Massive C*-algebras, Winter 2021, I. Farah, Lecture 18

... still proving that OCA_T implies all automorphisms of $\mathcal{Q}(H)$ are inner.

From the last time: Def 17.4.6 A function $\Xi: D \to \mathcal{B}(H)_{\leq 1}$ is of a product type if there are orthogonal projections $r_n \in \mathcal{B}(H)$ and $\Xi_n \colon \mathsf{D}(n) \to r_n(\mathcal{B}(H)_{\leq 1})r_n$ for $n \in \mathbb{N}$ such that (with the SOT-convergent series) $\Xi(a) = \sum_n \Xi_n(a_n)$ for all $a \in D$. $\overline{G} = (G_{m}) \quad \overline{O}_{m} \in [](u)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ▶ ◆□

Lemma 17.4.8 If Φ has a continuous lifting Θ on D[E] for some $E \in Part_{\mathbb{N}}$, then it has a lifting of product type on $D_{X}[E]$ for some infinite $X \subseteq \mathbb{N}$. $\int_{X} \left(E \right) = \int_{u \in X} \int_{u \in X}$

Lemma 17.4.8 If Φ has a continuous lifting Θ on D[E] for some $E \in Part_{\mathbb{N}}$, then it has a lifting of product type on $D_X[E]$ for some infinite $X \subseteq \mathbb{N}$.

Proof: Find an increasing sequence $(n(j))_j$, $s(j) \in D_{(n(j),n(j+1))}$ (with n(0) := 0), and an increasing sequence of finite-rank projections $(r_j)_j$ so that for all j, all a and b in $D_{[0,n(j)]}$, and all cand d in $D_{[n(j+1),\infty)}$: $significant for all <math>j \in [n(j+1),\infty)$

1.
$$\|(\Theta(a+s(j)+c) - \Theta(b+s(j)+c))(1-r_j)\| \le 2^{-j}$$
,
2. $\|(1-r_j)(\Theta(a+s(j)+c) - \Theta(b+s(j)+c))\| \le 2^{-j}$,

3.
$$\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))r_j\| \leq 2^{-j}$$
,

4. $||r_j(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))|| \le 2^{-j}$.

$$\frac{q}{1}$$

Lemma 17.4.8 If Φ has a continuous lifting Θ on D[E] for some $E \in Part_{\mathbb{N}}$, then it has a lifting of product type on $D_X[E]$ for some infinite $X \subseteq \mathbb{N}$.

Proof: Find an increasing sequence $(n(j))_j$, $s(j) \in D_{(n(j),n(j+1))}$ (with n(0) := 0), and an increasing sequence of finite-rank projections $(r_j)_j$ so that for all j, all a and b in $D_{[0,n(j)]}$, and all cand d in $D_{[n(j+1),\infty)}$:

1.
$$\|(\Theta(a + s(j) + c) - \Theta(b + s(j) + c))(1 - r_j)\| \le 2^{-j}$$
,
2. $\|(1 - r_j)(\Theta(a + s(j) + c) - \Theta(b + s(j) + c))\| \le 2^{-j}$,
3. $\|(\Theta(a + s(j) + c) - \Theta(a + s(j) + d))r_j\| \le 2^{-j}$,
4. $\|r_j(\Theta(a + s(j) + c) - \Theta(a + s(j) + d))\| \le 2^{-j}$.
Let $X := \{n(j) : j \in \mathbb{N}\}$ and $s := \sum_j s(j)$ (an element of $\mathbb{D}_{\mathbb{N}\setminus X}$).
For each j define $\tilde{\Xi}_j : \mathbb{D}_{n(j)} \to (r_{j+1} - r_j)\mathcal{B}(H) \le 1(r_{j+1} - r_j)$ by
 $\tilde{\Xi}_j(x) := (r_{j+1} - r_j)\Theta(s + x)(r_{j+1} - r_j)$.
 $\|(V_{j+j}, V_j)\| = (x + s) (Y_{j+j} - V_j)\| \le 2^{-j+1}$

 $\mathcal{A} \subset \mathcal{A}$

Lemma 17.4.8 If Φ has a continuous lifting Θ on D[E] for some $E \in Part_{\mathbb{N}}$, then it has a lifting of product type on $D_X[E]$ for some infinite $X \subseteq \mathbb{N}$.

Proof: Find an increasing sequence $(n(j))_j$, $s(j) \in D_{(n(j),n(j+1))}$ (with n(0) := 0), and an increasing sequence of finite-rank projections $(r_j)_j$ so that for all j, all a and b in $D_{[0,n(j)]}$, and all cand d in $D_{[n(j+1),\infty)}$:

1. $\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))(1-r_i)\| \leq 2^{-j}$, 2. $||(1-r_j)(\Theta(a+s(j)+c) - \Theta(b+s(j)+c))|| \le 2^{-j}$, 3. $\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))r_j\| \le 2^{-j}$, 4. $||r_i(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))|| \le 2^{-j}$. Let $X := \{n(j) : j \in \mathbb{N}\}$ and $s := \sum_{j \in \mathbb{N}} s(j)$ (an element of $D_{\mathbb{N}\setminus X}$). For each j define $\tilde{\Xi}_j : D_{n(j)} \to (r_{j+1} - r_j)\mathcal{B}(H)_{\leq 1}(r_{j+1} - r_j)$ by $\tilde{\Xi}_j(x) := (r_{j+1} - r_j)\Theta(s+x)(r_{j+1} - r_j).$ The function $D_X \xrightarrow{\cong} \mathcal{B}(H) : x \mapsto \sum_{i \in X} \tilde{\Xi}_i(x_{n(i)})$ is of product type, but probably not a lifting,

 $\frac{G(k) - G(x+s) - C(H)}{=} + \frac{F(k)}{2}$

 $\widehat{\Box}(x) = \Theta(x+s) \in K(H), \forall x$ $g_{x} = \phi_{x}(l_{x}), \quad l_{x} = Proj_{\overline{Slow}}(\overline{s}_{1}) \in UE.$ Let $\Xi_j^0(x) := q_X \tilde{\Xi}(x) q_X$ and $\Xi_j^0(x) = \sum_{j \in X} \Xi_j(x_{n(j)})$. This is a lifting of Φ , but not necessarily of a product type. $\Box^{\circ}(\alpha) = \int_{X} \overline{\Box}(\alpha) \int_{X}$ is a lifting but hot € ° of a induct type. $\Sigma_{i} = Max \| [\Sigma_{x}, \Xi_{i}(b)] \|$

 $b \in D_{n(s)}$, 0

 $\frac{Fach}{\sum} \quad \varepsilon_{j} \rightarrow \circ, \quad j \rightarrow \infty.$ 14 otherwin, fix Ezo oul YEX, infinite, and $b_j \in \mathcal{D}_{u(i)}$ for $j \in \mathcal{L}_j$ $\|[\mathcal{L}_{X}, \widehat{\mathbb{C}}, (\mathcal{L})]\| \ge \mathcal{L}_{\mathcal{L}}. \quad (\mathcal{K})$ $Lot \quad b = \Sigma b_{j}$ Then $\dot{P}_{X}\dot{b} = \dot{b}\dot{R}_{X} = \dot{b}(btD_{X}),$ olso $\hat{l}_{x}(\hat{l}+\hat{s}) = (\hat{l}+\hat{s})\hat{l}_{x} = \hat{b}$ Ex Q(6+5) - Q(6+5) Ex EK(H) 50 $on! \left[\sum_{x, G} (6+s) \right] \in K(H)$ Contradiction with A. $\Sigma_{j} = Max \| [\Sigma_{x}, \Xi_{j}(b)] \|$ 50

Sofisfier E: -10. choose YSX, so that $\sum_{i\in Y} \mathcal{E}_{j} < \infty$ Thom, on Dy, let $\Sigma_{x} \stackrel{\sim}{\Xi}_{x} (\alpha_{n\alpha_{1}}) \Sigma_{x}$ $\frac{1}{1-1}(\alpha) =$ Then E(c) is of product fyle. Also, for a ely $<math display="block"> F(H) = K = \sum_{x \in Y} \sum_{i \in Y} F(H) = \sum_{x \in Y} \sum_{i \in Y} F(G_{hoi}) = \sum_{x \in Y} \sum_{i \in Y} F(G_{hoi}) = \sum_{x \in$ $= \overset{K}{\geq}_{X} \Theta(a+s) \overset{G}{\leq}_{X} = \overset{K}{\to} \Theta(o).$

Before moving on, let's take a look at history.

An automorphism of ℓ_{∞}/c_0 is trivial if it has a lifting that is a *-homomorphism from ℓ_{∞} into ℓ_{∞} .

Before moving on, let's take a look at history.

An automorphism of ℓ_{∞}/c_0 is trivial if it has a lifting that is a *-homomorphism from ℓ_{∞} into ℓ_{∞} .

Thm (Shelah, 1979) The assertion 'all automorphisms of ℓ_{∞}/c_0 are trivial' is relatively consistent with ZFC.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Before moving on, let's take a look at history.

An automorphism of ℓ_{∞}/c_0 is trivial if it has a lifting that is a *-homomorphism from ℓ_{∞} into ℓ_{∞} .

Thm (Shelah, 1979) The assertion 'all automorphisms of ℓ_{∞}/c_0 are trivial' is relatively consistent with ZFC.

Thm (Veličković, 1989) OCA_T and Martin's Axiom together imply that all automorphisms of ℓ_{∞}/c_0 are trivial.

Each of the proofs proceeds in three stages. Fix & E Art (Pobla) (I) There are has X SM, X and Fix & Alt & Mark SM, X and Fix & Alt & Mark

is ((X) trivial 2 M_{A} (+ $O(A_{T})$

OCAT

 $\overline{)}$

The isometry trick

The following will not be used explicitly in the proof.

Lemma Suppose that Φ_{q} is an automorphism of Q(H) and $p \in Q(H)$ is a projection such that the restriction of Φ to pQ(H)p is implemented by a unitary. Then Φ is implemented by a unitary.

 $(F = F \times \sigma \in Q(H)) \sigma^* \sigma = |_{Q(H)} , \sigma^* = P.$ Fix w.s. that the FR(H)P $W G W^{\dagger} = \phi(a).$ $C = U (T), \qquad Jav * E Q(H)$ $G = U U A U U, \qquad Jav * E Q(H)$ $F U A U U, \qquad F U A U U = Jav * = Jav$ For CFQ(H). $\phi(\alpha) = \phi(\sigma^*) \phi(\sigma \alpha \sigma^*) \phi(\sigma)$ □ > < ≧ > < ≧ > ≤ ● < < ○ < ○

 $= \phi(\sigma^*) w \sigma a \sigma^* w \phi(\sigma)$ Let U = \$10 *) w v. $\phi(0) = U \alpha U^{\ell}$ Then Als, $u^{\star}u = 1 = uv^{\star}$.

The isometry trick

The following will not be used explicitly in the proof.

Lemma Suppose that Φ is an automorphism of Q(H) and $p \in Q(H)$ is a projection such that the restriction of Φ to pQ(H)p is implemented by a unitary. Then Φ is implemented by a unitary. Lemma Suppose that Φ is an automorphism of Q(H) such that

Lemma Suppose that Φ is an automorphism of Q(H) such that the restriction of Φ to $\mathcal{D}_{X}[E]$ is implemented by a unitary for some $E \in \operatorname{Part}_{\mathbb{N}}$ such that $|E_{n}| \to \infty$ as $n \to \infty$. Then the restriction of Φ to $\mathcal{D}[F]$ is implemented by a unitary for every $F \in \operatorname{Part}_{\mathbb{N}}$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

The isometry trick

The following will not be used explicitly in the proof.

Lemma Suppose that Φ is an automorphism of Q(H) and $p \in Q(H)$ is a projection such that the restriction of Φ to pQ(H)p is implemented by a unitary. Then Φ is implemented by a unitary.

Lemma Suppose that Φ is an automorphism of $\mathcal{Q}(H)$ such that the restriction of Φ to $\mathcal{D}_{X}[E]$ is implemented by a unitary for some $E \in \operatorname{Part}_{\mathbb{N}}$ such that $|E_{n}| \to \infty$ as $n \to \infty$. Then the restriction of Φ to $\mathcal{D}[F]$ is implemented by a unitary for every $F \in \operatorname{Part}_{\mathbb{N}}$.

Lemma 17.5.2 Suppose $\Phi: \mathcal{Q}(A) \to \mathcal{Q}(B)$ is a *-homomorphism between coronas of nonunital C*-algebras, $\mathcal{X} \subseteq \mathcal{M}(A)$, v is an isometry in $\mathcal{M}(A)$, and Υ is a lifting of Φ on $v\mathcal{X}v^*$. Then $b \mapsto \Phi_*(v)^* \Upsilon(vbv^*) \Phi_*(v)$ is a lifting of Φ on \mathcal{X} .

Analogous lemmas, with 'implemented by a unitary' replaced by 'has a continuous/C-measurable ε -approximation', 'has a lifting of product type',... have analogous proofs. We have H with the basis (ξ_i) . For an injection $g \colon \mathbb{N} \to \mathbb{N}$,

 $v_{g}(\xi_{i}) := \xi_{g(i)} \qquad \begin{array}{c} \mathcal{H} - \mathcal{H} \\ \mathcal{L}_{\lambda_{i}} \xi_{i} \to \mathcal{L} \lambda_{i} \xi_{j} \\ \mathcal{L}_{\lambda_{i}} \xi_{i} \to \mathcal{L} \lambda_{i} \xi_{i} \\ \mathcal{L}_{\lambda_{i}} \xi_{i} \to \mathcal{L} \lambda_{i} \\ \mathcal{L}_{\lambda_{i}} = \mathcal{L} \lambda_{i} \\ \mathcal{L}_{\lambda_{i}} \xi_{i} \to \mathcal{L} \lambda_{i} \\ \mathcal{L}_{\lambda_{i}} = \mathcal{L} \lambda_{i} \\ \mathcal{L}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

We have H with the basis (ξ_j) . For an injection $g \colon \mathbb{N} \to \mathbb{N}$,

$$v_g(\xi_i) := \xi_{g(i)}$$

defines an isometry on *H*. Such v_g is called an *injection isometry* on *H*. Lemma 17.5.1 Suppose E and F are in Part_N, X and Y are infinite

Lemma 17.5.1 Suppose E and F are in $Part_{\mathbb{N}}$, X and Y are infinite subsets of \mathbb{N} , and $\lim_{n \in X} |E_n| = \infty$. Then there exist a permutation isometry v such that $a \mapsto vav^*$ defines an isomorphism from $\mathcal{D}_{Y}[F]$ onto $vv^*\mathcal{D}_{X}[E]vv^*$.

19 rections of ureg Then $v_{g}^{*}v_{g} = P_{f}^{F}$, $v_{g}v_{g}^{*}\in D[E]$ and us a us send, $D_y(F)$ into us $P_x(E) us us D$

Lemma 17.5.3 Suppose E and F are in $Part_{\mathbb{N}}$, $X \subseteq \mathbb{N}$, $v \in \mathcal{B}(H)$ is an injection isometry such that $a \mapsto vav^*$ defines an isomorphism from $\mathcal{D}[F]$ onto $vv^*\mathcal{D}_X[E]vv^*$, and Φ is an endomorphism of $\mathcal{Q}(H)$.

- 1. If the restriction of Φ to $\mathcal{D}_X[E]$ is implemented by w, then the restriction of Φ to $\mathcal{D}[F]$ is implemented by $\Phi(v^*)wv$.
- 2. If Φ has a lifting of product type on D_X[E] then it has a lifting of product type on D[F]. (he cause G → UG of A (product for A))
 3. If Θ is a C-measurable ε-approximation of Φ on D_X[E] then type)

$$a\mapsto \Phi_*(v^*)\Theta(vav^*)\Phi_*(v)$$

is a C-measurable ε -approximation of Φ on $\mathcal{D}[F]$. $\mathcal{C} \rightarrow \mathcal{O} \rightarrow \mathcal{O}$

Vam - stability

We can now change the gears.

Def 17.2.5 Given $\varepsilon > 0$ and C^{*}-algebras A and B, some $\Theta: A_1 \to B_1$ is an ε -*-homomorphism if for all x, y in A_1 and $\lambda \in \mathbb{C}, |\lambda| \leq 1$, each one of $\Theta(x^*) - \Theta(x)^*$, $\Theta(x+y) - \Theta(x) - \Theta(y), \ \Theta(xy) - \Theta(x)\Theta(y), \ and \ \Theta(\lambda x) - \lambda\Theta(x)$ has norm not greater than ε . It is unital if in addition $\Theta[U(A)] \subseteq U(B)$ and $\Theta(1) = 1$. Thu (Manovei - Reeleen) There is an s-housershim between metvic Srovis, f: G. ->K. c.c. +lat Devens house f: G- Ke is tri-ic/)

dist $(+_{S}, +/ \ge 2)$, \neq Wan $+:G_{S} \rightarrow h_{S}$ luch a lag, engl 16 $\mathcal{E}_{\mu \mathcal{X}} \leq 0$ f: Z/uz ~ Z/A+1/Z

 $\left| f_{s}(x) - \chi \right| \leq e^{2\pi i (n+1)} + \chi$

We can now change the gears.

Def 17.2.5 Given $\varepsilon > 0$ and C*-algebras A and B, some $\Theta: A_1 \to B_1$ is an ε -*-homomorphism if for all x, y in A_1 and $\lambda \in \mathbb{C}, |\lambda| \leq 1$, each one of $\Theta(x^*) - \Theta(x)^*$, $\Theta(x+y) - \Theta(x) - \Theta(y), \Theta(xy) - \Theta(x)\Theta(y)$, and $\Theta(\lambda x) - \lambda\Theta(x)$ has norm not greater than ε . It is unital if in addition $\Theta[U(A)] \subseteq U(B)$ and $\Theta(1) = 1$.

Prop 17.5.4 Suppose that Φ is an endomorphism of the Calkin algebra which has a continuous lifting Θ on D[E] for some $E \in Part_{\mathbb{N}}$ such that $\lim_{n} |E_{n}| = \infty$, Then for every $F \in Part_{\mathbb{N}}$, Φ has a lifting (Θ'_{n}) of product type on $\hat{\mathcal{D}}[F]$ such that each Θ'_{n} is a unital, Borel-measurable, ε_{n} -*-homomorphism on $\mathcal{D}[F]$ for some sequence (ε_{n}) converging to 0.

Gy EDILE]

PE First, we have a liftic, $\Psi = (\Psi_n)$ of product type on P[F] (Contar-like store). finit $\sqrt{}$ on $D_{ins}[F]$, let $A_n: D_{ins}[F]$, $\rightarrow D_n[F]$ he s.t. $\|A_m(x) - x\| \leq 2^{-in} c_n$ V_{in} is $B_{rc} - h_{o} c_{nrc} h_{c}$ Then $\alpha(x) = \sum \alpha_u(x_u)$ sotifie, $\alpha(x) - x \in K(H)$ So $\theta = 4 \circ \lambda$ is a lifting of Iroduct type ou D[F]. $\frac{Clow}{4270} \frac{4270}{7} \frac{400}{7} \frac{100}{7} \frac{100}{7}$ is on E-+-homo. It A ssume otherwise. Assume JEZa John Dy 1) M-t Qu E- X-hour.

Cover Jon JX, ED, [F]). $\| \Theta_{\mu}(x, t) - \Theta_{\mu}(x) t \| > \varepsilon$ The, with X = E.X. $\partial(x^*) - \partial(x)^* \notin K(H)$ - Gut Vadaction COR 2-4 - and good -

In order to prove the following, we will need to introduce a new tool.

Prop 17.5.5 Suppose that Φ is an endomorphism of the Calkin algebra which has a continuous lifting on D[E] for some $E \in Part_{\mathbb{N}}$ such that $\lim_{n} |E_{n}| = \infty$. Then for every $F \in Part_{\mathbb{N}}$, Φ has a lifting on $\mathcal{D}[F]$ which is a *-homomorphism.

Noxt filme: $p: A \rightarrow B$ T fUlan-Stalitz.