Massive C*-algebras, Winter 2021, |. Farah, Lecture 18

... still proving that OCAt implies all automorphisms of Q(H) are
inner.
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Def 17.4.6 A function =: D — B(H)<1 is of a product type if

there are orthogonal projections r, € B(H) and
=n: D(n) = ra(B(H)<1)rn for n € N such that (with the
SOT-convergent series) =(a) = > ., =np(an) for all a € D.
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Lemma 17.4.8 If ® has a continuous lifting © on D[E| for some
E € Party, then it has a lifting of product type on Dx[E] for some

infinite X C N. D/([EJC D ) (w)
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Lemma 17.4.8 If ® has a continuous lifting © on D[E| for some
E € Party, then it has a lifting of product type on Dx[E] for some
infinite X C N.

Proof: Find an increasing sequence (n(j));, s(j) € D(n(j),n(j+1))
(with n(0) := 0), and an increasing sequence of finite-rank
projections (r;); so that for all j, all a and b in Dyg ()}, and all ¢
and d in D[n(j+1),oo): Q()/ () &

+¢)—O(b+5s(j) +))1 -l <27, ckilizer
+

L. ||(©(a+s(

)
2. (1 = r)(©(a+s() +c) = O(b+s(j) + o))l <27,
3. (©(a+s(j) +¢) = O(a+s(j) + d))rl <27,
4 5(O(a+ () + &) — Oa+ s(j) + d))| <27
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Lemma 17.4.8 If ® has a continuous lifting © on D[E| for some
E € Party, then it has a lifting of product type on Dx[E] for some
infinite X C N.

Proof: Find an increasing sequence (n(j));,[s(j) € D(n(j),n(j+1)
(with n(0) := 0), and an increasing sequence of finite-rank
projections (r;); so that for all j, all a and b in Dyg ()}, and all ¢
and d in D[n(j+1),oo):

L [I(&(a+s(j) + ) = O(b+s(j) + c))(1 — )l <27,
2. (1= r)(©(a+s() +c) —O(b+s() + )l <27,
3. (6(a+s(j) + ¢) — ©(a+s(j) + d))r|| <277,

4. |ri(©(a+s(j) + c) — ©(a+s(j) + d))[ <277

Let X := {n( )i J € N} and s := ) _:s(j) (an element of Dy\x).

For each j define = = D,y = (rjv1 — r)B(H)<1(rj+1 — rj) by
=(x) = (41 = )O(s + x)(r741 — ).
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Lemma 17.4.8 If ® has a continuous lifting © on D[E| for some
E € Party, then it has a lifting of product type on Dx[E] for some
infinite X C N.

Proof: Find an increasing sequence (n(j));, s(j) € D(n(j),n(j+1))
(with n(0) := 0), and an increasing sequence of finite-rank
projections (r;); so that for all j, all a and b in Dyg ()}, and all ¢
and d in D[n(j—}—l),oo):

L [I(&(a+s(j) + ) = O(b+s(j) + c))(1 — )l <27,
2. (1 = r)(©(a+s(j) + c) —O(b+s(j) + o))l < 27,
3. (6(a+s(j) + ¢) — ©(a+s(j) + d))r|| <277,
4. |ri(©(a+s(j) + c) — ©(a+s(j) + d))[ <277

Let X:={n(j) :j € N} and s :=} _;s(j) (an element of Dy\x).

For each j define =;: D,y = (rjv1 — ) B(H)<1(rjs1 — r;) by
éj(éﬂ) = (fji+1 — r)O(s + x)(rjt1 — rj).

The function Dx'® B(H): x jex éj(xn(j)) is of product type,

but probably not a lifting, _
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Before moving on, let's take a look at history.

An automorphism of ¢, /cp is trivial if it has a lifting that is a
*-homomorphism from /. into /.




Before moving on, let's take a look at history.

An automorphism of ¢ /cp is trivial if it has a lifting that is a
*-homomorphism from /. into /.

Thm (Shelah, 1979) The assertion ‘all automorphisms of £+, /¢y
are trivial’ is relatively consistent with ZFC.



Before moving on, let's take a look at history.

An automorphism of ¢ /cp is trivial if it has a lifting that is a
*-homomorphism from /. into /.

Thm (Shelah, 1979) The assertion ‘all automorphisms of £+, /¢y

are trivial’ is relatively consistent with ZFC.

Thm (Veli¢kovi¢, 1989) OCAt and Martin's Axiom together imply
that all automorphisms of £+ /cy are trivial.

Each of the proofs proceeds in three stages.
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The i1sometry trick

The following will not be used explicitly in the proof.

Lemma Suppose that CDFiign automorphism of Q(H) and
p € Q(H) is a projection such that the restriction of ® to pQ(H)p
Is implemented by a unitary. Then ® is implemented by a unitary.
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The i1sometry trick

The following will not be used explicitly in the proof.

Lemma Suppose that ® is an automorphism of Q(H) and
p € Q(H) is a projection such that the restriction of ® to pQ(H)p

Is implemented by a unitary. Then ® s /mp/eme/vted by a unitary.
Voo MNeveonn d(’ vo.

(Lemma Suppose that & is A automorphism of Q(H) such that
the restriction of ® to DX[E] is implemented by a unitary for some
E € Party such that \E | — 00 as n — oco. Then the restriction of

o to D[F] is /mp/emented by a unitary for every F € Party.
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The i1sometry trick

The following will not be used explicitly in the proof.

emma Suppose that ® is an automorphism of Q(H) and
p € Q(H) is a projection such that the restriction of ® to pQ(H)p
Is implemented by a unitary. Then ® is implemented by a unitary.

Lemma Suppose that ® is an automorphism of Q(H) such that
the restriction of ® to Dx[E] is implemented by a unitary for some
E € Party such that |E,| — oo as n — co. Then the restriction of
® to DIF] is implemented by a unitary for every F € Party.

Lemma 17.5.2 Suppose ®: Q(A) — Q(B) is a *~homomorphism
between coronas of nonunital C*-algebras, X C M(A), v is an
isometry in M(A), and T is a lifting of ® on vX'v*. Then

b & (v)*T(vbv*)®.(v) is a lifting of ® on X.

Analogous lemmas, with ‘implemented by a unitary’ replaced by
‘has a continuous/C-measurable e-approximation’, ‘has a lifting of
product type’,... have analogous proofs.




We have H with the basis (§;). For an injection g: N — N,

Ve (&i) == &g (i) H — HA 3
5 A =28 A g

defines an isometry on H. Such/v,/is called an injection isometry
on H. =




We have H with the basis (). For an injection g: N — N,

Ve (&i) == &g (i)

defines an isometry on H. Such vy is called an injection isometry

on H. (/5(‘/%00/

Lemma 17.5.1/ Suppose E and F are in Party, X and Y are infinite
subsets of N,/and lim,cx |En| = 0o. Then there exist a
permutation’isométry v such that a — vav* defines an
isomorphism from Dy[F| onto ww*Dx|[E]wv*.
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Lemma 17.5.3 Suppose E and F are in Party, X C N, v € B(H) is
an injection isometry such that a — vav™* defines an isomorphism
from D[F] onto w*Dx[E]vww*, and ® is an endomorphism of Q(H).

—

1. If the restriction of ® to Dx|E| is implemented by w, then the
restriction of ® to D[F| is implemented by ®(v*)wv.

@If & has a lifting of product type on Dx[E] then it has a lifting
— } <
of product type on B[F] (b(“w 6 —Uar’y @L)ﬂ/»/vctz
/\3. If © is a C-measurable e-approximation of ® on Dx[E] then +7/’)

ar CD*(V*@CD*(V)

L is a C-measurable e-approximation of ® on D[F].




Uaen - tolifity

We can now change the gears.

Def 17.2.5 Given € > 0 and C*-algebras A and § some

©: Ay — By is an e-*~homomorphism if for all x,y in Ay and

X e C,JA| <1, each one of O(x*) — O(x)*,

O(x +y) —O(x) — B(y), O(xy) — O(x)O(y), and ©(Ax) — AO(x)
has norm not greater than <. It is unital if in addition

O[U(A)] € U(B) and ©(1) = 1. s 7
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We can now change the gears.

Def 17.2.5 Given € > 0 and C*-algebras A and B, some

©: A;1 — By is an e-*-homomorphism if for all x,y in A1 and

A € C, |A <1, each one of ©(x*) — ©(x)*,

O(x+y) —O(x) —O(y), ©(xy) — ©(x)O(y), and ©(Ax) — AO(x)
has norm not greater than <. It is unital if in addition

O[U(A)] C U(B) and ©(1) = 1.

Prop 17.5.4 Suppose that ® is an endomorphism of the Calkin
algebra which has a continuous lifting © on D[E] for some

E € Party such that lim,, |E,| = oo, Then for every F € Party, ®
has a /ifting of product type ongﬁ] such that each ©' is a
unital, Bopél-measurable, ,-*-homomorphism on D[F| for some
sequence (e,) converging to 0.
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In order to prove the following, we will need to introduce a new
tool.

Prop 17.5.5 Suppose that ® is an endomorphism of the Calkin
algebra which has a continuous lifting on D[E] for some E € Party
such that limp, |E,| = co. Then for every F € Party, ® has a lifting
on D[F| which is a *-homomorphism.
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