Massive C*-algebras, Winter 2021, |. Farah, Lecture 10

Recall from the last time: we started the proof of
Thm (Phillips—Weaver, 2008) CH implies that Q(H) has 2}111 outer

automorphisms. IR Z[YD
Party: the set of all partitions E = (E; : j € N) of N, where \
E: = [n(j), n(j + 1)) and n(0) < n(1) < n(2) < .... (k)|

Def 9.7.2 On Party define
E <*F if (V°*°m)(3n)E, C F,, (equivalently, if
(Vi) (F)Ei U Eiz1 C FjU Fji1)

Def 9.7.5 Consider H with an orthonormal basis (£,). For
E € Party and X C N Jet p§ := projm{gi:,-eunex £y, and let

DIE] := {a € B(H) : (¥m)(¥n)((a6ml&n) # O implies (3){m, n}  £))},
AE] = {3 AnpE(0) € £} (= WH{pE 1 X C N)).

Lemma DI[E| =[], M, (C) and A[E| = Z(DI|E}).



For E € Party define two coarser partitions, EV*® and E°99, by (with E_1 := ()

E;V" := Eop U Eapy,
ECYY .= Epp_1 U Ean.
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| owe you a proof of:

Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis
&n, for n € N. For a sequence ap,, for n € N in B(H) there are

E € Party, a% € D[E®*"] and a} € D[E®Y] such that a, — a° — at
Is compact for each n.
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Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis
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Is compact for each n.

Proof: It suffices to show this for a single a.
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| owe you a proof of:

Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis
&n, for n € N. For a sequence ap,, for n € N in B(H) there are

E € Party, a° € D[E®*"] and a} € D[E®Y] such that a, — a% — at
Is compact for each n.

Proof: It suffices to show this for a single a.Choose
0=n(0) < n(l) < ... sothat if Ej := [n(j), n(j + 1)) then (recall that

P>E< = projm{g,;ieunex En}) E,
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Exercise. Suppose that A is a o-unital, non-unital C*-algebra that
has an approximate unit (r,) consisting of projections. Formulate
and prove an analog of Lemma9.7.6for-acountable subset of
M(A) (with the appropriately defined D[E even] and D[E°41]).

A solution to this exercise, together with the upcoming proof, will
show that CH implies M(A)/A has 2%t automorphisms when
A= B® K(H) for a unital C*-algebra B.



Let
F[E] := {ao + a1 : ap € D[E®Y®], a; € D[E*4]}.
- —\ - — _—

This is a Banach subspace, but not a subalgebra, of B(H).
|
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Let
F[E] := {ag + a1 : ap € D[E®¥"], a; € D[E°4]}.

This is a Banach subspace, but not a subalgebra, of B(H).

Lemma 17.1.1 For E € Party we have

F[E] ={a€ B(H): (Vvm € N)(Vn € N)
(a€m|&n) # 0 implies (3j){m, n} C Ej U Ejiq}.



Let
F[E] := {ag + a1 : ap € D[E®¥"], a; € D[E°4]}.

This is a Banach subspace, but not a subalgebra, of B(H).

Lemma 17.1.1 For E € Party we have

F[E] ={a€ B(H): (Vvm € N)(Vn € N)
(a€m|&n) # 0 implies (3j){m, n} C Ej U Eji1}.

Prop 17.1.2 For every separable subalgebra A of B(H) there is
E € Party such that n[A] C n[F[E]].



Write 2/(A) for the unitary group of A. Identify U ({s,) with’ TV,
and identify /o, with the algebra of diagonal operators (with

respect to a fixed basis) in B(H).



Write U/(A) for the unitary group of A. Identify U({s,) with TV,
and identify /o, with the algebra of diagonal operators (with
respect to a fixed basis) in B(H).

Def 17.1.3 For E € Party and u and v in TN we write u ~g v if
uau® — vav* € K(H) for all a € F[E].
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agrees with Ad w(ug) on w[F[E]] for allE € £.
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Proof: Note that E <* F implies F[E] C F[F| + IC(H). Since £ is
cofinal, Q(H) = Ugce 7[FIE]].



Write 2/(A) for the unitary group of A. Identify U({s,) with TV,
and identify /o, with the algebra of diagonal operators (with
respect to a fixed basis) in B(H).

Def 17.1.3 For E € Party and u and v in TN we write u ~g v if
uau® — vav* € K(H) for all a € F[E].

Lemma 17.1.4 Suppose £ is a <*-cofinal subset of Party and

ug € TV, for E € &, satisfy ug ~g up whenever E <* F for E and F
in £. Then there exists a unique automorphism of Q(H) which
agrees with Ad w(ug) on w[F[E]] for allE € £.

Proof: Note that E <* F implies F[E] C F[F| + KC(H). Since £ is
cofinal, Q(H) = Ugce 7[FIE]].
For a € Q(H) let

®(a) .= Ad(m(ug))(a), for E € € such that a € 7[F[E]].
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Constructing an outer automorphism of Q(H) (using CH)

The plan:
1. Fix a <*-cofinal chain E,, for & < Ny, in Party.
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The plan:
1. Fix a <*-cofinal chain E,, for & < Ny, in Party.

2. Recursively find unitaries u, € TY such that a < 3 implies

@
that uy ~g, ug.
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Constructing an outer automorphism of Q(H) (using CH)

The plan:
1. Fix a <*-cofinal chain E,, for & < Ny, in Party.
2. Recursively find unitaries u, € TN such that a < 3 implies
that u, ~g, ug.
3. Then (E, uy), for a < Ry, defines an automorphism of Q(H)
(Lemma 17.1.4).
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4. We can also enumerate U(Q(H)) as w,, for @« < N; and
assure that wy, Y. Uy, and therefore ® = Ad w,, for all a.



Constructing an outer automorphism of Q(H) (using CH)

The plan:
1. Fix a <*-cofinal chain E,, for & < Ny, in Party.
2.)Recursively find unitaries u, € TY such that a < 3 implies
that uo~E,) ug.

3. Then (Ey, uy), for a < Ny, defines an automorphism of Q(H)
(Lemma 17.1.4).

4. We can also enumerate U(Q(H)) as w,, for @« < N; and
assure that wy, Y, Uy, and therefore ® = Ad w,, for all a.

5. Even better, we can recursively (along {0,1}<%1) construct
281 distinct automorphisms (and 28 > X; = 2%0),



Recall that u ~g v < vau* — vav* € K(H) for all a € F[E]; we
need a working reformulation of this relation (Lemma 17.1.9
below).
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2. uv e CNA.



Recall that u ~g v < vau™ — vav*® € K(H) for all a & F[E]; we
need a working reformulation of this relation (Lemma 17.1.9
below).

Two illuminating remarks:

(1) The following lemma will not be used explicitly:

Lemma Suppose A< C, and u, v are in U(C). TFAE:
1. Adu(a) =Adv(a) forallac A
2. uv e CNA.

(2) The following strengthening of Theerem 12.3.2 can be used to
shorten the discussion:

Thm (Popa, J. Func. Anal 71, 393-408 (1987)) If M is a von
Neumann subalgebra of B(H), then Q(H) N w[M] = w[M'].



Foriand jinN, xand y in T, and F C N let

Ay () = XOXG) — y()y ()], and

Af(x,y) == sup Agn(x,y).
IJeF



Foriand jinN, xand y in T, and F C N let

— A jxy) = x()x0) = y(i)y ()], and (1)
Af(x,y) = Isjuep Agipn(x,y). (2)

Lemma 17.1.5 If F C N is nonempty, i,j are in N, and x,y, z are
in TN then the following hold.
L Ay (xy) = Ix(y () = xG)y )l -
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KRG -y Ol XU R6) =/
=KW =y 55 X v)
= (X5 - xS



Foriand jinN, xand y in TV, and F C N let

Agijy(x,y) = Ix(Nx() — y(1)y()l, and (1)
AF(Xay) ‘= ISJUEI?__ A{i,j}(Xa)/)' (2)

Lemma 17.1.5 If F C N is nonempty, i,j are in N, and x,y, z are
in TN then the following hold.

L) Agijy (%, y) = [x(1)y (i) = x()y ()l ™ —
2. Ap(x,1) =diam({x(i) : i € F}). (
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a pseudometric on N.



Foriand jinN, xand y in TV, and F C N let

Agijy(x,y) = x(1)x(j) ~y(1)y())> and (1)
Afr(x,y) == sup Ay p(x,y). (2)
ijeF

Lemma 17.1.5 If F C N is nonempty, i,j are in N, and x,y, z are
in TN then the following hold.

L Ay (x5 y) = x()y (i) = xG)y Ul
2. Ap(x,1) =diam({x(i) : i € F}).

3. A{i,k}(va) < A{i,j}(xa)/) T A{j,k}(xvy)f hence A{,}(va) Is
a pseudometric on N.

4. Ap(x,z) < Ap(x,y) + Ar(y, z), hence IXF)is a pseudometric
on TN,



Foriand jin N, xand y in T, and F C N let

Agip(x,y) & Ix()x() — y(i)y()l, and (1)
AF(Xay) = SJUEFI)__A{/J}(X Y) (2)

Lemma 17.1.5 If F C N is nonempty, i,j are in N, and x,y, z are
in TN then the following hold.

L Agjy(xy) = Ix(Dy()) = xG)y ()]

2. Ap(x,1) =diam({x(i) : i € F}).

3. A () S Ay (X y) + Ay (x,y), hence Ay y(x,y) is
a pseudometric-on- N,

4. Ap(x,z) < Ap(x,y)+ Ar(y, z), hence Af is a pseudometric
on TN,

5. Ap(x,y) = Ap(xz, yz).



Lemma 17.1.6 L@nc@e finite subsets of N. Then for all
I € F, jEE and all x and y we have

i€F,
AFUE(X y) AF(X y) +AE(X y)+ A{,J}(X y).

D



Lemma 17.1.6 Let F and E be finite subsets of N. Then for all
i€ F,jeE, and all x and y we have

Arue(x,y) S Ar(x,y) + Ae(x,y) + Agijp(x, y).
Lemma For E € Party,
Ag(x,y) == limsup;_, o AguE,, (X, Y)

defines a pseudometric on TV.



Lemma 17.1.6 Let F and E be finite subsets of N. Then for all
i€ F,jeE, and all x and y we have

Arue(x,y) S Ap(x,y) + Ae(x,y) + A (X, y).
Lemma For E € Party,

Ag(x,y) == limsup;_, . AguE,, (X, ¥)
defines a pseudometric on TV.

Lemma 17.1.7 IfE <*F and x,y, z are in T" then
AE(X7Z) < AE(X,_)/) + AE(_)/,Z) and AE(X,_)/) < AF(X,_)/).
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Def 17.1.8 Let Fg := {x &TV: Ag(x,1) = 0}, and b

Gg := T/ Fg, for E € Party.
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Def 17.1.8 Let Fg := {x € TV : Ag(x,1) =0}, and
Gg := TN/ Fg, for E € Party.

Then Fg is a subgroup of TN and E <* F implies Fg O Fg and
therefore Gg = Gg /(Fg / Fg). Also,

0——Ff—— TN —— G —0

o

0——Fg—— TN —— Gg——0



Def 17.1.8 Let Fg := {x € TV : Ag(x,1) =0}, and
Gg := TN/ Fg, for E € Party.

Then Fg is a subgroup of TN and E <* F implies Fg O Fg and
therefore Gg = Gg /(Fg / Fg). Also,

0——Ff—— TN —— G —0

o

0—— Fg—— TN —— Gg——0

Lemma 17.1.9 Suppose E € Party and u and v belong to TV,
Then u ~g v if and only if uv* € Fg.
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A speedup of the relation <* on Party; the §as defined
here is not the same as <* defined earlier

Let E<* F if E <* F and for every m there exist n and k such

that ¥V E; C Fu.

Lemma <™ is a partial ordering on Party and E <§f F implies

E<*F. A

- F << (-
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A speedup of the relation <* on Party; the <* as defined
here is not the same as <* defined earlier

Let E <* F if E <* F and for every m there exist n and k such
that ¥ "1 E; C Fu.

Lemma <* is a partial ordering on Party and E <* F implies
E<*F.

Lemma 17.1.10 {fE <<9hen Fr is a proper subgroup of Fg.
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Prop 17.1.11 For every <*-increasing sequence E(«), for o < Ny,
the inverse limit Iima Gg(q) has cardinality Py
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Prop 17.1.11 For every <*-increasing sequence E(«), for o < Ny,
the inverse limit I@a Gg(q) has cardinality A

Proof: Write G(a) := Gg(o) and F(a) := Fg(q). G(VL/ :/T//)fi[oi/



Prop 17.1.11 For every <*-increasing sequence E(«), for o < Ny,
the inverse limit I@a Gg(q) has cardinality A

Proof: Write G(a) := Gg(o) and F(a) := Fg(q).

Claim. If « is a countable limit ordinal then
—

X = (TE(B)E(a) (X)-

IS a surjection fron@onto lim




Thm 17.1.12 CH implies that the Calkin algebra has at least 2™
automorphisms.







