Massive C*-algebras, Winter 2021, I. Farah, Lecture 10

 Recall from the last time: we started the proof ofThm (Phillips-Weaver, 2008) CH implies that $\mathcal{Q}(H)$ has $2^{\aleph_{1}} \sqrt{\frac{\text { outer }}{S_{1}}=N_{0}}$
automorphisms.
Part $_{\mathbb{N}}$: the set of all partitions $\mathrm{E}=\left\langle E_{j}: j \in \mathbb{N}\right\rangle$ of \mathbb{N}, where $E_{j}=[n(j), n(j+1))$ and $n(0)<n(1)<n(2)<\ldots$.
Def 9.7.2 On $\mathrm{Part}_{\mathbb{N}}$ define
$\mathrm{E} \leq^{*} \mathrm{~F}$ if $\left(\forall^{\infty} m\right)(\exists n) E_{n} \subseteq F_{m}$ (equivalently, if
$\left.\left(\forall^{\infty} i\right)(\exists j) E_{i} \cup E_{i+1} \subseteq F_{j} \cup F_{j+1}\right)$
Def 9.7.5 Consider H with an orthonormal basis $\left(\xi_{n}\right)$. For $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and $\mathrm{X} \subseteq \mathbb{N}$ let $p_{\mathrm{X}}^{\mathrm{E}}:=\operatorname{proj}_{\overline{\mathrm{span}}\left\{\xi_{i}: i \in \cup_{n \in \mathrm{X}} E_{n}\right\} \text {, and let }}$
$\mathcal{D}[\mathrm{E}]:=\left\{a \in \mathcal{B}(H):(\forall m)(\forall n)\left(\left(a \xi_{m} \mid \xi_{n}\right) \neq 0\right.\right.$ implies $\left.\left.(\exists j)\{m, n\} \subseteq E_{j}\right)\right\}$,
$\mathcal{A}[\mathrm{E}]:=\left\{\sum_{n} \lambda_{n} p_{\{n\}}^{\mathrm{E}} \mid\left(\lambda_{n}\right) \in \ell_{\infty}\right\} \quad\left(=\mathrm{W}^{*}\left\{p_{\mathrm{X}}^{\mathrm{E}}: \mathrm{X} \subseteq \mathbb{N}\right\}\right)$.

Lemma $\quad \mathcal{D}[\mathrm{E}] \cong \prod_{n} M_{k(n)}(\mathbb{C})$ and $\mathcal{A}[\mathrm{E}]=Z(\mathcal{D}[\mathrm{E}])$.

For $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$ define two coarser partitions, $\mathrm{E}^{\text {even }}$ and $\mathrm{E}^{\text {odd }}$, by (with $E_{-1}:=\emptyset$)

$$
\begin{aligned}
E_{n}^{\text {even }} & :=E_{2 n} \cup E_{2 n+1}, \\
E_{n}^{\text {odd }} & :=E_{2 n-1} \cup E_{2 n} .
\end{aligned}
$$

I owe you a proof of:
Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis ξ_{n}, for $n \in \mathbb{N}$. For a sequence a_{n}, for $n \in \mathbb{N}$ in $\mathcal{B}(H)$ there are $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}, a_{n}^{0} \in \mathcal{D}\left[\mathrm{E}^{\text {even }}\right]$ and $a_{n}^{1} \in \mathcal{D}\left[\mathrm{E}^{\text {odd }}\right]$ such that $a_{n}-a_{n}^{0}-a_{n}^{1}$ is compact for each n.

I owe you a proof of:
Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis ξ_{n}, for $n \in \mathbb{N}$. For a sequence a_{n}, for $n \in \mathbb{N}$ in $\mathcal{B}(H)$ there are $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}, a_{n}^{0} \in \mathcal{D}\left[\mathrm{E}^{\text {even }}\right]$ and $a_{n}^{1} \in \mathcal{D}\left[\mathrm{E}^{\text {odd }}\right]$ such that $a_{n}-a_{n}^{0}-a_{n}^{1}$ is compact for each n.
Proof: It suffices to show this for a single a.

I owe you a proof of:
Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis ξ_{n}, for $n \in \mathbb{N}$. For a sequence a_{n}, for $n \in \mathbb{N}$ in $\mathcal{B}(H)$ there are $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}, a_{n}^{0} \in \mathcal{D}\left[\mathrm{E}^{\text {even }}\right]$ and $a_{n}^{1} \in \mathcal{D}\left[\mathrm{E}^{\text {odd }}\right]$ such that $a_{n}-a_{n}^{0}-a_{n}^{1}$ is compact for each n.
Proof: It suffices to show this for a single a.Choose $0=n(0)<n(1)<\ldots$ so that if $E_{j}:=[n(j), n(j+1))$ then (recall that $\left.p_{\mathrm{X}}^{\mathrm{E}}:=\operatorname{proj}_{\overline{\operatorname{span}}\left\{\xi_{i}: i \in \cup_{n \in \mathrm{X}} E_{n}\right\}}\right)$

I owe you a proof of:
Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis ξ_{n}, for $n \in \mathbb{N}$. For a sequence a_{n}, for $n \in \mathbb{N}$ in $\mathcal{B}(H)$ there are $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}, a_{n}^{0} \in \mathcal{D}\left[\mathrm{E}^{\text {even }}\right]$ and $a_{n}^{1} \in \mathcal{D}\left[\mathrm{E}^{\text {odd }}\right]$ such that $a_{n}-a_{n}^{0}-a_{n}^{1}$ is compact for each n.

Proof: It suffices to show this for a single a. Choose $0=n(0)<n(1)<\ldots$ so that if $E_{j}:=[n(j), n(j+1))$ then (recall that $\left.p_{\mathrm{X}}^{\mathrm{E}}:=\operatorname{proj}_{\overline{\mathrm{span}}\left\{\xi_{i}: i \in \cup_{n \in \mathrm{X}} E_{n}\right\}}\right)$

$$
\begin{aligned}
\left\|p_{[n+1, \infty)}^{\mathrm{E}} \mathrm{a}^{\mathrm{E}}\right\| & <2^{-n}, \\
\left\|p_{[n+1, \infty)}^{\mathrm{E}} \mathrm{a}^{*} p_{n}^{\mathrm{E}}\right\| & <2^{-n} .
\end{aligned}
$$

Then let

$$
\begin{aligned}
& a^{0}:=\sum_{n=0}^{\infty} \frac{p_{\{2 n, 2 n+1\}}^{\mathrm{E}}}{\mathrm{E}} \frac{p_{\{2 n, 2 n+1\}}^{\mathrm{E}}-p_{\{2 n+1\}}^{\mathrm{E}} a p_{\{2 n+1\}}^{\mathrm{E}}}{a^{\mathrm{E}}}=\sum_{n=0}^{\infty} p_{\{2 n+1,2 n+2\}}^{\mathrm{E}} a p_{\{2 n+1,2 n+2\}}^{\mathrm{E}}-p_{\{2 n+2\}}^{\mathrm{E}} a p_{\{2 n+2\}}^{\mathrm{E}}
\end{aligned}
$$

$a-a^{0}-a^{1}$

Exercise. Suppose that A is a σ-unital, non-unital C^{*}-algebra that has an approximate unit $\left(r_{n}\right)$ consisting of projections. Formulate and prove an analog of Lemma 9.7.6 for a countable subset of $\mathcal{M}(A)$ (with the appropriately defined $\mathcal{D}[\mathrm{E}$ even $]$ and $\mathcal{D}\left[\mathrm{E}^{\text {odd }}\right]$).
A solution to this exercise, together with the upcoming proof, will show that CH implies $\mathcal{M}(A) / A$ has $2^{\aleph_{1}}$ automorphisms when $A \cong B \otimes \mathcal{K}(H)$ for a unital C^{*}-algebra B.

Let

$$
\mathcal{F}[E]:=\left\{a_{0}+a_{1}: a_{0} \in \mathcal{D}\left[\mathrm{E}^{\text {even }}\right], a_{1} \in \mathcal{D}\left[\mathrm{E}^{\text {odd }}\right]\right\} .
$$

This is a Banach subspace, but not a subalgebra, of $\mathcal{B}(H)$.

Let

$$
\mathcal{F}[E]:=\left\{a_{0}+a_{1}: a_{0} \in \mathcal{D}\left[E^{\text {even }}\right], a_{1} \in \mathcal{D}\left[E^{\text {odd }}\right]\right\} .
$$

This is a Banach subspace, but not a subalgebra, of $\mathcal{B}(H)$.
Lemma 17.1.1 For $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$ we have

$$
\begin{aligned}
& \mathcal{F}[E]=\{a \in \mathcal{B}(H):(\forall m \in \mathbb{N})(\forall n \in \mathbb{N}) \\
& \left.\left(a \xi_{m} \mid \xi_{n}\right) \neq 0 \text { implies }(\exists j)\{m, n\} \subseteq E_{j} \cup E_{j+1}\right\} .
\end{aligned}
$$

Let

$$
\mathcal{F}[E]:=\left\{a_{0}+a_{1}: a_{0} \in \mathcal{D}\left[E^{\text {even }}\right], a_{1} \in \mathcal{D}\left[\mathrm{E}^{\text {odd }}\right]\right\}
$$

This is a Banach subspace, but not a subalgebra, of $\mathcal{B}(H)$.
Lemma 17.1.1 For $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$ we have

$$
\begin{aligned}
\mathcal{F}[\mathrm{E}]=\{a \in \mathcal{B}(H):(\forall m & \in \mathbb{N})(\forall n \in \mathbb{N}) \\
\left(a \xi_{m} \mid \xi_{n}\right) & \left.\neq 0 \text { implies }(\exists j)\{m, n\} \subseteq E_{j} \cup E_{j+1}\right\} .
\end{aligned}
$$

Prop 17.1.2 For every separable subalgebra A of $\mathcal{B}(H)$ there is $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$ such that $\pi[A] \subseteq \pi[\mathcal{F}[\mathrm{E}]]$.
$E \Sigma^{*} F \Rightarrow \pi[\bar{F}[E]] \subseteq$

Write $\mathcal{U}(A)$ for the unitary group of A. Identify $\mathcal{U}\left(\ell_{\infty}\right)$ with $\mathbb{T}^{\mathbb{N}}$ and identify ℓ_{∞} with the algebra of diagonal operators (with respect to a fixed basis) in $\mathcal{B}(H)$.

$$
\pi=|z \in \mathbb{C}|
$$

Write $\mathcal{U}(A)$ for the unitary group of A. Identify $\mathcal{U}\left(\ell_{\infty}\right)$ with $\mathbb{T}^{\mathbb{N}}$, and identify ℓ_{∞} with the algebra of diagonal operators (with respect to a fixed basis) in $\mathcal{B}(H)$.
Def 17.1.3 For $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and \underline{u} and v in $\mathbb{T}^{\mathbb{N}}$ we write $u \sim_{E} v$ if $u a u^{*}-v a v^{*} \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[E]$.

$$
(A)^{\prime \prime} u x(a)
$$

$$
\begin{aligned}
& \text { Ad } \dot{u}[\pi[F[E]] \\
& =A d \dot{v}[\pi[F[E]]
\end{aligned}
$$

Write $\mathcal{U}(A)$ for the unitary group of A. Identify $\mathcal{U}\left(\ell_{\infty}\right)$ with $\mathbb{T}^{\mathbb{N}}$, and identify ℓ_{∞} with the algebra of diagonal operators (with respect to a fixed basis) in $\mathcal{B}(H)$.
Def 17.1.3 For $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and u and v in $\mathbb{T}^{\mathbb{N}}$ we write $u \sim_{E} v$ if $u a u^{*}-$ vav $^{*} \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[E]$.

Lemma 17.1.4 Suppose \mathcal{E} is a \leq^{*}-cofinal subset of Part $_{\mathbb{N}}$ and $u_{\mathrm{E}} \in \mathbb{T}^{\mathbb{N}}$, for $\mathrm{E} \in \mathcal{E}$, satisfy $u_{\mathrm{E}} \sim_{\mathrm{E}} u_{\mathrm{F}}$ whenever $\mathrm{E} \leq^{*} \mathrm{~F}$ for E and F in \mathcal{E}. Then there exists a unique automorphism of $\mathcal{Q}(H)$ which agrees with $\operatorname{Ad} \pi\left(u_{\mathrm{E}}\right)$ on $\pi[\mathcal{F}[\mathrm{E}]]$ for all $\mathrm{E} \in \mathcal{E}$.

Write $\mathcal{U}(A)$ for the unitary group of A. Identify $\mathcal{U}\left(\ell_{\infty}\right)$ with $\mathbb{T}^{\mathbb{N}}$, and identify ℓ_{∞} with the algebra of diagonal operators (with respect to a fixed basis) in $\mathcal{B}(H)$.
Def 17.1.3 For $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and u and v in $\mathbb{T}^{\mathbb{N}}$ we write $u \sim_{\mathrm{E}} v$ if $u a u^{*}-$ vav $^{*} \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[E]$.

Lemma 17.1.4 Suppose \mathcal{E} is a \leq^{*}-cofinal subset of Part $_{\mathbb{N}}$ and $u_{\mathrm{E}} \in \mathbb{T}^{\mathbb{N}}$, for $\mathrm{E} \in \mathcal{E}$, satisfy $u_{\mathrm{E}} \sim_{\mathrm{E}} u_{\mathrm{F}}$ whenever $\mathrm{E} \leq^{*} \mathrm{~F}$ for E and F in \mathcal{E}. Then there exists a unique automorphism of $\mathcal{Q}(H)$ which agrees with $\mathrm{Ad} \pi\left(u_{\mathrm{E}}\right)$ on $\pi[\mathcal{F}[\mathrm{E}]]$ for all $\mathrm{E} \in \mathcal{E}$.
Proof: Note that $\mathrm{E} \leq^{*} \mathrm{~F}$ implies $\mathcal{F}[\mathrm{E}] \subseteq \mathcal{F}[\mathrm{F}]+\mathcal{K}(H)$. Since \mathcal{E} is cofinal, $\mathcal{Q}(H)=\bigcup_{\mathrm{E} \in \mathcal{E}} \pi[\mathcal{F}[\mathrm{E}]]$.

Write $\mathcal{U}(A)$ for the unitary group of A. Identify $\mathcal{U}\left(\ell_{\infty}\right)$ with $\mathbb{T}^{\mathbb{N}}$, and identify ℓ_{∞} with the algebra of diagonal operators (with respect to a fixed basis) in $\mathcal{B}(H)$.
Def 17.1.3 For $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and u and v in $\mathbb{T}^{\mathbb{N}}$ we write $u \sim_{\mathrm{E}} v$ if $u a u^{*}-v a v^{*} \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[\mathrm{E}]$.

Lemma 17.1.4 Suppose \mathcal{E} is a \leq^{*}-cofinal subset of Part $_{\mathbb{N}}$ and $u_{\mathrm{E}} \in \mathbb{T}^{\mathbb{N}}$, for $\mathrm{E} \in \mathcal{E}$, satisfy $\underline{u}_{\mathrm{E}} \sim_{\mathrm{E}} u_{\mathrm{F}}$ whenever $\mathrm{E} \leq^{*} \mathrm{~F}$ for E and F in \mathcal{E}. Then there exists a unique automorphism of $\overline{\mathcal{Q}}(H)$ which agrees with $\mathrm{Ad} \pi\left(u_{\mathrm{E}}\right)$ on $\pi[\mathcal{F}[\mathrm{E}]]$ for all $\mathrm{E} \in \mathcal{E}$.
Proof: Note that $\mathrm{E} \leq^{*} \mathrm{~F}$ implies $\mathcal{F}[\mathrm{E}] \subseteq \mathcal{F}[\mathrm{F}]+\mathcal{K}(H)$. Since \mathcal{E} is cofinal, $\mathcal{Q}(H)=\bigcup_{\mathrm{E} \in \mathcal{E}} \pi[\mathcal{F}[\mathrm{E}]]$. For $a \in \mathcal{Q}(H)$ let

$$
\Phi(a):=\operatorname{Ad}\left(\pi\left(u_{\mathrm{E}}\right)\right)(a), \text { for } \mathrm{E} \in \mathcal{E} \text { such that } a \in \pi[\mathcal{F}[\mathrm{E}]] .
$$

$a, b \in \dot{F}(E) \phi(a l)=\phi(G) \phi(l) \quad u \in l_{\infty}$

$$
a \in F(E)
$$

$$
\begin{gathered}
\phi[Q(H)]=0,(H) \\
\left.\phi[\pi(F[E]))=\pi \int F(E)\right), \\
\forall E
\end{gathered}
$$

Constructing an outer automorphism of $\mathcal{Q}(H)$ (using CH)

The plan:

1. Fix a \leq^{*}-cofinal chain E_{α}, for $\alpha<\aleph_{1}$, in Part $_{\mathbb{N}}$.

Constructing an outer automorphism of $\mathcal{Q}(H)$ (using CH)

The plan:

1. Fix a \leq^{*}-cofinal chain E_{α}, for $\alpha<\aleph_{1}$, in Part $_{\mathbb{N}}$.
2. Recursively find unitaries $u_{\alpha} \in \mathbb{T}^{\mathbb{N}}$ such that $\alpha<\beta$ implies that $u_{\alpha} \sim_{E_{\alpha}} \underline{u_{\beta}}$.

Constructing an outer automorphism of $\mathcal{Q}(H)$ (using CH)

The plan:

1. Fix a \leq^{*}-cofinal chain E_{α}, for $\alpha<\aleph_{1}$, in Part $_{\mathbb{N}}$.
2. Recursively find unitaries $u_{\alpha} \in \mathbb{T}^{\mathbb{N}}$ such that $\alpha<\beta$ implies that $u_{\alpha} \sim_{E_{\alpha}} u_{\beta}$.
3. Then $\left(\mathrm{E}_{\alpha}, u_{\alpha}\right)$, for $\alpha<\aleph_{1}$, defines an automorphism of $\mathcal{Q}(H)$ (Lemma 17.1.4).

Constructing an outer automorphism of $\mathcal{Q}(H)$ (using CH)

The plan:

1. Fix a \leq^{*}-cofinal chain E_{α}, for $\alpha<\aleph_{1}$, in Part $_{\mathbb{N}}$.
2. Recursively find unitaries $u_{\alpha} \in \mathbb{T}^{\mathbb{N}}$ such that $\alpha<\beta$ implies that $u_{\alpha} \sim_{E_{\alpha}} u_{\beta}$.
3. Then $\left(\mathrm{E}_{\alpha}, u_{\alpha}\right)$, for $\alpha<\aleph_{1}$, defines an automorphism of $\mathcal{Q}(H)$ (Lemma 17.1.4).
4. We can also enumerate $\mathcal{U}(\mathcal{Q}(H))$ as w_{α}, for $\alpha<\aleph_{1}$ and assure that $w_{\alpha} \not \chi_{\mathrm{E}_{\alpha}} u_{\alpha}$, and therefore $\Phi \neq \mathrm{Ad} w_{\alpha}$, for all α.

Constructing an outer automorphism of $\mathcal{Q}(H)$ (using CH)

The plan:

1. Fix a \leq^{*}-cofinal chain E_{α}, for $\alpha<\aleph_{1}$, in Part $_{\mathbb{N}}$.
2. Recursively find unitaries $u_{\alpha} \in \mathbb{T}^{\mathbb{N}}$ such that $\alpha<\beta$ implies that $u_{\alpha} \sim E_{0} u_{\beta}$.
3. Then $\left(\mathrm{E}_{\alpha}, u_{\alpha}\right)$, for $\alpha<\aleph_{1}$, defines an automorphism of $\mathcal{Q}(H)$ (Lemma 17.1.4).
4. We can also enumerate $\mathcal{U}(\mathcal{Q}(H))$ as w_{α}, for $\alpha<\aleph_{1}$ and assure that $w_{\alpha} \not \chi_{\mathrm{E}_{\alpha}} u_{\alpha}$, and therefore $\Phi \neq \mathrm{Ad} w_{\alpha}$, for all α.
5. Even better, we can recursively (along $\{0,1\}^{<\aleph_{1}}$) construct $2^{\aleph_{1}}$ distinct automorphisms (and $2^{\aleph_{1}}>\aleph_{1}=2^{\aleph_{0}}$).

Recall that $u \sim_{E} v \Leftrightarrow u a u^{*}-v a v^{*} \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[E]$; we need a working reformulation of this relation (Lemma 17.1.9 below).

Recall that $u \sim_{\mathrm{E}} v \Leftrightarrow u a u^{*}-v a v^{*} \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[\mathrm{E}]$; we need a working reformulation of this relation (Lemma 17.1.9 below).
Two illuminating remarks:

Recall that $u \sim_{E} v \Leftrightarrow u a u^{*}-v a v^{*} \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[E]$; we need a working reformulation of this relation (Lemma 17.1.9 below).
Two illuminating remarks:
(1) The following lemma will not be used explicitly:

Lemma Suppose $A \leq C$, and u, v are in $\mathcal{U}(C)$. TFAE:

1. $\operatorname{Ad} u(a)=\operatorname{Ad} v(a)$ for all $a \in A$
2. $u v^{*} \in C \cap A^{\prime}$.

$$
\begin{aligned}
& a \in A \\
& \operatorname{uan}^{*}=v a v^{t} \\
& v^{t} u a=a \sigma^{t h} \quad \forall a \in d
\end{aligned}
$$

Recall that $u \sim_{E} v \Leftrightarrow u a u^{*}-v a v^{*} \in \mathcal{K}(H)$ for all a $\in \mathcal{F}[E]$ we need a working reformulation of this relation (Lemma 17.1.9 below).
Two illuminating remarks:
(1) The following lemma will not be used explicitly:

Lemma Suppose $A \leq C$, and u, v are in $\mathcal{U}(C)$. TFAE:

1. $\operatorname{Ad} u(a)=\operatorname{Ad} v(a)$ for all $a \in A$

2. $u v^{*} \in C \cap A^{\prime}$.
(2) The following strengthening of Theorem 12.3.2 can be used to shorten the discussion:

Chm (Popa, J. Func. Anal 71, 393-408 (1987)) If M is a vol Neumann subalgebra of $\mathcal{B}(H)$, then $\mathcal{Q}(H) \cap \pi[M]^{\prime}=\pi\left[M^{\prime}\right]$.

For i and j in \mathbb{N}, x and y in $\mathbb{T}^{\mathbb{N}}$, and $F \subseteq \mathbb{N}$ let

$$
\begin{align*}
\Delta_{\{i, j\}}(x, y) & :=|x(i) \overline{x(j)}-y(i) \overline{y(j)}|, \text { and } \tag{1}\\
\Delta_{F}(x, y) & :=\sup _{i, j \in F} \Delta_{\{i, j\}}(x, y) \tag{2}
\end{align*}
$$

For i and j in \mathbb{N}, x and y in $\mathbb{T}^{\mathbb{N}}$, and $F \subseteq \mathbb{N}$ let

$$
\begin{align*}
\sim \Delta_{\{i, j\}}(x, y) & :=|x(i) \overline{x(j)}-y(i) \overline{y(j)}|, \text { and } \tag{1}\\
\Delta_{F}(x, y) & :=\sup _{i, j \in F} \Delta_{\{i, j\}}(x, y) . \tag{2}
\end{align*}
$$

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N}, and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold.

$$
\begin{aligned}
\text { 1. } \Delta_{\{i, j\}}(x, y)= & |x(i) \overline{y(i)}-x(j) \overline{y(j)}| . \\
& |x(i) \overline{x(j)}-y(i)\rangle \overline{(j)} \mid \\
= & |x(i)-y(i) \overline{Y(j)} \times(j)| \\
= & |x(i) \overline{Y(i)}-x(i) \overline{\zeta(i)}|
\end{aligned}
$$

For i and j in \mathbb{N}, x and y in $\mathbb{T}^{\mathbb{N}}$, and $F \subseteq \mathbb{N}$ let

$$
\begin{align*}
\Delta_{\{i, j\}}(x, y) & :=|x(i) \overline{x(j)}-y(i) \overline{y(j)}|, \text { and } \tag{1}\\
\Delta_{F}(x, y) & :=\sup _{i, j \in F} \Delta_{\{i, j\}}(x, y) . \tag{2}
\end{align*}
$$

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N}, and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold.
(1) $\Delta_{\{i, j\}}(x, y)=|x(i) \overline{y(i)}-x(j) \overline{y(j)}|$.
2. $\Delta_{F}(x, 1)=\operatorname{diam}(\{x(i): i \in F\})$.

$$
\Delta_{\langle i, i)}(x, y)=|x(i)-X(i)|
$$

For i and j in \mathbb{N}, x and y in $\mathbb{T}^{\mathbb{N}}$, and $F \subseteq \mathbb{N}$ let

$$
\begin{align*}
\Delta_{\{i, j\}}(x, y) & :=|x(i) \overline{x(j)}-y(i) \overline{y(j)}|, \text { and } \tag{1}\\
\Delta_{F}(x, y) & :=\sup _{i, j \in F} \Delta_{\{i, j\}}(x, y) . \tag{2}
\end{align*}
$$

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N}, and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold.

1. $\Delta_{\{i, j\}}(x, y)=\mid x(i) \overline{y(i)}-x(j) \overline{y(j)} \bar{j}$.
2. $\Delta_{F}(x, 1)=\operatorname{diam}(\{x(i): i \in F\})$.
3. $\frac{\Delta_{\{i, k\}}(x, y) \leq \Delta_{\{i, j\}}(x, y)}{\text { a pseudometric on } \mathbb{N} \text {. }}+\underline{\Delta_{\{j, k\}}(x, y)}$, hence $\Delta_{\{\underline{i, \cdot\}}}(\underline{x, y)}$ is

For i and j in \mathbb{N}, x and y in $\mathbb{T}^{\mathbb{N}}$, and $F \subseteq \mathbb{N}$ let

$$
\begin{align*}
\Delta_{\{i, j\}}(x, y) & :=x(i) x(j)-y(i) y(j) \mid, \text { and } \tag{1}\\
\Delta_{F}(x, y): & =\sup _{i, j \in F} \Delta_{\{i, j\}}(x, y) . \tag{2}
\end{align*}
$$

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N}, and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold.

1. $\Delta_{\{i, j\}}(x, y)=|x(i) \overline{y(i)}-x(j) \overline{y(j)}|$.
2. $\Delta_{F}(x, 1)=\operatorname{diam}(\{x(i): i \in F\})$.
3. $\Delta_{\{i, k\}}(x, y) \leq \Delta_{\{i, j\}}(x, y)+\Delta_{\{j, k\}}(x, y)$, hence $\Delta_{\{\cdot, \cdot\}}(x, y)$ is a pseudometric on \mathbb{N}.
4. $\Delta_{F}(x, z) \leq \Delta_{F}(x, y)+\Delta_{F}(y, z)$, hence Δ_{F} is a pseudometric on $\mathbb{T}^{\mathbb{N}}$.

For i and j in \mathbb{N}, x and y in $\mathbb{T}^{\mathbb{N}}$, and $F \subseteq \mathbb{N}$ let

$$
\begin{align*}
\rightarrow \Delta_{\{i, j\}}(x, y) & :=\mid x(i) \overline{x(j)}-y(i) \overline{y(j) \mid}, \text { and } \tag{1}\\
\Delta_{F}(x, y) & :=\sup _{i, j \in F} \Delta_{\{i, j\}}(x, y) . \tag{2}
\end{align*}
$$

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N}, and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold.

1. $\Delta_{\{i, j\}}(x, y)=|x(i) \overline{y(i)}-x(j) \overline{y(j)}|$.

2. $\Delta_{F}(x, 1)=\operatorname{diam}(\{x(i): i \in F\})$.
3. $\Delta_{\{i, k\}}(x, y) \leq \Delta_{\{i, j\}}(x, y)+\Delta_{\{j, k\}}(x, y)$, hence $\Delta_{\{\cdot, \cdot\}}(x, y)$ is a pseudometric on \mathbb{N}.
4. $\Delta_{F}(x, z) \leq \Delta_{F}(x, y)+\Delta_{F}(y, z)$, hence Δ_{F} is a pseudometric on $\mathbb{T}^{\mathbb{N}}$.
5. $\underline{\Delta}_{F}(x, y)=\Delta_{F}(x z, y z)$.

Lemma 17.1.6 Let F and E be finite subsets of \mathbb{N}. Then for all $i \in F, j \in E$, and all x and y we have

Lemma 17.1.6 Let F and E be finite subsets of \mathbb{N}. Then for all $i \in F, j \in E$, and all x and y we have
$\Delta_{F \cup E}(x, y) \leq \Delta_{F}(x, y)+\Delta_{E}(x, y)+\Delta_{\{i, j\}}(x, y)$.
Lemma For $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$,

$$
\Delta_{\mathrm{E}}(x, y):=\lim \sup _{j \rightarrow \infty} \Delta_{E_{j} \cup E_{j+1}}(x, y)
$$

defines a pseudometric on $\mathbb{T}^{\mathbb{N}}$.

Lemma 17.1.6 Let F and E be finite subsets of \mathbb{N}. Then for all $i \in F, j \in E$, and all x and y we have
$\Delta_{F \cup E}(x, y) \leq \Delta_{F}(x, y)+\Delta_{E}(x, y)+\Delta_{\{i, j\}}(x, y)$.
Lemma For $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$,

$$
\Delta_{\mathrm{E}}(x, y):=\lim \sup _{j \rightarrow \infty} \Delta_{E_{j} \cup E_{j+1}}(x, y)
$$

defines a pseudometric on $\mathbb{T}^{\mathbb{N}}$.
Lemma 17.1.7 If $\mathrm{E} \leq^{*} \mathrm{~F}$ and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then $\Delta_{\mathrm{E}}(x, z) \leq \Delta_{\mathrm{E}}(x, y)+\Delta_{\mathrm{E}}(y, z)$ and $\Delta_{\mathrm{E}}(x, y) \leq \Delta_{\mathrm{F}}(x, y)$.

$$
\varlimsup_{j \rightarrow 0^{*}} \Delta_{E_{i} \cup E_{i+1}}\left(X_{1} l\right)=0
$$

Def 17.1.8 Let $\mathrm{F}_{\mathrm{E}}:=\left\{\underline{x \in\left(\mathbb{T}^{\mathbb{N}}\right.}: \underline{\Delta}_{\mathrm{E}}(x, 1)=0\right\}$, and $G_{E}:=\mathbb{T}^{\mathbb{N}} / F_{E}$, for $E \in \operatorname{Part}_{\mathbb{N}}$.

$$
F_{E} \Delta \pi^{N}
$$

Def 17.1.8 Let $\mathrm{F}_{\mathrm{E}}:=\left\{x \in \mathbb{T}^{\mathbb{N}}: \Delta_{\mathrm{E}}(x, 1)=0\right\}$, and $G_{E}:=\mathbb{T}^{\mathbb{N}} / F_{E}$, for $E \in$ Part $_{\mathbb{N}}$.

$$
F_{F} \Delta F_{E}
$$

Then F_{E} is a subgroup of $\mathbb{T}^{\mathbb{N}}$ and $E \leq^{*} F$ implies $F_{E} \supseteq F_{F}$ and therefore $G_{F}=G_{E} /\left(F_{F} / F_{E}\right)$. Also,

Higru Grown

Def 17.1.8 Let $\mathrm{F}_{\mathrm{E}}:=\left\{x \in \mathbb{T}^{\mathbb{N}}: \Delta_{\mathrm{E}}(x, 1)=0\right\}$, and $G_{E}:=\mathbb{T}^{\mathbb{N}} / F_{E}$, for $E \in \operatorname{Part}_{\mathbb{N}}$.

Then F_{E} is a subgroup of $\mathbb{T}^{\mathbb{N}}$ and $E \leq^{*} F$ implies $F_{E} \supseteq F_{F}$ and therefore $\mathrm{G}_{\mathrm{F}}=\mathrm{G}_{\mathrm{E}} /\left(\mathrm{F}_{\mathrm{F}} / \mathrm{F}_{\mathrm{E}}\right)$. Also,

Lemma 17.1.9 Suppose $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and u and v belong to $\mathbb{T}^{\mathbb{N}}$. Then $u \sim_{E} v$ if and only if $u v^{*} \in \mathrm{~F}_{\mathrm{E}}$.

$$
A_{d} \dot{\hat{n}}|\pi \Gamma(F[E]]=A d \dot{v}| \pi[\delta[E)]
$$

$$
\begin{aligned}
& \sqrt{s-m i c}_{k} \sigma^{*} \in F_{E} \text {. Fix } a \in J[E] \\
& \operatorname{uan}^{*}-\operatorname{var}^{*} \in K(H) \Leftrightarrow \\
& \text { Note: In } M_{n}(\mathbb{C}) \text {, } \\
& \overline{u, v \in} \cup\left(M_{s}(\mathbb{K})\right) \\
& \text { then } \forall a \in M_{n}(G),(\|a\| \leq 1) \\
& \left\|u a u^{*}-v a v^{*}\right\| \approx 0 \\
& \Leftrightarrow \operatorname{dicn}\left(S p\left(\underline{u^{*}}\right)\right) \approx \varnothing
\end{aligned}
$$

A speedup of the relation \leq^{*} on Part $_{\mathbb{N}}$; the $<^{*}$ as defined here is not the same as \ll^{*} defined earlier

Let $\mathrm{E}<^{*} \mathrm{~F}$ if $\mathrm{E} \leq^{*} \mathrm{~F}$ and for every m there exist n and k such that $\bigcup_{j=n}^{n+m-1}{\overline{E_{j}} \subseteq F_{k}}$.
Lemma $<^{*}$ is a partial ordering on Part \mathbb{N} and $\mathrm{E}<^{*} \mathrm{~F}$ implies $E \leq *$.
$E<L^{A} F, \underline{L^{A} G}$
M

A speedup of the relation \leq^{*} on Part $_{\mathbb{N}}$; the $<^{*}$ as defined here is not the same as \ll^{*} defined earlier

Let $\mathrm{E}<^{*} \mathrm{~F}$ if $\mathrm{E} \leq^{*} \mathrm{~F}$ and for every m there exist n and k such that $\bigcup_{j=n}^{n+m-1} E_{j} \subseteq F_{k}$.
Lemma \lll^{*} is a partial ordering on Part $_{\mathbb{N}}$ and $\mathrm{E}<^{*} \mathrm{~F}$ implies $E \leq *$.

Lemma 17.1.10 $f \mathrm{E}<^{*} \mathrm{~F}$, then F_{F} is a proper subgroup of F_{E}.
$F_{F}=\left\{x \in \mathbb{\|} \prod_{j \rightarrow \infty} \Delta_{F_{i} \cup F_{j+1}}(x, 1)=0 \underset{\}}{ }\right.$
$|z-1|$
$E_{i} \quad E_{i+1}$
111 4. 1

Prop 17.1.11 For every $\ll *_{*}^{*}$-increasing sequence $\mathrm{E}(\alpha)$, for $\alpha<\aleph_{1}$, the inverse limit $\lim _{\alpha} \mathrm{G}_{\mathrm{E}(\alpha)}$ has cardinality $2^{\aleph_{1}}$.

$$
\begin{aligned}
& \text { PE For } S \in\{0,1\}_{i} \text { find } \\
& u_{S} \in G_{E(\alpha)} \quad \alpha=\operatorname{lem}(s) \\
& \text { so tot } \alpha<3 \quad \prod_{3, \alpha}\left(u_{s}\right)=U_{s}
\end{aligned}
$$

Prop 17.1.11 For every \ll^{*}-increasing sequence $\mathrm{E}(\alpha)$, for $\alpha<\aleph_{1}$, the inverse limit $\lim _{\alpha} \mathrm{G}_{\mathrm{E}(\alpha)}$ has cardinality $2^{\aleph_{1}}$.
Proof: Write $\mathrm{G}(\alpha):=\mathrm{G}_{\mathrm{E}(\alpha)}$ and $\mathrm{F}(\alpha):=\mathrm{F}_{\mathrm{E}(\alpha)}$.

Prop 17.1.11 For every \ll^{*}-increasing sequence $\mathrm{E}(\alpha)$, for $\alpha<\aleph_{1}$, the inverse limit $\lim _{\alpha} \mathrm{G}_{\mathrm{E}(\alpha)}$ has cardinality $2^{\aleph_{1}}$.
Proof: Write $\mathrm{G}(\alpha):=\mathrm{G}_{\mathrm{E}(\alpha)}$ and $\mathrm{F}(\alpha):=\mathrm{F}_{\mathrm{E}(\alpha)}$.
Claim. If α is a countable limit ordinal then

$$
x \mapsto\left(\pi_{\mathrm{E}(\beta) \mathrm{E}(\alpha)}(x): \beta<\alpha\right)
$$

is a surjection from $\mathrm{G}(\alpha)$ onto $\lim _{\beta<\alpha} \mathrm{G}(\beta)$.

Thm 17.1.12 CH implies that the Calkin algebra has at least $2^{\aleph_{1}}$ automorphisms.

$$
\begin{aligned}
& \text { E }(\alpha) \quad \operatorname{Past}_{\mathbb{N}} \\
& U(s) \quad S \in\langle 0,1\}^{<k_{1}} \\
& \text { 知(1) } \begin{array}{l}
S \subseteq t \\
u_{S} \sim_{E(W)} t
\end{array} \\
& \underline{\mid \operatorname{en}(S)=\alpha}
\end{aligned}
$$

(2) u_{11} $\sim u_{1}$

$$
\phi_{f} \quad u_{f i \alpha} \quad \alpha<\delta_{i}
$$

