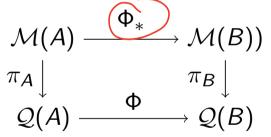
Massive C^* -algebras, Winter 2021, I. Farah, Lecture 16

Recall

Def 17.3.1 A lifting of a *-homomorphism $\Phi: \mathcal{Q}(A) \to \mathcal{Q}(B)$ is a function $\Phi_*: \mathcal{M}(A) \to \mathcal{M}(B)$ such that the following diagram commutes (π_A and π_B denote the quotient maps).



If this diagram commutes on some $\mathcal{X} \subseteq \mathcal{M}(A)$, then Φ_* is called a lifting of Φ on \mathcal{X} . When convenient, instead we say that Φ is a lifting on $\pi[\mathcal{X}]$.

In order to prove the following lemma, we will need to go back to basic theory of C^* -algebras.

Lemma $\approx 17.3.2$ Every *-homomorphism $\Phi: \mathcal{Q}(A) \to \mathcal{Q}(B)$ has a lifting Φ_* such that the following holds

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

- 1. $\Phi_*(a)$ is self-adjoint if a is self-adjoint.
- 2. $\|\Phi_*(a)\| \leq \|a\|$ for all \widehat{a} .
- 3. If $\mathcal{M}(B) = \mathcal{B}(H)$ then we can assure that $\Phi_*(p)$ is a projection for every projection p.

In order to prove the following lemma, we will need to go back to basic theory of C^* -algebras.

Lemma $\approx 17.3.2$ Every *-homomorphism $\Phi: \mathcal{Q}(A) \rightarrow \mathcal{Q}(B)$ has a lifting Φ_* such that the following holds 1. $\Phi_*(a)$ is self-adjoint if a is self-adjoint. 2. $\|\Phi_*(a)\| \leq \|a\|$ for all a. 3. If $\mathcal{M}(B) = \mathcal{B}(H)$ then we can assure that $\Phi_*(p)$ is a

projection for every projection p.

It suffices to prove the following:

Lemma Suppose J is an ideal in A and $\pi: A \rightarrow A/J$ is the quotient map.

- 1. If $a \in A/J$ is self-adjoint, then there exists a self-adjoint $a_0 \in A$ such that $\pi(a_0) = a$
 - 2. If $a \in A/J$ then there exists $a_0 \in A$ such that $\pi(a_0) = a$ and $||a_0|| \le ||a||$.
 - 3. If $A = \mathcal{B}(H)$, $J = \mathcal{K}(H)$, and $p \in \mathcal{B}(H)/\mathcal{K}(H)$ is a projection, then there exists a projection $p_0 \in \mathcal{B}(H)$ such that $\pi(p_0) = p$.

 $() = (i): \dot{a} = \dot{a}^{*} = (\dot{a}) = \phi(\dot{a}) = \phi(\dot{a}^{*})$ $\overline{I}f \quad a, \in \mathcal{B}(\mathcal{H}), \quad \overline{\mathcal{I}}(a_0) = \overline{\mathcal{P}}(a_0)$ and the = ast then let 9x (a) = as $\begin{array}{c} \textcircledleft (a) & & & \\ \hline p & (fhe second (enmo)) \\ \hline p & (fhe second (enmo)) \\ \hline p & & \hline p & & \\ \hline p & & \hline p & & \\ \hline p & & \hline p & & \\ \hline p & & \hline p & & \\ \hline p & & \hline p & & \hline p & & \hline p & & \hline p & \hline p & & \hline p & & \hline p & \hline p & & \hline p & & \hline p & & \hline p & \hline p & & \hline p & & \hline p & & \hline p & \hline p & \hline p & & \hline p & & \hline p & \hline p & \hline p & & \hline p & \hline p$ C_{2d} $T(Q_0) = \frac{1}{2}(a + c^{*}) = Q$ 2 - need more lemmos they an ami, y. (3) Fix PEQ(H/ Projector. By O, fix $Q_0 \in \mathbb{B}(H)$, $Q_0 = Q_0^*$ Ond IT (20) = P. They $b = a_0 - a_0 \in K(H)$ (b/c P = Pby the spectral then for cich Self-oli. Ollovotors b = Zr; q; where

Projection & tilite rad g, is a V; ->> V; distich $r_{j} \in \mathbb{R}$ $if j \neq k$ 5; Ep =0 is Sot-Guverpout. Z, 1, 9; [2;, b] = , b' 2=22; (Then (1-2)9, is a Procection. $A(S), (2, 20) = 0, (C^{*}(20))$ is obvious, $b, z; \in C^{*}(\widehat{u})$ $\varepsilon_{i} \in C^{*}(G)^{-1} \quad f(r_{i}) = 1, \quad f(r_{a}) = 0$ $h \neq g$ ron - Ki o $f(b) = G_{i}$ S=R -> 20,15 $f < \frac{1}{L}$ g(t) = 0,S(H = 1)ヒント, $SP(Q_{3})$ $S_{1}(4) = \langle t - t^{2} | t \in S_{1}(2) \rangle = \langle t' | J \in M \cup J_{0} \rangle$ $\mathcal{J}(Q_0 \mathcal{E}_j)$ i,

a trojector, ti. $Llt P_{0} = \sum_{j} \Im(q_{0} E_{j}) + (1 - E) G_{0}$ Then $T(l_0) = l$. (rovan, D, that wlay $\left(\| p_{\mathcal{X}}(c) \| \leq \| a \|, \# a \right)$ The easy cove: If a = a*. Choope $G, L = L^*, \phi(a) = T(b)$ Let filt a R Le: $f(t) = \begin{cases} -\|a\|, & t \leq -\|a\| \\ t, & -\|a\| < t < \|a\| \\ \|a\|, & t > \|a\| \end{cases}$ Let \$ (a) = f(4). They $f(L) = f(L) + |(L)| \le ||G|| \quad (.|| \le ||G||)$ $\overline{U}(f(b)) = f(\overline{U}(b)) = f(\phi(\overline{U}(c)) = \phi(\overline{U}(c)))$

 $\overline{V}(L') = (\overline{U}(L))'$

 $(\subseteq A)$

Coro 1.6.12 Suppose a and b_1 belong to a C^{*}-algebra A. If $0 \le a$ and $a \leq b_1^* b_1$ then $a \in \overline{b_1^* A b_1}$. X4 = cloim $a - x_{u} = a - a (6 + 1)/2$ \geq

4/9/ $= \alpha (b + \frac{1}{2})^{-1} (c + \frac{1}{2} - \frac{1}{2})$ $= a (hb + 1)^{-1}$ $|| q - X_{n}|| = || q (nb+1)^{-1} ||^{2}$ $= \left\| \left(u + i \right)^{-1} - \left(u + i \right)^{-1} \right\|$ $(\leq) \|(n+1)^{-1}b^{2}(n+1)^{-1}\|$ C =6 $= (||b(nb+|)|) = ||f_u(b)||$ $= ||f_u(b)|| = ||f_u(b)||$ $= ||f_u(b)||$ $f_n(t) = \frac{t}{nt+1}$ Let fulti-10, u-20 $(f_u(t) \leq \frac{1}{2})$ Se Il fu (4) // ->>. $X_n \rightarrow Q$ (in (!.!). SUTX XXX SX6XX/ $d \leq G$ 6-670 X(4-a) X*70 $X_n = \alpha \left(b + \frac{1}{n} \right)^{-1} b$ $X_{y}^{\star}X_{y} = b... L \in bAb \leq b_{i}^{\star}Ab,$

So $X_{u}^{\dagger}X_{u} \rightarrow a^{2}$, and $a \in U_{i}^{\dagger}HU_{i}$, Since $a = (a^{2})^{\prime L} c_{u} \downarrow$ $a \in C^{\dagger}(a^{2}) \leq U_{i}^{\dagger}HU_{i}$.

Content advisory: The following proposition is very general and parsing its statement may take a while.

Content advisory: The following proposition is very general and parsing its statement may take a while.

Prop 1.6.9 Suppose b, c, d belong to a C*-algebra A, $f, g \in C([0, ||b||])_+$, and $h(t) := f(t)g(t)t^{-1}$ continuously extends to [0, ||b||]. If $0 \le b$, $c^*c \le f(b)^2$, and $dd^* \le g(b)^2$ then the sequence $a_n := c(b+1/n)^{-1}d$ norm converges to a limit a with $||a|| \le ||h(b)||$.

$$l f : || G_m - G_h ||^2$$

Content advisory: The following proposition is very general and parsing its statement may take a while.

Prop 1.6.9 Suppose b, c, d belong to a C^* -algebra A, $f, g \in C([0, ||b||])_+$, and $h(t) := f(t)g(t)t^{-1}$ continuously extends to [0, ||b||]. If $0 \le b$, $c^*c \le f(b)^2$, and $dd^* \le g(b)^2$ then the sequence $a_n := c(b+1/n)^{-1}d$ norm converges to a limit a with $||a|| \le ||h(b)||$.

Coro 1.6.13 Suppose
$$b = v|b|$$
 is the polar decomposition of b.
1. If $g \in C_0(sp(|b|))$ then $vg(|b|) \in C^*(b)$.
2. If A is a C*-algebra such that $b \in A$ and $c \in b^*Ab$, then
 $vc \in A$.
3. If $a \leq b^*b$ then $va \in C^*(a, b)$.
Thus the $b \in B(M)$ for the formula $b \in A$ is a C*-algebra by the formula $b \in A$.

 $i j_{2} m e t r \eta, \quad b = \sigma [b] [b] (b | b|^{-1} = \sigma)$ (note: 5¢(*(6), for by 6) $= \bigcup_{n \neq 0} (a_n = b(1b) + b) g(1b)$ Then 6th < 16/ 5161 $S(141) \leq S(141)$ tglt1. t-1 ctu, 0, [, []] by Lemma, (OL) i. couchy $(|vg(ly) - G_n|| \longrightarrow \sim, \quad n \to \infty$ (Use the some trich). so $v_{\mathcal{S}}(141) \in C^{*}(1)$. D Lihr W, por c in P/G(1 06 g(161) Bach to Pre: $F: x \quad a \in \mathcal{B}(H)$ [et $a \in \mathcal{B}(H)$

 $That I(G,) = \varphi_{\mathcal{L}}(\overline{I}[G])$ They $G_{0} = \sigma \left[Q_{0} \right]$ $f: \mathbb{R} \to \mathbb{R}$ $f(F) = \begin{cases} -1/Q_0 \\ F(F) \\$ Ler (* (Ar) $\phi_{\mathcal{K}}(a) \neq \sigma_{\mathcal{F}}(19.1)^{\mathcal{E}}$ Lef $\| \mathcal{V} f(|q_{i}) \| \leq \| \mathcal{V} \| \cdot \| q_{i} \| \leq \| q_{i} \|$

A side remark: We are within ε of proving Proposition 1.6.14, that is one of the main components in the proof of Kirchberg's Slice Lemma... but we'll skip these, since we don't need them in this course.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

~

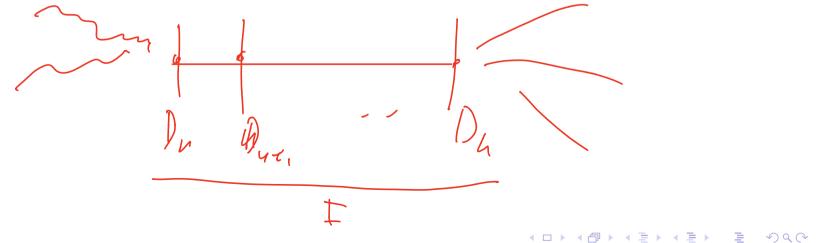
Next, we'll need a standard tricks from set theory.

Meager Subsets of Product Spaces

Suppose D_n , for $n \in \mathbb{N}$, are finite sets. Then for $X \subseteq \mathbb{N}$

$$\mathsf{D}_{\mathsf{X}} := \prod_{n \in \mathsf{X}} \mathsf{D}_n$$

is compact with respect to $d(a, b) = 1/(\min\{n : a_n \neq b_n\} + 1)$. The basic open subsets of $D_{\mathbb{N}}$ have the form $[I, r] := \{a : a \upharpoonright I = r\}$ for some $I \Subset \mathbb{N}$ and $r \in D_I$.



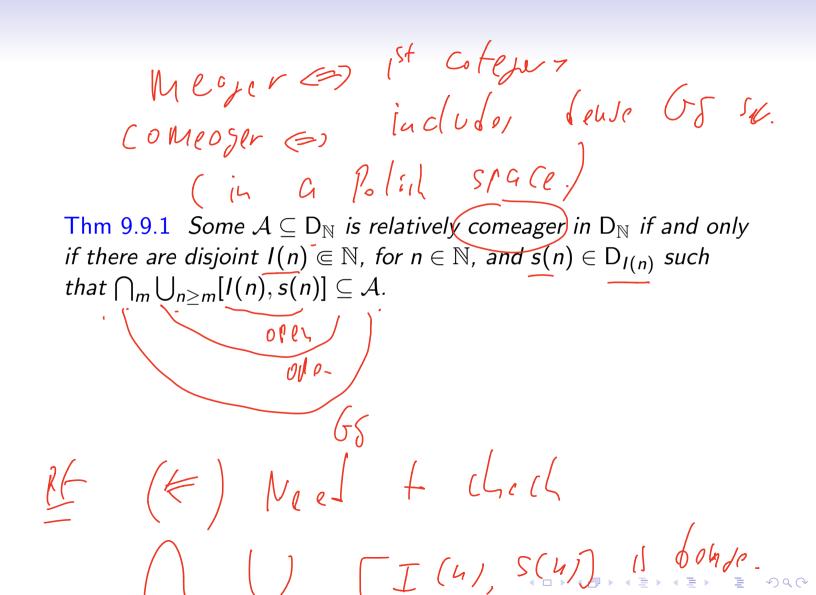
Meager Subsets of Product Spaces

Suppose D_n , for $n \in \mathbb{N}$, are finite sets. Then for $X \subseteq \mathbb{N}$

$$\mathsf{D}_{\mathsf{X}} := \prod_{n \in \mathsf{X}} \mathsf{D}_n$$

is compact with respect to $d(a, b) = 1/(\min\{n : a_n \neq b_n\} + 1)$. The basic open subsets of $D_{\mathbb{N}}$ have the form $[I, r] := \{a : a \upharpoonright I = r\}$ for some $I \Subset \mathbb{N}$ and $r \in D_I$. Lemma 1. $I \cap J = \emptyset$ implies $[I, r] \cap [J, s] = [I \cup J, rs]$ where (rs)(i) = r(i) if $i \in I$ and (rs)(i) = s(i) if $i \in J$. 2. $I \cap J = \emptyset$ implies $[I, r] \cap [J, s] \neq \emptyset$. 3. $[I, r] \supseteq [J, s]$ if and only if $I \subseteq J$ and $s \cap I = r$.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆



M UZM Fix [7,r]. Since I(4) are duijoint, HOU I(4/1) = Ø. Rut then [3, r] A[I(u), s(u)] # The right Most: $\mathcal{F}\mathcal{M}$ $\mathcal{V}[\mathcal{I}(\mathcal{M}), \mathcal{S}(\mathcal{M})]$ is open, (deule.) Use Boire Cotesur. (=>) Fix A S DN, Gharger. Fix deure open Un SIN, NEN, so that

Find I(h), S(h) by recurse. (well assure each I(h) is on interned) DFix I(D), Ser, is that [I(O), S(o)] EUO (2) Enverote $\int_{\overline{I}(0)} as U_{j}, j \in k(0)$. Find $\left[\frac{1}{\Gamma'(1)}, s'(1) \right], j < k(0); as$ $\left[I(0), 0, 0 \right] \cap \left[I^{\circ}(1), S^{\circ}(\phi) \right] \subseteq \left(1 \right)$ $[\underline{T}(0), \underline{\sigma},] \cap [\underline{I}^{\circ}(I), S^{\circ}(I)] \cap [\underline{I}^{\prime}(I), S^{\prime}(I)]$

-(+T(1) I(0) Lio, UI(1) $X \in [\Gamma(n), S(u)]$ -и, НХ =1 X E Uy JOY X E [I (41, S(4/) =)] ~ ~ XEU $=) \times \in (\mathcal{N}_{n} =) \times \in \mathcal{A}.$