
Massive C⇤-algebras, Winter 2021, I. Farah, Lecture 16

Recall

Def 17.3.1 A lifting of a
⇤
-homomorphism � : Q(A) ! Q(B) is a

function �⇤ : M(A) ! M(B) such that the following diagram

commutes (⇡A and ⇡B denote the quotient maps).

M(A) M(B))

Q(A) Q(B)

�⇤

�
⇡A ⇡B

If this diagram commutes on some X ✓ M(A), then �⇤ is called a

lifting of � on X . When convenient, instead we say that � is a

lifting on ⇡[X ].
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In order to prove the following lemma, we will need to go back to
basic theory of C⇤-algebras.

Lemma ⇡17.3.2 Every
⇤
-homomorphism � : Q(A) ! Q(B) has a

lifting �⇤ such that the following holds

1. �⇤(a) is self-adjoint if a is self-adjoint.

2. k�⇤(a)k  kak for all a.

3. If M(B) = B(H) then we can assure that �⇤(p) is a
projection for every projection p.

It su�ces to prove the following:

Lemma Suppose J is an ideal in A and ⇡ : A ! A/J is the

quotient map.

1. If a 2 A/J is self-adjoint, then there exists a self-adjoint

a0 2 A such that ⇡(a0) = a.

2. If a 2 A/J then there exists a0 2 A such that ⇡(a0) = a and

ka0k  kak.
3. If A = B(H), J = K(H), and p 2 B(H)/K(H) is a projection,

then there exists a projection p0 2 B(H) such that ⇡(p0) = p.
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Coro 1.6.12 Suppose a and b1 belong to a C⇤
-algebra A. If 0  a

and a  b
⇤
1b1 then a 2 b⇤1Ab1.
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Content advisory: The following proposition is very general and
parsing its statement may take a while.

Prop 1.6.9 Suppose b, c , d belong to a C⇤
-algebra A,

f , g 2 C ([0, kbk])+, and h(t) := f (t)g(t)t�1
continuously extends

to [0, kbk]. If 0  b, c
⇤
c  f (b)2, and dd

⇤  g(b)2 then the

sequence an := c(b + 1/n)�1
d norm converges to a limit a with

kak  kh(b)k.

Coro 1.6.13 Suppose b = v |b| is the polar decomposition of b.

1. If g 2 C0(sp(|b|)) then vg(|b|) 2 C⇤(b).

2. If A is a C⇤
-algebra such that b 2 A and c 2 b⇤Ab, then

vc 2 A.

3. If a  b
⇤
b then va 2 C⇤(a, b).
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A side remark: We are within " of proving Proposition 1.6.14, that
is one of the main components in the proof of Kirchberg’s Slice
Lemma. . . but we’ll skip these, since we don’t need them in this
course.
Next, we’ll need a standard tricks from set theory.
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Meager Subsets of Product Spaces

Suppose Dn, for n 2 N, are finite sets. Then for X ✓ N

DX :=
Y

n2X
Dn

is compact with respect to d(a, b) = 1/(min{n : an 6= bn}+ 1).
The basic open subsets of DN have the form
[I , r ] := {a : a � I = r} for some I b N and r 2 DI .

Lemma

1. I \ J = ; implies [I , r ] \ [J, s] = [I [ J, rs] where
(rs)(i) = r(i) if i 2 I and (rs)(i) = s(i) if i 2 J.

2. I \ J = ; implies [I , r ] \ [J, s] 6= ;.
3. [I , r ] ◆ [J, s] if and only if I ✓ J and s \ I = r .
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Thm 9.9.1 Some A ✓ DN is relatively comeager in DN if and only

if there are disjoint I (n) b N, for n 2 N, and s(n) 2 DI (n) such

that
T

m

S
n�m[I (n), s(n)] ✓ A.
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