Massive C*-algebras, Winter 2021, |. Farah, Lecture 8

We are continuing the proof of (a version of) Keisler's theorem: all
ultrapowers of a fixed separable C*-algebra associated with
nonprincipal ultrafilters on N are isomorphic, assuming:

(CH) Every set of cardinality ¢ has a well-ordering such that every
proper initial segment is countable (i.e., a well-ordering of type N;).
Recall:

Lemma [/f C is a C*-algebra of density character N1, then
C =, <x, Ca for a continuous Ri-chain of separable elementary
submodels C,, for o < Nj.

(Continuous means that Cg = limy<3 C, for every limit ordinal 3.)

Lemma Suppose that A and B have density character X1 and &
Is an isomorphism from A onto B. Then A and B can be
represented as increasing unions of countable chains of separable
elementary substructures, A =J, Ao, B =, Ba, so that
®[Ay] = By for all .



A correction to the statement made last time (thanks to Ben for
pointing this out):

Fact

There are unital, separable, AF algebras A and B such that A= B

and A 2 B, but no explicit example of a pair of such simple
algebras is known.

There is a family of Xy abelian examples (Eagle—Vignati):
C(a+ 1), for a a countable indecomposable ordinal.



Two facts about types and elementary equivalence

We can define a type over X C A, for X which is not a subalgebra.

Lemma [ftisatypeover X CAand ®: A<C, thent s
approximately satisfiable in A if and only if the (naturally defined)
type ®(t) (over ®[X]) is approximately satisfiable in C.
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Lemma [ftisatypeover X CAand ®: A<C, thent s
approximately satisfiable in A if and only if the (naturally defined)
type ®(t) (over ®[X]) is approximately satisfiable in C.

Exercise.

1. f A< Band B < C, then A< C.

2. fA<C,B=<C,and AC B, then A< B.

3. If A, < C, and A, C Apqq for all n, then |, A, < C.
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Thm Suppose that C is countably saturated.
1. If A is separable and A = C, then there is ®: A < C.
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A universality property of countably saturated algebras

Thm Suppose that C is countably saturated.
12 If A is separable and A = C, then there is ®: A < C.

2. If A and B are separable, ®: A< C and V: A < B, then
there exists ©: B < C such that ® oV = ¢,

Proof:"Fix a sequence a,,, for n € N, dense in A. typea(ag/0) is
approximately satisfiable in C.



A universality property of countably saturated algebras

Thm Suppose that C is countably saturated.
1. If A is separable and A = C, then there is ®: A < C.

2. If A and B are separable, ®: A< C and V: A < B, then
there exists ©: B < C such that ® oV = ¢,

Proof: Fix a sequence’a,,/ for n € N, dense in A. typea(ag/0) is
approximately satisfiable in C.
We'll define ®(a,) by recursion, so that for all n:

d(typea(an/{ajli < n})) = typec(®(an)/{®P(aj)li < n}).
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Thm (Corollary 16.6.5, Keisler) Suppose that C and D are
countably saturated, elementarily equivalent, and of/de%
character 1. Then C = D.

—

Proof: Write C = J, .y, Co and D = J,y, Da, continuous chains of

elementary submodels. We will find continuous increasing families a(§),
B(&), £ <Ry, and elementary embeddings ®¢: Cy ) — D and
We: Dgey — C such that for all § <7

L ®¢[Coe)] € Dp(e). VelDp(e)] € Cagern).
2. Veo®c(a) =a, for a € Cure), Per10Ve(b) = b, for b € Dy,
3. @, extends ®¢, V,, extends We.

Then ¢ := U,: ®¢ is an isomorphism, and W := [ J, W¢ is its inverse.







The proof gives a more precise statement:

Thm (Corollary 16.6.5) Suppose that C and D are countably
saturated, elementarily equivalent, and of density character N;.
Then C = D, and the isomorphism can be chosen so that it
extends any fixed isomorphism ®q: Co — Do between separable
elementary submodels of C and D.
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Corollary

If the Continuum Hypothesis (CH) holds, A is a separable
C*-algebra, and U and V are nonprincipal ultrafilters on N, then
there is an isomorphism ®: A;; — Ay that commutes with the
diagonal embedding of A.

A= Ay,

|
Y

A, OA — A4

LAll ultrafilters are nonprincipal and over N.
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Corollary

If the Continuum Hypothesis (CH) holds, A is a separable
C*-algebra, and U and V are nonprincipal ultrafilters on N, then
there is an isomorphism ®: A;; — Ay that commutes with the
diagonal embedding of A.

Corollary

If A is a separable C*-algebra, then CH implies that all ultrapowers
of A on N are isomorphic, and all relative commutants of A in its
ultrapowers are isomorphic.

Corollary

There are nonisomorphic separable, simple, AF algebras with
iIsomorphic ultrapowers.

Prop (Kirchberg) A = B does not imply Ay N A = By, N B’, even
for separable, simple, A and B.

LAll ultrafilters are nonprincipal and over N.
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That answers % of Kirchberg's question. Now for McDuff.
Recall that R (the hyperfinite Il; factor) is the operator algebra
such that for all n > 1, the n-ball of R is the completion of the
n-ball of My~ in the 2-norm associated with the unique tracial
state, ||a||» := 7(a*a)'/2. The tracial ultrapower is

RY = (o (R)/{(20)] lim [13n]l2 = O}.

Thus RY 22(Mhs )iy and RY N R' =2 (Mo )y N (Mo ).

Corollary

IfU and V are nonprincipal ultrafilters on N, then RY = RY and
RANR = RVNR.

Before (very briefly) discussing the model in which these
conclusions fail, we'll take a look at automorphisms of ultrapowers.
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character Xy. Then C has 2%t automorphisms.

A proof of this requires another idea and some bookkeeping.



Thm Suppose that C is countably saturated and of density
character Xy. Then C has 2%t automorphisms.

A proof of this requires another idea and some bookkeeping.

Lemma Suppose that C is countably saturated, A < C is
separable, and b € C\ A. Then the set

{c € Cltypec(c/A) = typec(b/A)}

IS nonseparable.
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Thm Suppose that C is countably saturated and of density
character Xy. Then C has 2%t automorphisms.

A proof of this requires another idea and some bookkeeping.

Lemma Suppose that C is countably saturated, A < C is
separable, and b € C\ A. Then the set

{c € Cltypec(c/A) = typec(b/A)}
IS nonseparable.

Now for the bookkeeping. Let {0,1}<"! denote the set of all
functions s: @ — {0, 1}, where « is a countable ordinal.

Maximal chains in {0,1}<™ correspond to the elements of
70, 11X



Proof that if C is countably saturated and of density character Ny

then C has 2™ automorphisms.
Write C = Ua C., for a continuous chain of separable elementary

submodels.
For s € {0,1}< we will find separable C; < C and Ds < C and

an isomorphism ®,: C; — Ds (onto) so that for all s we have the
following

1. If sC t then C5 < G, Ds < Dy, and W | C5 = P,



Proof that if C is countably saturated and of density character Ny

then C has 2™ automorphisms.
Write C = Ua C., for a continuous chain of separable elementary

submodels.
For s € {0,1}< we will find separable C; < C and Ds < C and

an isomorphism ®,: C; — Ds (onto) so that for all s we have the
following
1. If sC t then (5 < G, Ds < Dy, and V; | C5 = P,

2. There is x € Cs~9 N Cs~1 such that &2 $o~q¢



Proof that if C is countably saturated and of density character Ny

then C has 2% omorphisms.
Write C Ua Cn, for a continuous chain of separable elementary
submodels:

For s € {0,1}< we will find separable C; < C and Ds < C and
an isomorphism ®,: C; — Ds (onto) so that for all s we have the
following

1. f sC tthen Cs < G, Ds < Dy, and WV, | (5 = O,
2. There is x € Cs~9 N Cs~1 such that ®s~¢ # $—1.
For s € {O, 1}041 Csf\o_Q(Cap Ci~1 2 Ca, Dsﬁog C, and

) = (






The dark side

CH is a very strong axiom, hence its negation is a very weak
axiom. However. ..
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The dark side

CH is a very strong axiom, hence its negation is a very weak

axiom. However. ..
Thm (F.—Hart-Sherman, F If the Continuum Hypothesis
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The dark side

CH is a very strong axiom, hence its negation is a very weak
axiom. However. ..

Thm (F.—Hart-Sherman, F.—Shelah) If the Continuum Hypothesis
fails, then for every separable, infinite-dimensional C*-algebra A
there are 22°° nonisomorphic ultrapowers Ay and 22°
nonisomorphic relative commutants Ay N A'. There are also 020
nonisomorphic ultrapowers R and 220 nonisomorphic relative
commutants.?

Thm (F.-Hart-Sherman (Maharam)) All tracial ultrapowers of
Lo ([0, 1], A) are isomorphic (even when the CH fails).

2All ultrafilters are nonprincipal and over N.



A

For all practical purposes, all ultrapowers are ‘isomorphic’

Def 8.2.8  Suppose C and D are nonseparable metric structures in the
same language. A o-complete back-and-forth system between C and D is
a poset [F with the following properties.
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Def 8.2.8 Suppose C and D are nonseparable metric structures in the
same language. A o-complete back-and-forth system between C and D is
a poset IF with the following properties. / ;/“"

1. The elements of F are partial isomorphisms p = (AP, BP, ®P).
2. The ordering is defined by p < q if AP C A9, BP C B9, and
O | AP = OP, - T ’

3. Forevery pcF and a/é:@(an @there existsq>pinTF

such that a € A9 and b € BY.

oe B
4| F is o-complete: For every increasing sequence p(n), for n € N, in F

we require that (identifying a function with its graph)
p = (U, AP |, Brn | ®P() belongs to F. We write

p = sup,, pn. e )
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For all practical purposes, all ultrapowers are ‘isomorphic’

Def 8.2.8 Suppose C and D are nonseparable metric structures in the
same language. A o-complete back-and-forth system between C and D is

a poset I with the following properties.
1. The elements of F are partial isomorphisms p = (AP, BP, ®P).
2. The ordering is defined by p < q if AP C A9, BP C B9, and
d9 | AP = P,
3. Forevery pe IV and allac A and b € B there existsq > p in F
such that a € A9 and b € BY.

4. T is o-complete: For every increasing sequence p(n), forn € N, in F
we require that (identifying a function with its graph)
p = (U, AP |, Brn | ®P() belongs to F. We write

p = sup,, Pn.

Prop 16.6.1 Suppose C and D are metric structures of density character
N1. The following are equivalent.
@There exists a o-complete back-and-forth system between C and D.

2. The structures C and D are isomorphic. s







Thm 16.6.4 Suppose C and D are countably saturated metric
structures. The following are equivalent.

1. The metric structures C and D are elementarily equivalent.

2. There exists a o-complete back-and-forth system between C
and D.

Proof: This is what the proof that CH implies C = D gives in the
absence of CH.






The asymptotic sequence algebra

(a few theorems with proofs omitted; see §16.3, §16.5)
co(B) := {(an) € Loo(B)[lim, ||an|| = O}
The algebra By := £oo(B)/co(B) is the asymptotic sequence

algebra.  ~ ﬁ 77{ ‘@m
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The asymptotic sequence algebra

(a few theorems with proofs omitted; see §16.3, §16.5)
co(B) = {(an) € Loo(B)[limy |an]| = 0O}
The algebra By, := {oo(B)/co(B) is the asymptotic sequence
algebra.

Los's Theorem generally fails for the diagonal embedding of B into
Bso.

Thm 16.3.1 (Ghasemi) It is possible to compute Th(By,) from
Th(B).

Thm 16.5.1 By is countably saturated for every B.

Thm (F., 2020) For any separable B we have
1. B= B ® C(K) (K denotes the Cantor space).
2. Any ‘diagonal’ copy of B® C(K) in By, is an elementary
submodel.
3. CH implies that By, = (B @ C(2V))y, for any nonprincipal
ultrafilter U on N.



Another theorem with its proof omitted

Thm (F.—Hart-Rgrdam—Tikuisis, 2017) CH implies that>

(Moo )yy N (Mo )" =2 (Moo )y

e

(One can replace Mh~ with any strongly self-absorbing C*-algebra,
or with R with respect to a tracial ultrapower.)

AM/]/}</7[Z/(

s

3U is nonprincipal and over N.



Other reduced powers

Examples of ideals on N:
1. Fin.
2. Maximal ideals (i.e., the duals of ultrafilters).



Other reduced powers

Examples of ideals on N:

1.

ok LN

0.

Fin.

Maximal ideals (i.e., the duals of ultrafilters).
{X CN| S pex 21 < o0}

{X C Q| X is nowhere dense}.

For a countable indecomposable ordinal «,
{X C al the order type of X is < a}.
Zy:={X C N|limsup, |[XNn|/n=0}

Given a family of C*-algebras B;, for j € J, and an ideal J on J,
we let P, Bj :={b € [[;c; B : limsup;_, 7 || bj|| = 0}



Other reduced powers

Examples of ideals on N:

1.

ok LN

0.

Fin.

Maximal ideals (i.e., the duals of ultrafilters).
{X CN| S pex 21 < o0}

{X C Q| X is nowhere dense}.

For a countable indecomposable ordinal «,
{X C al the order type of X is < a}.
Zy:={X C N|limsup, |[XNn|/n=0}

Given a family of C*-algebras B;, for j € J, and an ideal J on J,
we let P, Bj :={b € [[;c; B : limsup;_, 7 || bj|| = 0}
Def 16.2.1 The reduced product of an indexed family B;, for

Jj € J, of C*-algebras associated with an ideal ;J on ] is the
quotient [ [; B;/ 7 Bj. We will sometimes denote it []; B;/J .



Other reduced powers

Examples of ideals on N:

1.

ok LN

0.

Fin.

Maximal ideals (i.e., the duals of ultrafilters).
{X CN| S pex 7i1 < o).

{X C Q| X is nowhere dense}.

For a countable indecomposable ordinal «,
{X C al the order type of X is < a}.

Zy :={X C N|limsup, [X N n|/n=0}

Given a family of C*-algebras B;, for j € J, and an ideal J on J,
we let P, Bj :={b € [[;c; B : limsup;_, 7 || bj|| = 0}
Def 16.2.1 The reduced product of an indexed family B;, for

Jj € J, of C*-algebras associated with an ideal ;J on ] is the
quotient [ [; B;/ 7 Bj. We will sometimes denote it []; B;/J .

Ghasemi's Feferman—Vaught Theorem still holds, but countable
saturation may fail. (There is no known characterization of ideals
for which every associated reduced product is countably saturated.)



