Massive C*-algebras, Winter 2021, I. Farah, Lecture 16

Recall

Def 17.3.1 A lifting of a *-homomorphism $\Phi: \mathcal{Q}(A) \to \mathcal{Q}(B)$ is a function $\Phi_*: \mathcal{M}(A) \to \mathcal{M}(B)$ such that the following diagram commutes $(\pi_A \text{ and } \pi_B \text{ denote the quotient maps})$.

If this diagram commutes on some $\mathcal{X} \subseteq \mathcal{M}(A)$, then Φ_* is called a lifting of Φ on \mathcal{X} . When convenient, instead we say that Φ is a lifting on $\pi[\mathcal{X}]$.

In order to prove the following lemma, we will need to go back to basic theory of C^* -algebras.

Lemma \approx 17.3.2 Every *-homomorphism $\Phi: \mathcal{Q}(A) \to \mathcal{Q}(B)$ has a lifting Φ_* such that the following holds

- 1. $\Phi_*(a)$ is self-adjoint if a is self-adjoint.
- 2. $\|\Phi_*(a)\| \le \|a\|$ for all a.
- 3. If $\mathcal{M}(B) = \mathcal{B}(H)$ then we can assure that $\Phi_*(p)$ is a projection for every projection p.

In order to prove the following lemma, we will need to go back to basic theory of C*-algebras.

Lemma $\approx 17.3.2$ Every *-homomorphism $\Phi: \mathcal{Q}(A) \to \mathcal{Q}(B)$ has a lifting Φ_* such that the following holds

- $(1)\Phi_*(a)$ is self-adjoint if a is self-adjoint.
- $\|\Phi_*(a)\| \le \|a\|$ for all a.
- 3. If $\mathcal{M}(B) = \mathcal{B}(H)$ then we can assure that $\Phi_*(p)$ is a projection for every projection p.

It suffices to prove the following:

Lemma Suppose J is an ideal in A and $\pi: A \to A/J$ is the quotient map.

- (1.)If $a \in A/J$ is self-adjoint, then there exists a self-adjoint $a_0 \in A$ such that $\pi(a_0) = a$
 - 2. If $a \in A/J$ then there exists $a_0 \in A$ such that $\pi(a_0) = a$ and $||a_0|| \leq ||a||$.
 - 3. If $A = \mathcal{B}(H)$, $J = \mathcal{K}(H)$, and $p \in \mathcal{B}(H) / \mathcal{K}(H)$ is a projection, then there exists a projection $p_0 \in \overline{\mathcal{B}}(H)$ such that $\pi(p_0) = p$.

Projector & tilite rad g, is a V; ->> V; disticat riell, $i \in j \neq k$ 9; 9k =0 is SoT-Guverjout. Z 1,9; [2], [] = b 9=22; (Then (1-2) 90 is a Procectoon. Al 50, (9, 20) =0, (C*(20) is obelien, b, 2; E C*(20)) $\xi; \in C^*(\xi)^{-1} f(r_0) = 1, f(r_0) = 0$ ron is o f(b/= 9, S:R -> {0,15 $f < \frac{1}{L}$ S(t)=0S(H=1) t 2 / $SP(Q_{3})$ g (Qo 2;) i,

Let Po = Z 3(90 /2) + (1-2)90 Then TT (10) = ? (Pordy O, that wloj (1/ px(c) / = 1/all, ta.) The easy core: If a = a*. ·cho.10 6, 6=6*, \$\phi(a) = 17(6) Let fill - R Le: $f(t) = \begin{cases} -\|\alpha\|, & t \leq -\|\alpha\| \\ t, & -\|\alpha\| < t < \|\alpha\| \end{cases}$ $\|\alpha\|, & t > \|\alpha\|.$ $\phi_{\star}(a) = f(b) - then$ f(b)=f(b)* (b) = 1191/ (1.11 s/194/ $\overline{U}(f(b)) = f(T(b)) = f(f(c)) = f(T(c))$

a Ito's ect on ti

V'(L") = (U(L))

$$C \subseteq_A$$

$$A - A \cdot 1_A$$

Coro 1.6.12 Suppose a and b_1 belong to a C^* -algebra A. If $0 \le a$ and $a \le b_1^*b_1$ then $a \in \overline{b_1^*Ab_1}$.

and
$$a \le b_1^* b_1$$
 then $a \in \overline{b_1^* A b_1}$.

Let $b = b_1^* b_1$
 $X_n = a \left(b + \frac{1}{n} \right)^{-1} b$

$$a - x_{n} = a - a (b + \frac{1}{n})^{-1}b$$

$$= a (1 - (b + \frac{1}{n})^{-1}b)$$

$$= \alpha (b + \frac{1}{n})^{-1} (b + \frac{1}{n} - b)$$

$$= \alpha (nb + 1)^{-1}$$

$$= || (nb + 1)^{-1} (a^{2} + (nb + 1)^{-1})||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

$$= || (nb + 1)^{-1} b^{2} (nb + 1)^{-1} ||$$

Since $a = a^2$ and $a = b_1 + b_1$,

Since $a = a^2$ $a = a^2$

Content advisory: The following proposition is very general and parsing its statement may take a while.

Content advisory: The following proposition is very general and parsing its statement may take a while.

Prop 1.6.9 Suppose b, c, d belong to a C^* -algebra A, $f, g \in C([0, \|b\|])_+$, and $h(t) := f(t)g(t)t^{-1}$ continuously extends to $[0, \|b\|]$. If $0 \le b$, $c^*c \le f(b)^2$, and $dd^* \le g(b)^2$ then the sequence $a_n := c(b+1/n)^{-1}d$ norm converges to a limit a with $\|a\| \le \|h(b)\|$.

Content advisory: The following proposition is very general and parsing its statement may take a while.

Prop 1.6.9 Suppose b, c, d belong to a C^* -algebra A, $f,g \in C([0,\|b\|])_+$, and $h(t) := f(t)g(t)t^{-1}$ continuously extends to [0, ||b||]. If $0 \le b$, $c^*c \le f(b)^2$, and $dd^* \le g(b)^2$ then the sequence $a_n := c(b+1/n)^{-1}d$ norm converges to a limit a with ||a|| < ||h(b)||.

Coro 1.6.13 Suppose b = v|b| is the polar decomposition of b.

- In If $g \in C_0(\operatorname{sp}(|b|))$ then $\operatorname{vg}(|b|) \in C^*(b)$.

 2. If A is a C^* -algebra such that $b \in A$ and $c \in b^*Ab$, then
- $vc \in A$.
- 3. If $a \leq b^*b$ then $va \in C^*(a, b)$.

150 meter, b = 516/: (6161=5) (Note: 0 & (*(b), for 646) Pt (1) Let an = b (16/1/2) 3(16/1) Then 6 \$ 6 5 161 5161 $S(141) \leq S(141)$ tglt1. t - 1 ctr, 0, [0, [1] by Lemma, (O4) in couchs $llvs(ly) - Gull \rightarrow \infty$ (Use the some trich). 50 US(141) € C*(4). D Lih. (1) por cies P/a(, of g(161) Back + Ox: Fix $a \in B(H)$, let $a \in B(H)$

 $\int_{\mathcal{C}} C_{\alpha} c \int_{\mathcal{C}} \int_$

Thon $a_0 = \sigma |a_0|$ Let $f: \mathbb{R} \to \mathbb{R}$ $f(f) = \begin{cases} -1|a_0|, & f = -1|a_0|, \\ f(f) = \begin{cases} 1 & f = -1|a_0|, \\ f(f) = -1|a_0|, \\ f(f) = f = -1|a_0|, \\ f(f) = -1|a_0|, \\ f(f) = f = -1|a_0|, \\ f(f) = -1|a_0|, \\ f(f) = -1|a_0|$

A side remark: We are within ε of proving Proposition 1.6.14, that is one of the main components in the proof of Kirchberg's Slice Lemma. . but we'll skip these, since we don't need them in this course.

Next, we'll need a standard tricks from set theory.

Meager Subsets of Product Spaces

Suppose D_n , for $n \in \mathbb{N}$, are finite sets. Then for $X \subseteq \mathbb{N}$

$$D_X := \prod_{n \in X} D_n$$

is compact with respect to $d(a,b) = 1/(\min\{n : a_n \neq b_n\} + 1)$. The basic open subsets of $D_{\mathbb{N}}$ have the form $[I,r] := \{a : a \mid I = r\}$ for some $I \subseteq \mathbb{N}$ and $r \in D_I$.

Meager Subsets of Product Spaces

Suppose D_n , for $n \in \mathbb{N}$, are finite sets. Then for $X \subseteq \mathbb{N}$

$$\mathsf{D}_\mathsf{X} := \prod_{n \in \mathsf{X}} \mathsf{D}_n$$

is compact with respect to $d(a,b)=1/(\min\{n:a_n\neq b_n\}+1)$. The basic open subsets of $D_{\mathbb{N}}$ have the form $[I,r]:=\{a:a\upharpoonright I=r\}$ for some $I\in\mathbb{N}$ and $r\in D_I$.

Lemma

- 1. $I \cap J = \emptyset$ implies $[I, r] \cap [J, s] = [I \cup J, rs]$ where (rs)(i) = r(i) if $i \in I$ and (rs)(i) = s(i) if $i \in J$.
- 2. $I \cap J = \emptyset$ implies $[I, r] \cap [J, s] \neq \emptyset$.
- 3. $[I,r] \supseteq [J,s]$ if and only if $I \subseteq J$ and $s \cap I = r$.

Meger (a) 1st coteger Comeoger (a) includer (euse Of so (in a Polish stace)

Thm 9.9.1 Some $A \subseteq D_{\mathbb{N}}$ is relatively comeager in $D_{\mathbb{N}}$ if and only if there are disjoint $I(n) \in \mathbb{N}$, for $n \in \mathbb{N}$, and $s(n) \in D_{I(n)}$ such that $\bigcap_{m} \bigcup_{n \geq m} [I(n), s(n)] \subseteq A$.

() [[(4), 5(4)] [60h/p.

m uzm Fix [J,r]. Since I(h) orre divisit, Hay I(4) 1) = p. Rut then (0, r) A[I(u), s(u)) +p The right Most: YM UIT(4) S(4)] is open, (den/e) Use Boire Cotesur. (=>) Fix A S DN, Compager. Fix Leure OPPL Un SIM, MEN, SI Hick

Find I(h), S(h) by recurrent. (we'll assure each I(h) is an interval) I(0), S(1) S(1) S(1) S(2) S(3) S(4) S(4)2) Eumerdi / 1(0) as 05, jæle(0). Find $\Gamma'(1)$, S'(1), j < k(0); as $[T(0), G_0] \cap [T'(1), S'(\phi)] \subseteq [($ [T(0), 0,] N[I°(1), S°(1)] N[I'(1), S'(1)] $\begin{array}{c} = fc. \\ \subseteq U, \\$

