Massive C^* -algebras, Winter 2021, I. Farah, Lecture 10

Recall from the last time: we started the proof of

Thm (Phillips–Weaver, 2008) CH implies that Q(H) has 2^{\aleph_1} outer automorphisms.

Part_N: the set of all partitions $E = \langle E_j : j \in \mathbb{N} \rangle$ of \mathbb{N} , where $E_j = [n(j), n(j+1))$ and $n(0) < n(1) < n(2) < \dots$

Def 9.7.2 On $\operatorname{Part}_{\mathbb{N}}$ define $\mathsf{E} \leq^* \mathsf{F}$ if $(\forall^{\infty} m)(\exists n) E_n \subseteq F_m$ (equivalently, if $(\forall^{\infty} i)(\exists j) E_i \cup E_{i+1} \subseteq F_j \cup F_{j+1})$

Def 9.7.5 Consider H with an orthonormal basis (ξ_n) . For $E \in Part_{\mathbb{N}}$ and $X \subseteq \mathbb{N}$ let $p_X^{E} := \operatorname{proj}_{\overline{\operatorname{span}}\{\xi_i : i \in \bigcup_{n \in X} E_n\}}$, and let $\mathcal{D}[E] := \{a \in \mathcal{B}(H) : (\forall m)(\forall n)((a\xi_m | \xi_n) \neq 0 \text{ implies } (\exists j)\{m, n\} \subseteq E_j)\},$ $\mathcal{A}[E] := \{\sum_n \lambda_n p_{\{n\}}^{E} | (\lambda_n) \in \ell_{\infty}\}$ $(= W^*\{p_X^{E} : X \subseteq \mathbb{N}\}).$

Lemma $\mathcal{D}[\mathsf{E}] \cong \prod_{n} M_{k(n)}(\mathbb{C})$ and $\mathcal{A}[\mathsf{E}] = Z(\mathcal{D}[\mathsf{E}])$.

For $E \in Part_{\mathbb{N}}$ define two coarser partitions, E^{even} and E^{odd} , by (with $E_{-1} := \emptyset$)

◆□ > ◆□ > ◆三 > ◆三 > 三 のへぐ

Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis ξ_n , for $n \in \mathbb{N}$. For a sequence a_n , for $n \in \mathbb{N}$ in $\mathcal{B}(H)$ there are $\mathsf{E} \in \mathsf{Part}_{\mathbb{N}}$, $a_n^0 \in \mathcal{D}[\mathsf{E}^{\mathsf{even}}]$ and $a_n^1 \in \mathcal{D}[\mathsf{E}^{\mathsf{odd}}]$ such that $a_n - a_n^0 - a_n^1$ is compact for each n.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis ξ_n , for $n \in \mathbb{N}$. For a sequence a_n , for $n \in \mathbb{N}$ in $\mathcal{B}(H)$ there are $E \in \operatorname{Part}_{\mathbb{N}}$, $a_n^0 \in \mathcal{D}[E^{\operatorname{even}}]$ and $a_n^1 \in \mathcal{D}[E^{\operatorname{odd}}]$ such that $a_n - a_n^0 - a_n^1$ is compact for each n.

< ロ > < 同 > < E > < E > E の < C</p>

Proof: It suffices to show this for a single *a*.

Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis ξ_n , for $n \in \mathbb{N}$. For a sequence a_n , for $n \in \mathbb{N}$ in $\mathcal{B}(H)$ there are $E \in \operatorname{Part}_{\mathbb{N}}$, $a_n^0 \in \mathcal{D}[E^{\operatorname{even}}]$ and $a_n^1 \in \mathcal{D}[E^{\operatorname{odd}}]$ such that $a_n - a_n^0 - a_n^1$ is compact for each n.

Proof: It suffices to show this for a single *a*.Choose $0 = n(0) < n(1) < \ldots$ so that if $E_j := [n(j), n(j+1))$ then (recall that $p_X^E := \text{proj}_{\overline{\text{span}}\{\xi_i : i \in \bigcup_{n \in X} E_n\}})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少♀?

$$\left|\left(\begin{array}{c} \rho_{n}^{\mathsf{E}} \subset \rho_{n}^{\mathsf{E}} \\ \left(\left(\begin{array}{c} \eta_{n}^{\mathsf{E}} \cap \rho_{n}^{\mathsf{E}}\right)\right)\right)\right| = \left\|\left(\begin{array}{c} \eta_{n}^{\mathsf{E}} \rho_{n}^{\mathsf{E}}\right)\right\| < 2^{-n}, \\ = \left\|\left(\begin{array}{c} \rho_{n}^{\mathsf{E}} \rho_{n}^{\mathsf{E}}\right)\right\| < 2^{-n}, \\ \left(\left(\begin{array}{c} \eta_{n}^{\mathsf{E}} \rho_{n}^{\mathsf{E}}\right)\right)\right\| = \left(\begin{array}{c} \eta_{n}^{\mathsf{E}} \rho_{n}^{\mathsf{E}}\right) + 2^{-n}, \\ \end{array}\right)$$

Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis ξ_n , for $n \in \mathbb{N}$. For a sequence a_n , for $n \in \mathbb{N}$ in $\mathcal{B}(H)$ there are $E \in \operatorname{Part}_{\mathbb{N}}$, $a_n^0 \in \mathcal{D}[E^{\operatorname{even}}]$ and $a_n^1 \in \mathcal{D}[E^{\operatorname{odd}}]$ such that $a_n - a_n^0 - a_n^1$ is compact for each n.

Proof: It suffices to show this for a single a. Choose 0 = n(0) < n(1) < ... so that if $E_i := [n(j), n(j+1))$ then (recall that $p_{\mathsf{X}}^{\mathsf{E}} := \operatorname{proj}_{\overline{\operatorname{span}}\{\xi_i : i \in \bigcup_{n \in \mathsf{X}} E_n\}})$ $\|p_{[n+1,\infty)}^{\mathsf{E}}ap_{n}^{\mathsf{E}}\| < 2^{-n},$ $\|p_{[n+1,\infty)}^{\mathsf{E}}a^*p_n^{\mathsf{E}}\| < 2^{-n}.$ Then let $a^{0} := \sum_{n=0}^{\infty} p_{\{2n,2n+1\}}^{\mathsf{E}} a p_{\{2n,2n+1\}}^{\mathsf{E}} - p_{\{2n+1\}}^{\mathsf{E}} a p_{\{2n+1\}}^{\mathsf{E}} |$ $a^{1} := \sum_{n=0}^{\infty} p_{\{2n+1,2n+2\}}^{\mathsf{E}} \overline{a p_{\{2n+1,2n+2\}}^{\mathsf{E}}} - p_{\{2n+2\}}^{\mathsf{E}} a p_{\{2n+2\}}^{\mathsf{E}} |$ $\wedge - \alpha^{2} - \alpha$ Exercise. Suppose that A is a σ -unital, non-unital C*-algebra that has an approximate unit (r_n) consisting of projections. Formulate and prove an analog of Lemma 9.7.6 for a countable subset of $\mathcal{M}(A)$ (with the appropriately defined $\mathcal{D}[\text{E} \text{ even}]$ and $\mathcal{D}[\text{E}^{\text{odd}}]$).

A solution to this exercise, together with the upcoming proof, will show that CH implies $\mathcal{M}(A)/A$ has 2^{\aleph_1} automorphisms when $A \cong B \otimes \mathcal{K}(H)$ for a unital C*-algebra *B*.

Let

$$\mathcal{F}[E] := \{a_0 + a_1 : a_0 \in \mathcal{P}[E^{\text{even}}], a_1 \in \mathcal{D}[E^{\text{odd}}]\}.$$

This is a Banach subspace, but not a subalgebra, of $\mathcal{B}(H)$.

Let

 $\mathcal{F}[\mathsf{E}] := \{a_0 + a_1 : a_0 \in \mathcal{D}[\mathsf{E}^{\mathrm{even}}], a_1 \in \mathcal{D}[\mathsf{E}^{\mathrm{odd}}]\}.$ This is a Banach subspace, but not a subalgebra, of $\mathcal{B}(H)$. Lemma 17.1.1 For $\mathsf{E} \in \mathsf{Part}_{\mathbb{N}}$ we have

$$\mathcal{F}[\mathsf{E}] = \{ a \in \mathcal{B}(H) : (\forall m \in \mathbb{N}) (\forall n \in \mathbb{N}) \\ \underbrace{(a\xi_m | \xi_n) \neq 0 \text{ implies } (\exists j)\{m, n\} \subseteq E_j \cup E_{j+1} \}.$$

Let

$$\mathcal{F}[\mathsf{E}] := \{a_0 + a_1 : a_0 \in \mathcal{D}[\mathsf{E}^{\operatorname{even}}], a_1 \in \mathcal{D}[\mathsf{E}^{\operatorname{odd}}]\}.$$

This is a Banach subspace, but not a subalgebra, of $\mathcal{B}(H)$.
Lemma 17.1.1 For $\mathsf{E} \in \operatorname{Part}_{\mathbb{N}}$ we have

$$\begin{aligned} \mathcal{F}[\mathsf{E}] &= \{ a \in \mathcal{B}(H) : (\forall m \in \mathbb{N}) (\forall n \in \mathbb{N}) \\ (a\xi_m | \xi_n) \neq 0 \text{ implies } (\exists j) \{m, n\} \subseteq E_j \cup E_{j+1} \}. \end{aligned}$$

Prop 17.1.2 For every separable subalgebra A of $\mathcal{B}(H)$ there is $E \in \operatorname{Part}_{\mathbb{N}}$ such that $\pi[A] \subseteq \pi[\mathcal{F}[E]]$. $E \leq \mathcal{F} = \mathcal{T}[\mathcal{F}[E]] \subseteq \mathcal{T}[\mathcal{F}[E]] \subseteq \mathcal{T}[\mathcal{F}[E]]$ Write $\mathcal{U}(A)$ for the unitary group of A. Identify $\mathcal{U}(\ell_{\infty})$ with $\mathbb{T}^{\mathbb{N}}$ and identify ℓ_{∞} with the algebra of diagonal operators (with respect to a fixed basis) in $\mathcal{B}(H)$. $\mathcal{I} = |\mathcal{Z} \in \mathcal{C}|$

loolN

Write $\mathcal{U}(A)$ for the unitary group of A. Identify $\mathcal{U}(\ell_{\infty})$ with $\mathbb{T}^{\mathbb{N}}$, and identify ℓ_{∞} with the algebra of diagonal operators (with respect to a fixed basis) in $\mathcal{B}(H)$.

Def 17.1.3 For $E \in Part_{\mathbb{N}}$ and u and v in $\mathbb{T}^{\mathbb{N}}$ we write $u \sim_{E} v$ if $uau^{*} - vav^{*} \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[E]$. (Ad $u \in [\mathcal{T}[\mathcal{F}[\mathcal{F}]]]$ $= Ad \quad \mathcal{C}[\mathcal{T}[\mathcal{F}[\mathcal{F}]]$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Write $\mathcal{U}(A)$ for the unitary group of A. Identify $\mathcal{U}(\ell_{\infty})$ with $\mathbb{T}^{\mathbb{N}}$, and identify ℓ_{∞} with the algebra of diagonal operators (with respect to a fixed basis) in $\mathcal{B}(H)$.

Def 17.1.3 For $E \in Part_{\mathbb{N}}$ and u and v in $\mathbb{T}^{\mathbb{N}}$ we write $u \sim_{\mathsf{E}} v$ if $uau^* - vav^* \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[\mathsf{E}]$.

Lemma 17.1.4 Suppose \mathcal{E} is a \leq^* -cofinal subset of $\operatorname{Part}_{\mathbb{N}}$ and $u_{\mathsf{E}} \in \mathbb{T}^{\mathbb{N}}$, for $\mathsf{E} \in \mathcal{E}$, satisfy $u_{\mathsf{E}} \sim_{\mathsf{E}} u_{\mathsf{F}}$ whenever $\mathsf{E} \leq^* \mathsf{F}$ for E and F in \mathcal{E} . Then there exists a unique automorphism of $\mathcal{Q}(\mathsf{H})$ which agrees with $\operatorname{Ad} \pi(u_{\mathsf{E}})$ on $\pi[\mathcal{F}[\mathsf{E}]]$ for all $\mathsf{E} \in \mathcal{E}$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ の�?

Write $\mathcal{U}(A)$ for the unitary group of A. Identify $\mathcal{U}(\ell_{\infty})$ with $\mathbb{T}^{\mathbb{N}}$, and identify ℓ_{∞} with the algebra of diagonal operators (with respect to a fixed basis) in $\mathcal{B}(H)$.

Def 17.1.3 For $E \in Part_{\mathbb{N}}$ and u and v in $\mathbb{T}^{\mathbb{N}}$ we write $u \sim_{\mathsf{E}} v$ if $uau^* - vav^* \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[\mathsf{E}]$.

Lemma 17.1.4 Suppose \mathcal{E} is a \leq^* -cofinal subset of $\operatorname{Part}_{\mathbb{N}}$ and $u_{\mathsf{E}} \in \mathbb{T}^{\mathbb{N}}$, for $\mathsf{E} \in \mathcal{E}$, satisfy $u_{\mathsf{E}} \sim_{\mathsf{E}} u_{\mathsf{F}}$ whenever $\mathsf{E} \leq^* \mathsf{F}$ for E and F in \mathcal{E} . Then there exists a unique automorphism of $\mathcal{Q}(H)$ which agrees with $\operatorname{Ad} \pi(u_{\mathsf{E}})$ on $\pi[\mathcal{F}[\mathsf{E}]]$ for all $\mathsf{E} \in \mathcal{E}$.

Proof: Note that $E \leq^* F$ implies $\mathcal{F}[E] \subseteq \mathcal{F}[F] + \mathcal{K}(H)$. Since \mathcal{E} is cofinal, $\mathcal{Q}(H) = \bigcup_{E \in \mathcal{E}} \pi[\mathcal{F}[E]]$.

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Э

SQA

Write $\mathcal{U}(A)$ for the unitary group of A. Identify $\mathcal{U}(\ell_{\infty})$ with $\mathbb{T}^{\mathbb{N}}$, and identify ℓ_{∞} with the algebra of diagonal operators (with respect to a fixed basis) in $\mathcal{B}(H)$.

Def 17.1.3 For $E \in Part_{\mathbb{N}}$ and u and v in $\mathbb{T}^{\mathbb{N}}$ we write $u \sim_{\mathsf{F}} v$ if $uau^* - vav^* \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[E]$.

Lemma 17.1.4 Suppose \mathcal{E} is a \leq^* -cofinal subset of $\mathsf{Part}_{\mathbb{N}}$ and $u_{\mathsf{E}} \in \mathbb{T}^{\mathbb{N}}$, for $\mathsf{E} \in \mathcal{E}$, satisfy $\underline{u}_{\mathsf{E}} \sim_{\mathsf{E}} u_{\mathsf{F}}$ whenever $\mathsf{E} \leq^* \mathsf{F}$ for E and F in \mathcal{E} . Then there exists a unique automorphism of $\mathcal{Q}(H)$ which agrees with Ad $\pi(u_{\mathsf{E}})$ on $\pi[\mathcal{F}[\mathsf{E}]]$ for all $\mathsf{E} \in \mathcal{E}$.

Proof: Note that $E \leq^* F$ implies $\mathcal{F}[E] \subseteq \mathcal{F}[F] + \mathcal{K}(H)$. Since \mathcal{E} is cofinal, $\mathcal{Q}(H) = \bigcup_{\mathsf{E} \in \mathcal{E}} \pi[\mathcal{F}[\mathsf{E}]].$ a en [FCE] For $a \in \mathcal{Q}(H)$ let

Adri $\Phi(a) := \operatorname{Ad}(\pi(u_{\mathsf{E}}))(a)$, for $\mathsf{E} \in \mathcal{E}$ such that $a \in \pi[\mathcal{F}[\mathsf{E}]]$. $G_{1,L} \in \widehat{\mathcal{H}}(E) \phi(aL) = \phi(G) \phi(G)$

UEL.

 $a \in F(E)$

FE

$\begin{aligned} \phi \left[Q(H) \right] &= Q(H) \\ \phi \left[T(F(E)) \right] &= T(F(E)), \end{aligned}$

The plan:

1. Fix a \leq^* -cofinal chain E_{α} , for $\alpha < \aleph_1$, in $\mathsf{Part}_{\mathbb{N}}$.

The plan:

- 1. Fix a \leq^* -cofinal chain E_{α} , for $\alpha < \aleph_1$, in $\mathsf{Part}_{\mathbb{N}}$.
- 2. Recursively find unitaries $u_{\alpha} \in \mathbb{T}^{\mathbb{N}}$ such that $\alpha < \beta$ implies that $u_{\alpha} \sim_{\mathsf{E}_{\alpha}} u_{\beta}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

The plan:

- 1. Fix a \leq^* -cofinal chain E_{α} , for $\alpha < \aleph_1$, in $\mathsf{Part}_{\mathbb{N}}$.
- 2. Recursively find unitaries $u_{\alpha} \in \mathbb{T}^{\mathbb{N}}$ such that $\alpha < \beta$ implies that $u_{\alpha} \sim_{\mathsf{E}_{\alpha}} u_{\beta}$.
- 3. Then (E_{α}, u_{α}) , for $\alpha < \aleph_1$, defines an automorphism of $\mathcal{Q}(H)$ (Lemma 17.1.4).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

The plan:

- 1. Fix a \leq^* -cofinal chain E_{α} , for $\alpha < \aleph_1$, in $\mathsf{Part}_{\mathbb{N}}$.
- 2. Recursively find unitaries $u_{\alpha} \in \mathbb{T}^{\mathbb{N}}$ such that $\alpha < \beta$ implies that $u_{\alpha} \sim_{\mathsf{E}_{\alpha}} u_{\beta}$.
- 3. Then (E_{α}, u_{α}) , for $\alpha < \aleph_1$, defines an automorphism of $\mathcal{Q}(H)$ (Lemma 17.1.4).
- 4. We can also enumerate $\mathcal{U}(\mathcal{Q}(H))$ as w_{α} , for $\alpha < \aleph_1$ and assure that $w_{\alpha} \not\sim_{\mathsf{E}_{\alpha}} u_{\alpha}$, and therefore $\Phi \neq \mathsf{Ad} w_{\alpha}$, for all α .

< ロ > < 同 > < E > < E > E の < C</p>

The plan:

- 1. Fix a \leq^* -cofinal chain E_{α} , for $\alpha < \aleph_1$, in $\mathsf{Part}_{\mathbb{N}}$.
- 2. Recursively find unitaries $u_{\alpha} \in \mathbb{T}^{\mathbb{N}}$ such that $\alpha < \beta$ implies that $u_{\alpha} \sim_{\mathsf{E}_{q}} u_{\beta}$.
- 3. Then $(\mathsf{E}_{\alpha}, u_{\alpha})$, for $\alpha < \aleph_1$, defines an automorphism of $\mathcal{Q}(H)$ (Lemma 17.1.4).
- 4. We can also enumerate $\mathcal{U}(\mathcal{Q}(H))$ as w_{α} , for $\alpha < \aleph_1$ and assure that $w_{\alpha} \not\sim_{\mathsf{E}_{\alpha}} u_{\alpha}$, and therefore $\Phi \neq \mathsf{Ad} w_{\alpha}$, for all α .
- 5. Even better, we can recursively (along $\{0,1\}^{\langle\aleph_1}$) construct 2^{\aleph_1} distinct automorphisms (and $2^{\aleph_1} > \aleph_1 = 2^{\aleph_0}$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のQ@

Recall that $u \sim_E v \Leftrightarrow uau^* - vav^* \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[E]$; we need a working reformulation of this relation (Lemma 17.1.9 below).

Recall that $u \sim_E v \Leftrightarrow uau^* - vav^* \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[E]$; we need a working reformulation of this relation (Lemma 17.1.9 below).

Two illuminating remarks:

Recall that $u \sim_{\mathsf{E}} v \Leftrightarrow uau^* - vav^* \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[\mathsf{E}]$; we need a working reformulation of this relation (Lemma 17.1.9 below).

Two illuminating remarks:

(1) The following lemma will not be used explicitly:

Lemma Suppose $A \leq C$, and u, v are in $\mathcal{U}(C)$. TFAE:

1. Ad u(a) = Ad v(a) for all $a \in A$ 2. $uv^* \in C \cap A'$. $uv^* \in C \cap A'$. $ua u^* = \sigma uv^*$ $uv^* \in C \cap A'$ $uv^* \in C \cap A'$ Recall that $u \sim_{\mathsf{E}} v \Leftrightarrow uau^* - vav^* \in \mathcal{K}(H)$ for all $a \in \mathcal{F}[\mathsf{E}]$; we need a working reformulation of this relation (Lemma 17.1.9 below).

Two illuminating remarks:

(1) The following lemma will not be used explicitly:

Lemma Suppose $A \leq C$, and u, v are in $\mathcal{U}(C)$. TFAE:

1. Ad
$$u(a) = \operatorname{Ad} v(a)$$
 for all $a \in A$

$$2. \quad uv^* \in C \cap A'.$$

(2) The following strengthening of Theorem 12.3.2 can be used to shorten the discussion:

Thm (Popa, J. Func. Anal **71**, 393–408 (1987)) If M is a von Neumann subalgebra of $\mathcal{B}(H)$, then $\mathcal{Q}(H) \cap \pi[M]' = \pi[M']$.

VEe]

A[E°]

$$\Delta_{\{i,j\}}(x,y) := |x(i)\overline{x(j)} - y(i)\overline{y(j)}|, \text{ and}$$
(1)
$$\Delta_{F}(x,y) := \sup_{i,j\in F} \Delta_{\{i,j\}}(x,y).$$
(2)

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N} , and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold.

$$\sum_{i,j} (x, y) = |x(i)\overline{y(i)} - x(j)\overline{y(j)}|.$$

$$|\chi(i)\overline{\chi(j)} - \overline{\chi(i)}\overline{\chi(j)}|.$$

$$= |\chi(i) - \overline{\chi(i)}\overline{\chi(j)} - \overline{\chi(j)}\overline{\chi(j)}|.$$

$$= |\chi(i)\overline{\chi(i)} - \overline{\chi(j)}\overline{\chi(j)}|.$$

$$\Delta_{\{i,j\}}(x,y) := |x(i)\overline{x(j)} - y(i)\overline{y(j)}|, \text{ and}$$
(1)
$$\underline{\Delta_F(x,y)} := \sup_{i,j\in F} \Delta_{\{i,j\}}(x,y).$$
(2)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少♀?

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N} , and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold. (1) $\Delta_{\{i,j\}}(x,y) = |x(i)\overline{y(i)} - x(j)\overline{y(j)}|$. 2. $\Delta_{F}(x,1) = \operatorname{diam}(\{x(i) : i \in F\})$. $\forall = i$ $\Delta_{\chi_{i}}(y(x,y)) = |\chi(i)-\chi(i)|$

$$\Delta_{\{i,j\}}(x,y) := |x(i)\overline{x(j)} - y(i)\overline{y(j)}|, \text{ and}$$
(1)
$$\Delta_{F}(x,y) := \sup_{i,j\in F} \Delta_{\{i,j\}}(x,y).$$
(2)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N} , and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold. 1. $\Delta_{\{i, i\}}(x, y) = |x(i)\overline{y(i)} - x(i)\overline{y(i)}|$.

2.
$$\Delta_F(x,1) = \operatorname{diam}(\{x(i) : i \in F\}).$$

3.
$$\Delta_{\{i,k\}}(x,y) \leq \Delta_{\{i,j\}}(x,y) + \Delta_{\{j,k\}}(x,y), \text{ hence } \Delta_{\{\cdot,\cdot\}}(x,y) \text{ is a pseudometric on } \mathbb{N}.$$

$$\Delta_{\{i,j\}}(x,y) := \underbrace{|x(i)\overline{x(j)} - y(i)\overline{y(j)}|}_{i,j\in F}, \text{ and } (1)$$

$$\Delta_{F}(x,y) := \sup_{i,j\in F} \Delta_{\{i,j\}}(x,y). \qquad (2)$$

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N} , and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold.

- 1. $\Delta_{\{i,j\}}(x,y) = |x(i)\overline{y(i)} x(j)\overline{y(j)}|.$
- 2. $\Delta_F(x,1) = \text{diam}(\{x(i) : i \in F\}).$
- 3. $\Delta_{\{i,k\}}(x,y) \leq \Delta_{\{i,j\}}(x,y) + \Delta_{\{j,k\}}(x,y)$, hence $\Delta_{\{\cdot,\cdot\}}(x,y)$ is a pseudometric on \mathbb{N} .
- 4. $\Delta_F(x,z) \leq \Delta_F(x,y) + \Delta_F(y,z)$, hence Δ_F is a pseudometric on $\mathbb{T}^{\mathbb{N}}$.

$$\Delta_{\{i,j\}}(x,y) := |x(i)\overline{x(j)} - y(i)\overline{y(j)}|, \text{ and}$$

$$\Delta_{F}(x,y) := \sup_{i,j\in F} \Delta_{\{i,j\}}(x,y).$$

$$(1)$$

$$(2)$$

Lemma 17.1.5 If $F \subseteq \mathbb{N}$ is nonempty, i, j are in \mathbb{N} , and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then the following hold. 1. $\Delta_{\{i,j\}}(x,y) = |x(i)\overline{y(i)} - x(j)\overline{y(j)}|$. 2. $\Delta_{F}(x,1) = \operatorname{diam}(\{x(i) : i \in F\})$. 3. $\Delta_{\{i,k\}}(x,y) \le \Delta_{\{i,j\}}(x,y) + \Delta_{\{j,k\}}(x,y)$, hence $\Delta_{\{\cdot,\cdot\}}(x,y)$ is a pseudometric on \mathbb{N} .

- 4. $\Delta_F(x,z) \leq \Delta_F(x,y) + \Delta_F(y,z)$, hence Δ_F is a pseudometric on $\mathbb{T}^{\mathbb{N}}$.
- 5. $\Delta_F(x,y) = \Delta_F(xz,yz)$. $\chi(i|z(i) \ \overline{\chi(i)} \ Z(i) \ Z(i) = \chi(i|\chi(i)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Lemma 17.1.6 Let F and E be finite subsets of N. Then for all $i \in F$, $j \in E$, and all x and y we have $\Delta_{F \cup E}(x, y) \leq \Delta_F(x, y) + \Delta_E(x, y) + \Delta_{\{i,j\}}(x, y)$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

Lemma 17.1.6 Let F and E be finite subsets of N. Then for all $i \in F$, $j \in E$, and all x and y we have $\Delta_{F \cup E}(x, y) \leq \Delta_F(x, y) + \Delta_E(x, y) + \Delta_{\{i,j\}}(x, y)$.

 ${\sf Lemma} \quad \textit{For} \; {\sf E} \in {\sf Part}_{\mathbb N},$

$$\Delta_{\mathsf{E}}(x,y) := \limsup_{j \to \infty} \Delta_{E_j \cup E_{j+1}}(x,y)$$
defines a pseudometric on $\mathbb{T}^{\mathbb{N}}$.
$$\downarrow \not \stackrel{\sim}{\to} j \quad \exists_{i} \quad E_{j} \cup E_{j+j}$$
Lemma 17.1.7 If $\mathsf{E} \leq * \mathsf{F}$ and x, y, z are in $\mathbb{T}^{\mathbb{N}}$ then
$$\overset{\subseteq}{\to} \mathcal{L}_{\mathsf{E}}(x,z) \leq \Delta_{\mathsf{E}}(x,y) + \Delta_{\mathsf{E}}(y,z)$$
 and $\Delta_{\mathsf{E}}(x,y) \leq \Delta_{\mathsf{F}}(x,y)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 $\underbrace{\lim_{j \to 0} \Delta_{E_{j} \cup \overline{E}_{j+\epsilon_{i}}}}_{\text{Def 17.1.8 Let } F_{E}} := \{ x \in \mathbb{T}^{\mathbb{N}} : \Delta_{E}(x, 1) = 0 \}, \text{ and } \bigcup$ $G_{\mathsf{E}} := \mathbb{T}^{\mathbb{N}} / F_{\mathsf{E}}$, for $\mathsf{E} \in \mathsf{Part}_{\mathbb{N}}$. Tun dicu (Sp(XPE)) FF STN

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ シ へ ()

Then F_E is a subgroup of $\mathbb{T}^{\mathbb{N}}$ and $E \leq^* F$ implies $F_E \supseteq F_F$ and therefore $G_F = G_E / (F_F / F_E)$. Also,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少♀?

Def 17.1.8 Let
$$F_E := \{x \in \mathbb{T}^{\mathbb{N}} : \Delta_E(x, 1) = 0\}$$
, and $G_E := \mathbb{T}^{\mathbb{N}} / F_E$, for $E \in Part_{\mathbb{N}}$.

Then F_E is a subgroup of $\mathbb{T}^{\mathbb{N}}$ and $E \leq^* F$ implies $F_E \supseteq F_F$ and therefore $G_F = G_E / (F_F / F_E)$. Also,

Adi[T(F(E)] = Adi[T(F(E)]]

Lemma 17.1.9 Suppose $E \in Part_{\mathbb{N}}$ and u and v belong to $\mathbb{T}^{\mathbb{N}}$. Then $u \sim_{\mathsf{E}} v$ if and only if $uv^* \in \mathsf{F}_{\mathsf{E}}$.

> ਪ < ≣ → < ≣ → < ⊡ → < □ →

ASSUME OF EFF. FIX QEJ[E] uant-vav * EK(H/ => Note: In My (C), $u, v \in U(M, (C))$ then the My (C/ (Uall SI) 11 uau - vav *11 20 (=) dien (S/ (uv*//~ 0

A speedup of the relation \leq^* on $Part_{\mathbb{N}}$; the \ll^* as defined here is not the same as \ll^* defined earlier

Let $E \ll^* F$ if $E \leq^* F$ and for every *m* there exist *n* and *k* such that $\bigcup_{i=n}^{n+m-1} \overline{E_j} \subseteq F_k$. Lemma \ll^* is a partial ordering on $Part_N$ and $E \ll^* F$ implies E <* F. E << *F, F << *G▲□▶▲榔▶▲≧▶▲≧▶ ≧ ∽��♡

A speedup of the relation \leq^* on $Part_{\mathbb{N}}$; the \ll^* as defined here is not the same as \ll^* defined earlier

Let $E \ll^* F$ if $E \leq^* F$ and for every *m* there exist *n* and *k* such that $\bigcup_{j=n}^{n+m-1} E_j \subseteq F_k$.

Lemma \ll^* is a partial ordering on $Part_{\mathbb{N}}$ and $E \ll^* F$ implies $E \leq^* F$.

Lemma 17.1.10 $F \in \ll F$, then F_F is a proper subgroup of F_E . $F_F = \{X \in I \mid \lim_{j \to \sigma} A_{F_j} \cup F_{j-e_j} (X, I) = o \}$ [Y - I]E: Eight [I = I = I = I = I]

Prop 17.1.11 For every \ll^* -increasing sequence $E(\alpha)$, for $\alpha < \aleph_1$, the inverse limit $\varprojlim_{\alpha} G_{E(\alpha)}$ has cardinality 2^{\aleph_1} . Proof: Write $G(\alpha) := G_{E(\alpha)}$ and $F(\alpha) := F_{E(\alpha)}$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● のへで

Prop 17.1.11 For every \ll^* -increasing sequence $E(\alpha)$, for $\alpha < \aleph_1$, the inverse limit $\varprojlim_{\alpha} G_{E(\alpha)}$ has cardinality 2^{\aleph_1} . Proof: Write $G(\alpha) := G_{E(\alpha)}$ and $F(\alpha) := F_{E(\alpha)}$. Claim. If α is a countable limit ordinal then $x \mapsto (\pi_{E(\beta)E(\alpha)}(x) : \beta < \alpha)$ is a surjection from $G(\alpha)$ onto $\varprojlim_{\beta < \alpha} G(\beta)$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ の�?

Thm 17.1.12 CH implies that the Calkin algebra has at least 2^{\aleph_1} automorphisms.

 $E \forall 1 \qquad Prt_{P} = K_{1}$ $U(S) \qquad S \in 20, 15 = K_{1}$ $M(S) \qquad S \leq t \qquad \lfloor p(S) = d \\ S \sim_{E} U_{1} t \qquad -$

>0 <u>E(x+1)</u> > 1

 $\oint_{\mathcal{F}} \mathcal{U}_{\mathcal{F}} \mathcal{U}_{\mathcal{F}} \neq \mathcal{K},$