Massive C*-algebras, Winter 2021, I. Farah, Lecture 14

After having done the preparations, today we will state and prove Theorem 17.8.2.

Coherent families of unitaries

We will need the notation from the proof that CH implies Q(H) has an outer automorphism.

For i and j in \mathbb{N} , x and y in $\mathbb{T}^{\mathbb{N}}$, and $F \subseteq \mathbb{N}$ let

$$\Delta_{\{i,j\}}(x,y) := |x(i)\overline{x(j)} - y(i)\overline{y(j)}|, \text{ and}$$
 (1)

$$\Delta_F(x,y) := \sup_{i,j\in F} \Delta_{\{i,j\}}(x,y). \tag{2}$$

For i and j in \mathbb{N} , x and y in $\mathbb{T}^{\mathbb{N}}$, and $F \subseteq \mathbb{N}$ let

$$\Delta_{\{i,j\}}(x,y) := |x(i)\overline{x(j)} - y(i)\overline{y(j)}|, \text{ and}$$
 (1)

$$\Delta_F(x,y) := \sup_{i,j \in F} \Delta_{\{i,j\}}(x,y). \tag{2}$$

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N} , and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold.

- 1. $\Delta_{\{i,j\}}(x,y) = |x(i)\overline{y(i)} x(j)\overline{y(j)}|$.
- 2. $\Delta_F(x,1) = \text{diam}(\{x(i) : i \in F\}).$
- 3. $\Delta_{\{i,k\}}(x,y) \leq \Delta_{\{i,j\}}(x,y) + \Delta_{\{j,k\}}(x,y)$, hence $\Delta_{\{\cdot,\cdot\}}(x,y)$ is a pseudometric on \mathbb{N} .
- 4. $\Delta_F(x,z) \leq \Delta_F(x,y) + \Delta_F(y,z)$, hence Δ_F is a pseudometric on $\mathbb{T}^{\mathbb{N}}$.
- 5. $\Delta_F(x, y) = \Delta_F(xz, yz)$.

For i and j in \mathbb{N} , x and y in $\mathbb{T}^{\mathbb{N}}$, and $F \subseteq \mathbb{N}$ let

$$\Delta_{\{i,j\}}(x,y) := |x(i)\overline{x(j)} - y(i)\overline{y(j)}|, \text{ and}$$
 (1)

$$\Delta_F(x,y) := \sup_{i,j \in F} \Delta_{\{i,j\}}(x,y). \tag{2}$$

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N} , and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold.

- 1. $\Delta_{\{i,j\}}(x,y) = |x(i)\overline{y(i)} x(j)\overline{y(j)}|.$
- 2. $\Delta_F(x, 1) = \text{diam}(\{x(i) : i \in F\}).$
- 3. $\Delta_{\{i,k\}}(x,y) \leq \Delta_{\{i,j\}}(x,y) + \Delta_{\{j,k\}}(x,y)$, hence $\Delta_{\{\cdot,\cdot\}}(x,y)$ is a pseudometric on \mathbb{N} .
- 4. $\Delta_F(x,z) \leq \Delta_F(x,y) + \Delta_F(y,z)$, hence Δ_F is a pseudometric on $\mathbb{T}^{\mathbb{N}}$.
- 5. $\Delta_F(x, y) = \Delta_F(xz, yz)$.
- 6. $\min_{\lambda \in \mathbb{T}} \sup_{i \in F} |x(i) \lambda y(i)| \le \Delta_F(x, y) \le 2 \min_{\lambda \in \mathbb{T}} \sup_{i \in F} |x(i) \lambda y(i)|$ (a proof is on the following page).

$$\Delta_{\{i,j\}}(x,y) := |x(i)\overline{x(j)} - y(i)\overline{y(j)}|, \text{ and}$$

$$\Delta_{\{i,j\}}(x,y) := |x(i)x(j) - y(i)y(j)|, \text{ and}$$

$$\Delta_{F}(x,y) := \sup_{i,j \in F} \Delta_{\{i,j\}}(x,y).$$
(4)

Lemma If
$$u \in \mathcal{U}(\mathcal{B}(H))$$
, then
$$\mathbb{T} \cdot 1 = \mathcal{F}\left(\mathcal{U}\left(\mathcal{B}(H)\right)\right)$$
$$\operatorname{dist}(u, \mathbb{T} \cdot 1) \leq \operatorname{diam}(\operatorname{sp}(u)) \leq 2 \operatorname{dist}(u, \mathbb{T} \cdot 1)$$
$$\operatorname{dist}(u, \mathbb{T} \cdot 1) \leq \sup_{\|a\| \leq 1} \|uau^* - a\| \leq 2 \operatorname{dist}(u, \mathbb{T} \cdot 1).$$

Proof: Only one of the inequalities is non-elementary.

Fix
$$\lambda \in S_{P}(h)$$

 $\lambda \in S_{P}(h)$ $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$ $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$ $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$
 $\lambda \in S_{P}(h)$

$$Fix \quad \Sigma \Rightarrow ; \quad T:X \quad \Rightarrow \quad \|u - x \cdot \| \leq \int_{\mathbb{R}^{N}} \left(u, T \cdot \right)$$

tix a, llall =1 11 uau *-a/l = 1/4 a - au/l ≤ [ua - >a] + (2a - au 1 = dist(2, T-1)+ 8 · Let M be the How Grown 04 U(18(H1). Let E = SUN | Mant-all $\sigma = \begin{cases} wuw * I_{r}(w) & \in U(h(/\tau)/s) \\ & \in \mathbb{C} \end{cases}$ 110-ull = (11wvw +-ull dx(w) J.W = WJ, YWEU(A(H)) s. v e ? (V(1/(M// ς σ∈ [1-1.

$$\Delta_{\{i,j\}}(x,y) := |x(i)\overline{x(j)} - y(i)\overline{y(j)}|, \text{ and}$$
 (3)

$$\Delta_F(x,y) := \sup_{i,j \in F} \Delta_{\{i,j\}}(x,y). \tag{4}$$

Lemma If
$$u \in \mathcal{U}(\mathcal{B}(H))$$
, then
$$\operatorname{dist}(u,\mathbb{T}\cdot 1) \leq \operatorname{diam}(\operatorname{sp}(u)) \leq 2\operatorname{dist}(u,\mathbb{T}\cdot 1)$$

$$\operatorname{dist}(u,\mathbb{T}\cdot 1) \leq \sup_{\|a\|\leq 1} \|uau^* - a\| \leq 2\operatorname{dist}(u,\mathbb{T}\cdot 1).$$

Proof: Only one of the inequalities is non-elementary.

Corollary

For w and v in $\mathcal{U}(\mathcal{B}(H))$,

$$\frac{1}{2} \sup_{\|a\| \le 1} \|(\operatorname{Ad} w)(a) - (\operatorname{Ad} v)(a)\|$$

$$\leq \operatorname{diam}(\operatorname{sp}(v^*w)) \le 2 \sup_{\|a\| \le 1} \|(\operatorname{Ad} w)(a) - (\operatorname{Ad} v)(a).$$

Let u= 0 h, Use Leyna.

PortN

- Recall:
 - 1. $u \sim_{\mathsf{E}} v$ if and only if $\mathsf{Ad}\, u$ and $\mathsf{Ad}\, v$ agree on $\mathcal{F}[\mathsf{E}]$,
 - 2. we identify $\mathbb{T}^{\mathbb{N}}$ with $\mathcal{U}(\ell_{\infty}) \subseteq \mathcal{U}(\mathcal{B}(H))$,
 - 3. $x \sim_{\mathsf{E}} y$ if and only if $\limsup_{i} \Delta_{E_i \cup E_{i+1}}(x,y) = 0$.

- 1. $u \sim_{\mathsf{E}} v$ if and only if Ad u and Ad v agree on $\mathcal{F}[\mathsf{E}]$,
- 2. we identify $\mathbb{T}^{\mathbb{N}}$ with $\mathcal{U}(\ell_{\infty}) \subseteq \mathcal{U}(\mathcal{B}(H))$,

4=1

3. $x \sim_{\mathsf{E}} y$ if and only if $\limsup_{i \to E_{i} \cup E_{i+1}} (x, y) = 0$.

Def 17.8.1 A family \mathbb{F} of pairs (E, x) for $E \in \mathsf{Part}_{\mathbb{N}}$ and $x \in \mathbb{T}^{\mathbb{N}}$ is a coherent family of unitaries if $\{E : (E, x) \in \mathbb{F} \text{ for some } x\}$ is \leq^* -cofinal in $\mathsf{Part}_{\mathbb{N}}$ and $u \sim_{\mathsf{E}} v$ whenever (E, u) and (F, v) belong to \mathbb{F} and $E \leq^* F$.

$$G \leq E$$

$$(E, x) \in F$$

$$F \cup \{(G, x)\}$$

- 1. $u \sim_{\mathsf{E}} v$ if and only if Ad u and Ad v agree on $\mathcal{F}[\mathsf{E}]$,
- 2. we identify $\mathbb{T}^{\mathbb{N}}$ with $\mathcal{U}(\ell_{\infty}) \subseteq \mathcal{U}(\mathcal{B}(H))$,
- 3. $x \sim_{\mathsf{E}} y$ if and only if $\limsup_{i \to E_{i+1}} (x, y) = 0$.

Def 17.8.1 A family \mathbb{F} of pairs (E,x) for $E \in \mathsf{Part}_{\mathbb{N}}$ and $x \in \mathbb{T}^{\mathbb{N}}$ is a coherent family of unitaries if $\{E : (E,x) \in \mathbb{F} \text{ for some } x\}$ is \leq^* -cofinal in $\mathsf{Part}_{\mathbb{N}}$ and $u \sim_{\mathsf{E}} v$ whenever (E,u) and (F,v) belong to \mathbb{F} and $E \leq^* F$.

- 1. $u \sim_{\mathsf{E}} v$ if and only if Ad u and Ad v agree on $\mathcal{F}[\mathsf{E}]$,
- 2. we identify $\mathbb{T}^{\mathbb{N}}$ with $\mathcal{U}(\ell_{\infty}) \subseteq \mathcal{U}(\mathcal{B}(H))$,
- 3. $x \sim_{\mathsf{E}} y$ if and only if $\limsup_{i \to E_{i+1}} (x, y) = 0$.

Def 17.8.1 A family \mathbb{F} of pairs (E,x) for $E \in \mathsf{Part}_{\mathbb{N}}$ and $x \in \mathbb{T}^{\mathbb{N}}$ is a coherent family of unitaries if $\{E : (E,x) \in \mathbb{F} \text{ for some } x\}$ is \leq^* -cofinal in $\mathsf{Part}_{\mathbb{N}}$ and $u \sim_{\mathsf{E}} v$ whenever (E,u) and (F,v) belong to \mathbb{F} and $E <^* F$.

The following was proved a couple of classes ago:

Lemma 17.1.4 Every coherent family of unitaries \mathbb{F} defines a unique automorphism $\Phi = \Phi_{\mathbb{F}}$ of $\mathcal{Q}(H)$ such that the restriction of Φ to $\mathcal{F}[\mathsf{E}]$ agrees with Ad u for every pair $(\mathsf{E},u)\in\mathbb{F}$.

- 1. $u \sim_{\mathsf{E}} v$ if and only if Ad u and Ad v agree on $\mathcal{F}[\mathsf{E}]$,
- 2. we identify $\mathbb{T}^{\mathbb{N}}$ with $\mathcal{U}(\ell_{\infty}) \subseteq \mathcal{U}(\mathcal{B}(H))$,
- 3. $x \sim_{\mathsf{E}} y$ if and only if $\limsup_{i \to E_{i+1}} (x, y) = 0$.

Def 17.8.1 A family \mathbb{F} of pairs (E,x) for $E \in \mathsf{Part}_{\mathbb{N}}$ and $x \in \mathbb{T}^{\mathbb{N}}$ is a coherent family of unitaries if $\{E : (E,x) \in \mathbb{F} \text{ for some } x\}$ is \leq^* -cofinal in $\mathsf{Part}_{\mathbb{N}}$ and $u \sim_{\mathsf{E}} v$ whenever (E,u) and (F,v) belong to \mathbb{F} and $E <^* F$.

The following was proved a couple of classes ago:

Lemma 17.1.4 Every coherent family of unitaries \mathbb{F} defines a unique automorphism $\Phi = \Phi_{\mathbb{F}}$ of $\mathcal{Q}(H)$ such that the restriction of Φ to $\mathcal{F}[\mathsf{E}]$ agrees with Ad u for every pair $(\mathsf{E},u)\in\mathbb{F}$.

We will now prove:

Thm 17.8.2 If OCA_T holds then the automorphism $\Phi_{\mathbb{F}}$ is inner for every coherent family of unitaries \mathbb{F} .

We say that such \mathbb{F} is *trivial*.

Proof that OCA_T implies every coherent family of unitaries \mathbb{F} is trivial

Fix
$$\mathbb{F}$$
. Fix $d \geq 1$ and define a partition $[\mathbb{F}]^2 = L_0^d \cup L_1^d$ by $\{(E,u),(F,v)\} \in L_0^d$ if (L_0^d) For some m and n , the interval $I:=(E_m \cup E_{m+1}) \cap (F_n \cup F_{n+1})$ satisfies $\Delta_I(u,v) \geq 2^{-d}$. This is an open partition if \mathbb{F} is equipped with the subspace topology inherited from $\mathrm{Part}_{\mathbb{N}} \times \mathbb{T}^{\mathbb{N}}$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ✓Q

BATH UTM

Proof that OCA_T implies every coherent family of unitaries \mathbb{F} is trivial

Fix
$$\mathbb F$$
. Fix $d\geq 1$ and define a partition $[\mathbb F]^2=L_0^d\cup L_1^d$ by $\{(\mathsf E,u),(\mathsf F,v)\}\in L_0^d$ if

$$(L_0^d)$$
 For some m and n , the interval $I := (E_m \cup E_{m+1}) \cap (F_n \cup F_{n+1})$ satisfies $\Delta_I(u, v) > 2^{-d}$.

This is an open partition if \mathbb{F} is equipped with the subspace topology inherited from $\mathsf{Part}_{\mathbb{N}} \times \mathbb{T}^{\mathbb{N}}$.

Claim. All L_0^d -homogeneous subsets of \mathbb{F} are countable.

If A SSUMe otherwise, for
$$d \geq 1$$
,

 $X \leq F(X) = 1$, $(X)^2 \leq 1$

X = \E (3x) (E, X) (E) X = Party [X. 156] (ASSULIE HE J=, X (E, HEF.) By the lost closs, IF EPast Such that |\lexit{E}\in \bar{X} \ \E \in \bar{F} |= \bar{S}, W_{0} , JX, $(F, x) \in F$. $(E_{u}UE_{uv})$ Fix (E, Y), $E \in X$. (E, Y), (F, X) (E, Y), (F, X)1(EmUEm+,) 1(FuUFy+) (X, 5) lim DEMUENT, (X,>) =0. Fix 6= k(E, 4) + m > h $\Delta_{E_{m} \cup E_{m-1}} \left(X, 4 \right) < 2^{-\delta - 1}$ Wlo, 7 k=k(E,4), HEEX. and $l = Min E_R$ is the sour UEEKs

 E_{L} $W(og, \forall (E, y), (E', y') \text{ in } X$ $L(y)(e, y')(e) < 2^{-l-1}$ $S_{L}, \text{ for } (E, y), (E', y')$ $L(E_{L}, y)(E_{L}, y') = (E_{L}, y')(E_{L}, y')$ $L(E_{L}, y)(E_{L}, y')(E_{L}, y') = (E_{L}, y')(E_{L}, y')$ $L(E_{L}, y)(E_{L}, y')(E', y') = (E_{L}, y')(E', y')$ $L(E_{L}, y)(E_{L}, y')(E', y')(E', y')(E', y')(E', y')$ $L(E_{L}, y)(E_{L}, y')(E', y')(E'$

(L_1^d) For all m, n, the interval $I := (E_m \cup E_{m+1}) \cap (F_n \cup F_{n+1})$ satisfies $\Delta_I(u, v) \leq 2^{-d}$.

 (L_1^d) For all m, n, the interval $I := (E_m \cup E_{m+1}) \cap (F_n \cup F_{n+1})$ satisfies $\Delta_I(u, v) \leq 2^{-d}$.

For $\mathbb{X} \subseteq \mathbb{F}$ write $\mathbb{X}_0 := \{ \mathsf{E} : (\mathsf{E}, u) \in \mathbb{X} \}$.

Claim. If X_0 is \leq^* -cofinal in $\mathsf{Part}_{\mathbb{N}}$ and X is partitioned into countably many pieces, then for one of these pieces, Y, the set Y_0 is \leq^* -cofinal in $\mathsf{Part}_{\mathbb{N}}$.

(L_1^d) For all m, n, the interval $I := (E_m \cup E_{m+1}) \cap (F_n \cup F_{n+1})$ satisfies $\Delta_I(u, v) \leq 2^{-d}$.

For $\mathbb{X} \subseteq \mathbb{F}$ write $\mathbb{X}_0 := \{ \mathsf{E} : (\mathsf{E}, u) \in \mathbb{X} \}$.

Claim. If X_0 is \leq^* -cofinal in $\mathsf{Part}_{\mathbb{N}}$ and X is partitioned into countably many pieces, then for one of these pieces, Y, the set Y_0 is \leq^* -cofinal in $\mathsf{Part}_{\mathbb{N}}$.

By OCA_T, \mathbb{F} can be covered by countably many L_1^d -homogeneous sets. Recursively choose $\mathbb{F}(d) \subseteq \mathbb{F}$ for $d \geq 1$ so that for all d:

- 1. $[\mathbb{F}(d)]^2 \subseteq L_1^d$,
- 2. $\mathbb{F}(d) \supseteq \mathbb{F}(d+1)$, and
- 3. $\mathbb{F}(d)_0$ is \leq^* -cofinal in Part_N

$$F(1) \subseteq F$$
 $F(2) \subseteq F(1)$
 $C_{1}^{2} \supseteq C_{1}^{2}$

 (L_1^d) For all m, n, the interval $I := (E_m \cup E_{m+1}) \cap (F_n \cup F_{n+1})$ satisfies $\Delta_I(u, v) \leq 2^{-d}$.

For $\mathbb{X} \subseteq \mathbb{F}$ write $\mathbb{X}_0 := \{ \mathsf{E} : (\mathsf{E}, u) \in \mathbb{X} \}$.

Claim. If X_0 is \leq^* -cofinal in $\mathsf{Part}_{\mathbb{N}}$ and X is partitioned into countably many pieces, then for one of these pieces, Y, the set Y_0 is $<^*$ -cofinal in $\mathsf{Part}_{\mathbb{N}}$.

By OCA_T, \mathbb{F} can be covered by countably many L_1^d -homogeneous sets. Recursively choose $\mathbb{F}(d) \subseteq \mathbb{F}$ for $d \geq 1$ so that for all d:

- 1. $[\mathbb{F}(d)]^2 \subseteq L_1^d$,
- 2. $\mathbb{F}(d) \supseteq \mathbb{F}(d+1)$, and
- 3. $\mathbb{F}(d)_0$ is \leq^* -cofinal in Part_N

By Lemma 9.7.9, for every d there are infinitely many k such that there is $\mathbf{f} = \langle F_0, \dots, F_{k-1} \rangle$ and for every m there is $\mathbf{E} \in [\mathbf{f}] \cap \mathcal{E}$ for which $\max(E_k) > m$.

L(d), deN, 5, ch that $O(E_j|\exists x (E,x) \in F(d), \text{ will } E_j = l(d))$ = [R(d), 00) l(b) < l(d+1), +1l(6) Fix (Edm, xd, n) EIF (d), ME M So that O'lim xd, n eth exists. Fact 4d + (F, 4/ EF(d), +) $\Delta_{(F_{j}\cup F_{j+1})} \Lambda[\ell(d_{j},\infty)] \qquad \leq 2^{-d}$ Therefor, 4d < d', $\Delta_{[l(b'), \infty)}(x', x') \leq 2^{-d}$ Fort HJ JAZET SUI $\left| X^{(i)} - \lambda_i X^{(i)} \right| \leq 2^{-\alpha}$

Petine 2 ETIN ZW, j < l(0) - dou't cove $i \in [l(d), l(d+1)]$ $2(i) = \bigcap_{j < \delta} \gamma_j \times^{\delta}(i) \in T^{N}$ Then # L = d' $\Delta_{\text{El(d)}, \infty)} (7, \chi^d) \leq 2^{-d}$ Claim 2 ilustements of on Q(H). EF FOX E∈ PartN, (E, X) ∈ F Fix { 20, 1, 2-6< 8. Fix $(F,Y) \in F(d), E \leq *F$

Y involutent, $(F \circ h) \neq (E)$ $(X \sim E' \mid i) + M$ $(F \circ h) = 2^{-d}$ $(F \circ h) = 2^{-d}$ $(F \circ h) = 2^{-d}$

Liftings (§17.3)

Def 17.3.1 A lifting of a *-homomorphism $\Phi: \mathcal{Q}(A) \to \mathcal{Q}(B)$ is a function $\Phi_*: \mathcal{M}(A) \to \mathcal{M}(B)$ such that the following diagram commutes $(\pi_A \text{ and } \pi_B \text{ denote the quotient maps})$.

If this diagram commutes on some $\mathcal{X} \subseteq \mathcal{M}(A)$, then Φ_* is called a lifting of Φ on \mathcal{X} . When convenient, instead we say that Φ is a lifting on $\overline{\pi[\mathcal{X}]}$.

Liftings (§17.3)

Def 17.3.1 A lifting of a *-homomorphism $\Phi: \mathcal{Q}(A) \to \mathcal{Q}(B)$ is a function $\Phi_*: \mathcal{M}(A) \to \mathcal{M}(B)$ such that the following diagram commutes $(\pi_A \text{ and } \pi_B \text{ denote the quotient maps})$.

$$\mathcal{M}(A) \xrightarrow{\Phi_*} \mathcal{M}(B)$$
 $\pi_A \downarrow \qquad \qquad \pi_B \downarrow$
 $\mathcal{Q}(A) \xrightarrow{\Phi} \mathcal{Q}(B)$

If this diagram commutes on some $\mathcal{X} \subseteq \mathcal{M}(A)$, then Φ_* is called a lifting of Φ on \mathcal{X} . When convenient, instead we say that Φ is a lifting on $\pi[\mathcal{X}]$.

Def 17.3.3 A *-homomorphism Φ between coronas of separable C*-algebras is said to be topologically trivial if its restriction to the unit ball has a lifting which is Borel-measurable with respect to the strict topology (this is a Polish topology).

4□ ト 4 □ ト 4 □ ト 4 □ ト 9 へ ○

Shoenfield's Alsoluteurs

Example 17.3.5 There is a separable abelian C^* -algebra A such that $\mathcal{Q}(A)$ has a topologically trivial automorphism that cannot be lifted by a *-homomorphism.

Example 17.3.5 There is a separable abelian C^* -algebra A such that Q(A) has a topologically trivial automorphism that cannot be lifted by a *-homomorphism.

Lemma 17.3.6 If A is a separable, nonunital C^* -algebra then Q(A) has at most \mathfrak{c} topologically trivial automorphisms.

$$||\mathbf{boro}|| = 2^{1/3}$$

Example 17.3.5 There is a separable abelian C^* -algebra A such that $\mathcal{Q}(A)$ has a topologically trivial automorphism that cannot be lifted by a *-homomorphism.

Lemma 17.3.6 If A is a separable, nonunital C^* -algebra then $\mathcal{Q}(A)$ has at most \mathfrak{c} topologically trivial automorphisms.

Corollary

A OKE 1-

If the Continuum Hypothesis holds and A is a separable, stable, nonunital C^* -algebra then $\mathcal{Q}(A)$ has topologically nontrivial automorphisms.

$$\frac{1}{2^{81} > 2^{80}} \left(\alpha SSUL_{1} v_{0} \right) \left(\frac{1}{2^{81} > 81} \right)$$