\tilde{\Lambda}(p)$ is a projection. $f = b^{\star}$ $e \chi_{\ell}(ir)$

Let bi= A(1). Suppose JrESP(6) \215. () $Fix \in ER$, f(r-1) = Treir SP (exi(i & b) ?-1 (e' - e't) =2 25' Λ (it) Q(it) r scdor it Olit

(i) A homomorphism
$$\Lambda: U(M_m(\mathbb{C})) \to U(A)$$
 such that
 $\|\Lambda - \Theta\| \le 4\varepsilon$.
(ii) $\Lambda: A_{sa} \to B_{sa}$ such that $\Lambda(\exp(ira)) = \exp(ir\Lambda(a))$ for $r \in \mathbb{R}$.
Claim. Suppose p and q are projections.
1. We have $\Lambda(p) = \frac{1}{2}(1 - \Lambda(u_1))$.

1. We have
$$\Lambda(p) = \frac{1}{2}(1 - \Lambda(u_p))$$
. $\mathcal{U}_p = 1 - \mathcal{U}_1$
= $(1 - P) \cdot e^0 + f \cdot e^{iT}$

(i) A homomorphism
$$\Lambda : U(M_m(\mathbb{C})) \to U(A)$$
 such that
 $\|\Lambda - \Theta\| \le 4\varepsilon$.
(ii) $\tilde{\Lambda} : A_{sa} \to B_{sa}$ such that $\Lambda(\exp(ira)) = \exp(ir\tilde{\Lambda}(a))$ for $r \in \mathbb{R}$.

Claim. Suppose p and q are projections.

1. We have
$$ilde{\Lambda}(p)=rac{1}{2}(1-\Lambda(u_p))$$
.

2. If p and q are Murray-von Neumann equivalent, then $\frac{(\exists v \ v \ v = i}{\Lambda(n \ mon \ \Lambda(i) \ \Lambda(i) \ mon \ \Lambda(i) \ mon \ \Lambda(i) \ \Lambda(i) \ mon \ \Lambda(i) \ \Lambda(i) \ mon \ \Lambda(i) \ \Lambda(i)$

 $= \int (u) \int ((-21) \int (u^{*})$

(i) A homomorphism
$$\Lambda : U(M_m(\mathbb{C})) \to U(A)$$
 such that
 $\|\Lambda - \Theta\| \le 4\varepsilon$.
(ii) $\tilde{\Lambda} : A_{sa} \to B_{sa}$ such that $\Lambda(\exp(ira)) = \exp(ir\tilde{\Lambda}(a))$ for $r \in \mathbb{R}$

Claim. Suppose p and q are projections.

1. We have
$$\tilde{\Lambda}(p) = \frac{1}{2}(1 - \Lambda(u_p))$$
.

2. If p and q are Murray–von Neumann equivalent, then so are $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$.

3. If p and q commute, then so do $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$. $f = \int_{1}^{1} \int_{1}^{1}$

(i) A homomorphism
$$\Lambda : U(M_m(\mathbb{C})) \to U(A)$$
 such that
 $\|\Lambda - \Theta\| \le 4\varepsilon$.
(ii) $\tilde{\Lambda} : A_{sa} \to B_{sa}$ such that $\Lambda(\exp(ira)) = \exp(ir\tilde{\Lambda}(a))$ for $r \in \mathbb{R}$

Claim. Suppose p and q are projections.

1. We have
$$\tilde{\Lambda}(p) = rac{1}{2}(1 - \Lambda(u_p))$$
.

- 2. If p and q are Murray–von Neumann equivalent, then so are $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$.
- 3. If p and q commute, then so do $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$.

4. If
$$pq = 0$$
, then $\tilde{\Lambda}(p)\tilde{\Lambda}(q) = 0$ and $\tilde{\Lambda}(p+q) = \tilde{\Lambda}(p) + \tilde{\Lambda}(q)$.
 $\int_{1}^{\infty} (-2i) \int_{1}^{1} (-$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

(i) A homomorphism
$$\Lambda : U(M_m(\mathbb{C})) \to U(A)$$
 such that
 $\|\Lambda - \Theta\| \le 4\varepsilon$.
(ii) $\tilde{\Lambda} : A_{sa} \to B_{sa}$ such that $\Lambda(\exp(ira)) = \exp(ir\tilde{\Lambda}(a))$ for $r \in \mathbb{R}$

Claim. Suppose p and q are projections.

1. We have
$$\tilde{\Lambda}(p) = \frac{1}{2}(1 - \Lambda(u_p))$$
.

- 2. If p and q are Murray–von Neumann equivalent, then so are $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$.
- 3. If p and q commute, then so do $\tilde{\Lambda}(p)$ and $\tilde{\Lambda}(q)$.

4. If
$$pq = 0$$
, then $\tilde{\Lambda}(p)\tilde{\Lambda}(q) = 0$ and $\tilde{\Lambda}(p+q) = \tilde{\Lambda}(p) + \tilde{\Lambda}(q)$.
5. If $\sum_{j < m} p_j = 1$ for projections p_j , for $j < m$, then $\sum_{j < m} \tilde{\Lambda}(p_j) = 1$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ の�?

Min (C)

Recall that A has a faithful tracial state σ . By Lemma 17.2.4, suffices to prove $\tau'(u) = \sigma(\Lambda(u))$ for every $u \in U(M_m(\mathbb{C}))$. By the Spectral Theorem,

$$u = \sum_{j < m} \exp(i\lambda_j) p_j = \prod_{j < m} \exp(i\lambda_j p_j),$$

 $\overline{c}(u) = \overline{\delta}(\Lambda(u))$ $= \overline{\delta}(\lambda)$

▲□▶ ▲圖▶ ▲글▶ ▲글▶ _ 글 _

 $\Lambda(h) = \bigcap \Lambda(e \times (i : n; n;))$

j<m

and $p_i \sim_{MvN} p_j$ for all i, j.

 $\Sigma \widehat{\Lambda}(l_j) = 1$