Massive C*-algebras, Winter 2021, I. Farah, Lecture 18

 inner.

$$
\begin{aligned}
& \left.D(n) \subseteq M_{m(n)}(\mathbb{C})\right)_{1} \\
& \pi \text { finite, } 2^{-n} \text {-douse }
\end{aligned}
$$

Def 17.4.6 A function $\bar{\equiv}: \mathrm{D} \rightarrow \mathcal{B}(H)_{\leq 1}$ is of a product type if there are orthogonal projections $r_{n} \in \mathcal{B}(H)$ and $\bar{\Xi}_{n}: \mathrm{D}(n) \rightarrow r_{n}\left(\mathcal{B}(H)_{\leq 1}\right) r_{n}$ for $n \in \mathbb{N}$ such that (with the SOT-convergent series) $\Xi(a)=\sum_{n} \Xi_{n}\left(a_{n}\right)$ for all $a \in \mathrm{D}$.

$$
\left.a=\left(G_{n}\right), G_{n} \in 1\right)(v)
$$

Lemma 17.4.8 If Φ has a continuous lifting Θ on $\mathrm{D}[\mathrm{E}]$ for some $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$, then it has a lifting of product type on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$ for some infinite $\mathrm{X} \subseteq \mathbb{N}$.

$$
D_{x}[E]=\prod_{n \in X} D(n)
$$

Lemma 17.4.8 If Φ has a continuous lifting Θ on $\mathrm{D}[\mathrm{E}]$ for some $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$, then it has a lifting of product type on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$ for some infinite $\mathrm{X} \subseteq \mathbb{N}$.
Proof: Find an increasing sequence $(n(j))_{j}, s(j) \in \mathrm{D}_{(n(j), n(j+1))}$ (with $n(0):=0$), and an increasing sequence of finite-rank projections $\left(r_{j}\right)_{j}$ so that for all j, all a and b in $\mathrm{D}_{[0, n(j)]}$, and all c and d in $\mathrm{D}_{[n(j+1), \infty)}$:

$$
\begin{aligned}
& \text { 1. }\left\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\left(1-r_{j}\right)\right\| \leq 2^{-j} \text {, stchilizer } \\
& \text { 2. }\left\|\left(1-r_{j}\right)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\right\| \leq 2^{-j} \text {, } \\
& \text { 3. }\left\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d)) r_{j}\right\| \leq 2^{-j} \text {, } \\
& \text { 4. }\left\|r_{j}(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))\right\| \leq 2^{-j} \text {. }
\end{aligned}
$$

Lemma 17.4.8 If Φ has a continuous lifting Θ on $\mathrm{D}[\mathrm{E}]$ for some $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$, then it has a lifting of product type on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$ for some infinite $\mathrm{X} \subseteq \mathbb{N}$.
Proof: Find an increasing sequence $(n(j))_{j}, s(j) \in \mathrm{D}_{(n(j), n(j+1))}$ (with $n(0):=0$), and an increasing sequence of finite-rank projections $\left(r_{j}\right)_{j}$ so that for all j, all a and b in $\mathrm{D}_{[0, n(j)]}$, and all c and d in $\mathrm{D}_{[n(j+1), \infty)}$:

$$
\begin{aligned}
& \text { 1. }\left\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\left(1-r_{j}\right)\right\| \leq 2^{-j} \text {, } \\
& \text { 2. }\left\|\left(1-r_{j}\right)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\right\| \leq 2^{-j} \text {, } \\
& \text { 3. }\left\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d)) r_{j}\right\| \leq 2^{-j} \text {, } \\
& \text { 4. }\left\|r_{j}(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))\right\| \leq 2^{-j} \text {. }
\end{aligned}
$$

Let $X:=\{n(j): j \in \mathbb{N}\}$ and $s:=\sum_{j} s(j)$ (an element of $D_{\mathbb{N} \backslash X}$).
For each j define $\tilde{\bar{\Xi}}_{j}: \mathrm{D}_{n(j)} \rightarrow\left(r_{j+1}-r_{j}\right) \mathcal{B}(H)_{\leq 1}\left(r_{j+1}-r_{j}\right)$ by

$$
\left\lvert\,\left(r_{j+1}-r_{j}\right)\left(\begin{array}{l}
\tilde{\Xi}_{j}(x):=\left(r_{j+1}-r_{j}\right) \Theta(s+x)\left(r_{j+1}-r_{j}\right) . \\
\left.\underline{\Xi}_{j}(x)-\theta(x+s)\right)\left(r_{j+1}-r_{j}\right) \|<2^{-j+1}
\end{array}\right.\right.
$$

Lemma 17.4.8 If Φ has a continuous lifting Θ on $\mathrm{D}[\mathrm{E}]$ for some $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$, then it has a lifting of product type on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$ for some infinite $\mathrm{X} \subseteq \mathbb{N}$.
Proof: Find an increasing sequence $(n(j))_{j}, s(j) \in \mathrm{D}_{(n(j), n(j+1))}$ (with $n(0):=0$), and an increasing sequence of finite-rank projections $\left(r_{j}\right)_{j}$ so that for all j, all a and b in $\mathrm{D}_{[0, n(j)]}$, and all c and d in $\mathrm{D}_{[n(j+1), \infty)}$:

$$
\begin{aligned}
& \text { 1. }\left\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\left(1-r_{j}\right)\right\| \leq 2^{-j}, \\
& \text { 2. }\left\|\left(1-r_{j}\right)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\right\| \leq 2^{-j}, \\
& \text { 3. }\left\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d)) r_{j}\right\| \leq 2^{-j}, \\
& \text { 4. }\left\|r_{j}(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))\right\| \leq 2^{-j} .
\end{aligned}
$$

Let $X:=\{n(j): j \in \mathbb{N}\}$ and $s:=\sum_{j} s(j)$ (an element of $D_{\mathbb{N} \backslash X}$).
For each j define $\tilde{\bar{\Xi}}_{j}: \mathrm{D}_{n(j)} \rightarrow\left(r_{j+1}-r_{j}\right) \mathcal{B}(H)_{\leq 1}\left(r_{j+1}-r_{j}\right)$ by

$$
\tilde{\bar{\Xi}}_{j}(x):=\left(r_{j+1}-r_{j}\right) \Theta(s+x)\left(r_{j+1}-r_{j}\right) .
$$

The function $\mathrm{D}_{\mathrm{X}}^{\stackrel{\text { 号 }}{\leftrightarrows}} \mathcal{B}(H): x \mapsto \sum_{j \in \mathrm{X}} \tilde{\bar{\Xi}}_{j}\left(x_{n(j)}\right)$ is of product type, but probably not a lifting.

$\widehat{\theta}(x)-\theta(x+\underline{\underline{\underline{s}}}) \in K(H), \forall x$

$$
\varepsilon_{x}=\phi_{*}\left(P_{x}\right), \quad P_{x}=\operatorname{Proj} \overline{\text { sean }}\left\{\left\{_{s} \mid j \in \cup \mathcal{X}\right)\right.
$$

Let $\overline{=}(x):=q \times \tilde{=}(x) q x$ and $\bar{Z}^{0}(x)=\sum_{j \in x} \overline{=} j\left(x_{n}(j)\right.$. This is a lifting
of ϕ, but not necessarily of a product type. of ϕ, but not necessarily of a product type.

$$
\begin{aligned}
& \Xi^{\circ}(a \\
& E_{0}^{\circ} \\
& 0
\end{aligned}
$$

$$
(a)=\varepsilon_{x} \hat{\vec{b}}(a) \varepsilon_{x}
$$

$$
\Sigma^{\circ} \text { is a lit figs hot not }
$$

a product tope.

Let $\quad \varepsilon_{j}=\max \left\|\left[\varepsilon_{x}, \tilde{\Xi}_{j}(b)\right]\right\|_{0}$
$b \in D_{n}()$
Fat $\varepsilon_{j} \rightarrow 0, \quad ; \rightarrow \infty$.
PL otherwise, fix $\varepsilon>0$ oud $y \subseteq x$, infinite, and $b ; \in V_{n(i)}$ for $j \in!$,

$$
\begin{equation*}
\left\|\left[\varepsilon_{x,} \frac{\widehat{\Omega}}{\underline{\Sigma}}(l,)\right]\right\| \geqslant \varepsilon_{j} \tag{*}
\end{equation*}
$$

Lot $b=\sum_{j} b_{i}$
Then $\dot{p}_{x} \dot{b}=\dot{b}_{x}=\dot{b} \quad\left(b \in D_{x}\right)$,
duo $\quad \dot{p}_{x}(\dot{b}+\dot{s})=(\dot{b}+\dot{s}) \dot{p}_{x}=\dot{b}$
So

$$
\varepsilon_{x} \theta(b+s)-\theta(b+s) \Sigma_{x} \in K(H)
$$

on. $\left[\varepsilon_{x}, \tilde{\bar{\sigma}}(h+s)\right] \in K(t)$
contradiction with (t)
So $\quad \varepsilon_{j}=\max \left\|\left[\varepsilon_{x}, \Xi_{j}(b)\right]\right\|$
sotisfie, $\varepsilon_{j} \rightarrow 0$.
cloose $y \leq X$, so that

$$
\sum_{j \in \zeta} \varepsilon_{j}<\infty
$$

Thon, on Dy, let

$$
\Xi^{0}(a)=\sum_{j \in \zeta} \varepsilon_{x} \tilde{\square}_{i}\left(a_{n(i j}\right) \Sigma_{x} .
$$

Then $\square^{\circ}(a)$ is of probuct tripe. Als,, fo $a \in \bmod$

$$
\begin{aligned}
& ={ }^{k} \varepsilon_{x} \theta(a+s) \varepsilon_{x}=^{k} \theta(0) \text {. }
\end{aligned}
$$

Before moving on, let's take a look at history.

An automorphism of ℓ_{∞} / c_{0} is trivial if it has a lifting that is a *-homomorphism from ℓ_{∞} into ℓ_{∞}.

Before moving on, let's take a look at history.

An automorphism of ℓ_{∞} / c_{0} is trivial if it has a lifting that is a *-homomorphism from ℓ_{∞} into ℓ_{∞}.

Thm (Shelah, 1979) The assertion 'all automorphisms of ℓ_{∞} / c_{0} are trivial' is relatively consistent with ZFC.

Before moving on, let's take a look at history.

An automorphism of ℓ_{∞} / c_{0} is trivial if it has a lifting that is a *-homomorphism from ℓ_{∞} into ℓ_{∞}.

Thm (Shelah, 1979) The assertion 'all automorphisms of ℓ_{∞} / c_{0} are trivial' is relatively consistent with ZFC.

Thm (Veličković, 1989) OCA ${ }_{\mathrm{T}}$ and Martin's Axiom together imply that all automorphisms of ℓ_{∞} / c_{0} are trivial.

Each of the proofs proceeds in three stages.

[is trivial
(2) $M_{A}\left(+O A_{4}\right)$
(3) OCAT

The isometry trick
The following will not be used explicitly in the proof.
Lemma Suppose that $\Phi_{\text {pis an }}^{\text {an }}$ automorphism of $\mathcal{Q}(H)$ and $p \in \mathcal{Q}(H)$ is a projection such that the restriction of Φ to $p \mathcal{Q}(H) p$ is implemented by a unitary. Then Φ is implemented by a unitary.

$$
\begin{aligned}
& w a w^{A}=\phi(a) \text {. } \\
& \text { Fo, } \quad a \in Q(H) \text {, } \\
& a=v^{*} v a v^{*} v . \quad \operatorname{vav}^{*} \in \rho Q(H) P^{p} \operatorname{prav^{*}=vv^{*}\sigma av^{*}} \\
& \begin{aligned}
\text { vav } & =v o v^{*} \\
& =v i n
\end{aligned} \\
& \phi(a)=\phi\left(v^{*}\right) \phi\left(v a v^{*}\right) \phi(v)
\end{aligned}
$$

$$
=\phi\left(v^{*}\right) w v a v^{v^{*}} w^{-\phi} \phi(v)
$$

Let $u=\phi\left(v^{*}\right) w v$.
Then $\phi(0)=v a v^{+}$
Also, $u^{*} u=1=u v^{*}$.

The isometry trick

The following will not be used explicitly in the proof.
Lemma Suppose that Φ is an automorphism of $\mathcal{Q}(H)$ and $p \in \mathcal{Q}(H)$ is a projection such that the restriction of Φ to $p \mathcal{Q}(H) p$ is implemented by a unitary. Then Φ is implemented by a unitary.

Lemma Suppose that Φ is ąh automorphism of $\mathcal{Q}(H)$ such that the restriction of Φ to $\mathcal{D}_{\times}[E]$ is implemented by a unitary for some $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$ such that $\left|\bar{E}_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. Then the restriction of Φ to $\mathcal{D}[F]$ is implemented by a unitary for every $\mathrm{F} \in \operatorname{Part}_{\mathbb{N}}$.

The isometry trick

The following will not be used explicitly in the proof.
Lemma Suppose that Φ is an automorphism of $\mathcal{Q}(H)$ and $p \in \mathcal{Q}(H)$ is a projection such that the restriction of Φ to $p \mathcal{Q}(H) \underline{p}$ is implemented by a unitary. Then Φ is implemented by a unitary.

Lemma Suppose that Φ is an automorphism of $\mathcal{Q}(H)$ such that the restriction of Φ to $\mathcal{D}_{\mathrm{X}}[\mathrm{E}]$ is implemented by a unitary for some $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$ such that $\left|E_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. Then the restriction of Φ to $\mathcal{D}[\mathrm{F}]$ is implemented by a unitary for every $\mathrm{F} \in \operatorname{Part}_{\mathbb{N}}$.

Lemma 17.5.2 Suppose $\Phi: \mathcal{Q}(A) \rightarrow \mathcal{Q}(B)$ is a *-homomorphism between coronas of nonunital C^{*}-algebras, $\mathcal{X} \subseteq \mathcal{M}(A), v$ is an isometry in $\mathcal{M}(A)$, and Υ is a lifting of Φ on $\vee \mathcal{X} v^{*}$. Then $b \mapsto \Phi_{*}(v)^{*} \Upsilon\left(v b v^{*}\right) \Phi_{*}(v)$ is a lifting of Φ on \mathcal{X}.
Analogous lemmas, with 'implemented by a unitary' replaced by 'has a continuous/C-measurable ε-approximation', 'has a lifting of product type',... have analogous proofs.

We have H with the basis $\left(\xi_{j}\right)$. For an injection $g: \mathbb{N} \rightarrow \mathbb{N}$,

$$
v_{g}\left(\xi_{i}\right):=\xi_{g(i)}
$$

defines an isometry on H. Such $\left(\widehat{v}_{g}\right)$ is called an injection isometry on H.

We have H with the basis $\left(\xi_{j}\right)$. For an injection $g: \mathbb{N} \rightarrow \mathbb{N}$,

$$
v_{g}\left(\xi_{i}\right):=\xi_{g(i)}
$$

defines an isometry on H. Such v_{g} is called an injection isometry on H.
parted
Lemma 17.5.1 Suppose E and F are in $\mathrm{Part}_{\mathbb{N}}, \mathrm{X}$ and Y are infinite subsets of \mathbb{N}, and $\lim _{n \in \mathrm{X}}\left|E_{n}\right|=\infty$. Then there exist a permutation isometry v such that $a \mapsto$ vav* defines an isomorphism from $\mathcal{D}_{\mathrm{Y}}[\mathrm{F}]$ onto $v v^{*} \mathcal{D}_{\mathrm{X}}[\mathrm{E}] v v^{*}$.

$$
\text { pf: Find } m(n) \in X \underset{\sim}{m(n)>\left|F_{4}\right|, m(n)<m(n+1)}
$$

$$
\text { pick } g=t L_{c} \quad \delta\left[F_{n}\right] \leq E_{m(n)}
$$

Then $\quad v_{j}^{*} v_{j}=p F, v_{y} v_{g}^{*} \in D[E]$

$$
\begin{aligned}
& a \leftrightarrow v_{z} a v_{g}^{*} \text { end, } D_{y}[F] \\
& \text { into } v_{y} y^{*} D_{A}[E] v_{g} v_{j}^{x} \text {. } D
\end{aligned}
$$

Lemma 17.5.3 Suppose E and F are in $\operatorname{Part}_{\mathbb{N}}, \mathrm{X} \subseteq \mathbb{N}, v \in \mathcal{B}(H)$ is an injection isometry such that $a \mapsto v a v^{*}$ defines an isomorphism from $\mathcal{D}[\mathrm{F}]$ onto $v v^{*} \mathcal{D}_{\mathrm{X}}[\mathrm{E}] v v^{*}$, and Φ is an endomorphism of $\mathcal{Q}(H)$.

1. If the restriction of Φ to $\mathcal{D}_{\mathrm{X}}[\mathrm{E}]$ is implemented by w, then the restriction of Φ to $\mathcal{D}[\mathrm{F}]$ is implemented by $\Phi\left(v^{*}\right) w v$.
2. If Φ has a lifting of product type on $\mathrm{D}_{\mathrm{X}}[\mathrm{E}]$ then it has a lifting of product type on $\mathrm{D}[\mathrm{F}]$. (heccuon $a \rightarrow v a v^{*}$ af is 'roduct
3. If Θ is a C-measurable ε-approximation of Φ on $\mathcal{D}_{\times}[E]$ then tyre.)

$$
a \mapsto \Phi_{*}\left(v^{*}\right) \Theta\left(v a v^{*}\right) \Phi_{*}(v)
$$

is a C-measurable ε-approximation of Φ on $\mathcal{D}[F]$.
Uam - stability

We can now change the gears.
Def 17.2.5 Given $\varepsilon>0$ and C^{*}-algebras A and B, some
$\Theta: \underline{A}_{1} \rightarrow \underline{B}_{1}$ is an ε - *-homomorphism if for all x, y in A_{1} and $\bar{\lambda} \in \mathbb{C},|\lambda| \leq 1$, each one of $\Theta\left(x^{*}\right)-\Theta(x)^{*}$, $\Theta(x+y)-\Theta(x)-\Theta(y), \Theta(x y)-\Theta(x) \Theta(y)$, and $\Theta(\lambda x)-\lambda \Theta(x)$ has norm not greater than ε. It is unital if in addition $\Theta[\mathrm{U}(A)] \subseteq \mathrm{U}(B)$ and $\Theta(1)=1$.
Thu (Kanovei-Reeken) ${ }^{* \varepsilon z^{\circ}}$ There is
an ε-hamonorohirm between metros Soever

$$
f_{\varepsilon}: G_{\varepsilon} \rightarrow K_{\varepsilon} \quad \operatorname{sich} t h_{c} t
$$

(1) ever, homo $f: G_{\varepsilon} \rightarrow K_{\varepsilon}$ is trivial,

$$
\operatorname{dist}(t, t) \geqslant \frac{1}{2}, \quad \forall W_{u, n} t: G_{\varepsilon} \rightarrow u_{c}
$$

16 lich u la, erugh

$$
\begin{aligned}
& \mathbb{Z} / n \mathbb{Z} \leq \mathbb{I} \\
& f_{\varepsilon}: \mathbb{Z} / n \mathbb{Z} \rightarrow \frac{\mathbb{Z} /(n+1) \mathbb{Z}}{2 \pi i(n+1)}, \forall x
\end{aligned}
$$

We can now change the gears.
Def 17.2.5 Given $\varepsilon>0$ and C^{*}-algebras A and B, some $\Theta: A_{1} \rightarrow B_{1}$ is an ε -*-homomorphism if for all x, y in A_{1} and $\lambda \in \mathbb{C},|\lambda| \leq 1$, each one of $\Theta\left(x^{*}\right)-\Theta(x)^{*}$,
$\Theta(x+y)-\Theta(x)-\Theta(y), \Theta(x y)-\Theta(x) \Theta(y)$, and $\Theta(\lambda x)-\lambda \Theta(x)$
has norm not greater than ε. It is unital if in addition
$\Theta[\mathrm{U}(A)] \subseteq \mathrm{U}(B)$ and $\Theta(1)=1$.
Prop 17.5.4 Suppose that Φ is an endomorphism of the Calkin algebra which has a continuous lifting Θ on $\mathrm{D}[\mathrm{E}]$ for some $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$ such that $\lim _{n}\left|E_{n}\right|=\infty$, Then for every $\mathrm{F} \in \operatorname{Part}_{\mathbb{N}}, \Phi$ has a lifting $\left(\Theta_{n}^{\prime}\right)$ of product type on $\mathcal{D}[\mathrm{F}]$ such that each Θ_{n}^{\prime} is a unital, Borél-measurable, $\varepsilon_{n} n^{-}$-homomorphism on $\mathcal{D}[F]$ for some sequence $\left(\varepsilon_{n}\right)$ converging to 0 .

$$
\theta(0)=\sum \theta_{4}^{\prime}(\underline{q})
$$

PE First, we hare a lifticig $\psi=\left(\psi_{n}\right)$ of prot uat tope on D[F] (conter-libe sioce). firts on $D_{3 n}[F]$, let $\alpha_{n}:\left(D_{\{n \mid}[F]\right)_{1} \rightarrow D_{n}[F]$ he s.t. $\quad\left\|\alpha_{n}(x)-x\right\| \not 2^{-n}$ cul on is Rorel-nocruchle
Then $\quad \alpha(x)=\sum \alpha_{u}\left(X_{u}\right)$

$$
\text { Sotisfio, } \quad \alpha(x)-x \in K(H)
$$

So $\theta=\psi \cdot \alpha$ is a liffir of
Irodect tope on D[F].
clown $\forall \varepsilon>0 \quad \forall \infty_{n} \quad \theta_{n} \quad\left(=\psi_{n} 0 \alpha_{n}\right)$ i i) on $\varepsilon-*$-homo.
阬 A ssume otheruire.
Assume $\exists \mathrm{z}$ zo fob θ_{4} a not on E- *-homo
(ove, $\exists^{\infty}{ }_{n} \quad \exists x_{n} \in\left(D_{n}[F]\right)$

$$
\left\|\theta_{n}\left(x_{n}^{*}\right)-\theta_{n}\left(x_{4}\right)^{*}\right\|>\varepsilon
$$

Then, with $x=\sum_{u} x_{n}$

$$
\theta\left(x^{*}\right)-\theta(x)^{*} \notin K(H)
$$

- Gontrodictio.
case2-4-corlgo.

In order to prove the following, we will need to introduce a new tool.

Prop 17.5.5 Suppose that Φ is an endomorphism of the Calkin algebra which has a continuous lifting on $\mathrm{D}[\mathrm{E}]$ for some $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$ such that $\lim _{n}\left|E_{n}\right|=\infty$. Then for every $F \in \operatorname{Part}_{\mathbb{N}}, \Phi$ has a lifting on $\mathcal{D}[F]$ which is a ${ }^{*}$-homomorphism.

$$
\begin{array}{ll}
\text { Next time: } & \phi: A \rightarrow B \\
\text { Ulcm-Stclitits. } & \substack{\lambda \rightarrow B \\
\text { fin. } \\
\text { dim. } \\
\text { Nom }}
\end{array}
$$

