Massive C^* -algebras, Winter 2021, I. Farah, Lecture 8

We are continuing the proof of (a version of) Keisler's theorem: all ultrapowers of a fixed separable C^* -algebra associated with nonprincipal ultrafilters on $\mathbb N$ are isomorphic, assuming: (CH) Every set of cardinality c has a well-ordering such that every proper initial segment is countable (i.e., a well-ordering of *type* \aleph_1). Recall:

Lemma *If* C is a C^* -algebra of density character \aleph_1 , then $C = \bigcup$ $\alpha < \aleph_1$ C_{α} for a continuous \aleph_1 -chain of separable elementary *submodels* C_α , for $\alpha < \aleph_1$.

(*Continuous* means that $C_\beta = \lim_{\alpha < \beta} C_\alpha$ for every limit ordinal β .)

Lemma *Suppose that* A and B have density character \aleph_1 and Φ *is an isomorphism from A onto B. Then A and B can be represented as increasing unions of countable chains of separable* e lementary substructures, $A = \bigcup_{\alpha} A_{\alpha}$, $B = \bigcup_{\alpha} B_{\alpha}$, so that $[\Phi(A_\alpha] = B_\alpha$ for all α .

A correction to the statement made last time (thanks to Ben for pointing this out):

Fact

There are unital, separable, AF algebras A and B such that $A \equiv B$ and $A \not\cong B$, but no explicit example of a pair of such simple *algebras is known.*

There is a family of \aleph_1 *abelian examples (Eagle–Vignati):* $C(\alpha + 1)$ *, for* α *a* countable indecomposable ordinal.

$$
\alpha = 1
$$

\n $\alpha = 1$
\n $\alpha = 1$

Two facts about types and elementary equivalence

We can define a type over $X \subseteq A$, for X which is not a subalgebra.

 $\sqrt{2}$

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ - 트 - K 9 Q Q

Lemma *If* t *is a type over* $X \subseteq A$ *and* Φ : $A \preceq C$, *then* t *is approximately satisfiable in A if and only if the (naturally defined)* t ype $\Phi(t)$ (over $\Phi[X]$) is approximately satisfiable in C.

 $\phi \rightarrow$ ϕ/ϕ

Two facts about types and elementary equivalence

We can define a type over $X \subseteq A$, for X which is not a subalgebra.

Lemma *If* t *is a type over* $X \subseteq A$ *and* $\Phi: A \prec C$, then t *is approximately satisfiable in A if and only if the (naturally defined)* t ype $\Phi(t)$ (over $\Phi[X]$) is approximately satisfiable in C.

Exercise.

\n- 1. If
$$
A \prec B
$$
 and $B \prec C$, then $A \prec C$.
\n- 2. If $A \prec C$, $B \prec C$, and $A \subseteq B$, then $A \prec B$.
\n- 3. If $A_n \prec C$, and $A_n \subseteq A_{n+1}$ for all n , then $\overline{U_n A_n} \prec C$.
\n

A universality property of countably saturated algebras

- Thm *Suppose that C is countably saturated.*
	- 1. If A is separable and $A \equiv C$, then there is $\Phi: A \prec C$.
	- 2. If A and B are separable, Φ : $A \preceq C$ and Ψ : $A \preceq B$, then *there exists* Θ : $B \prec C$ *such that* $\Theta \circ \Psi = \Phi$.

A universality property of countably saturated algebras

Thm *Suppose that C is countably saturated.*

 \bigoplus If A is separable and $A \equiv C$, then there is $\Phi: A \preceq C$.

2. If A and B are separable, Φ : $A \preceq C$ and Ψ : $A \preceq B$, then *there exists* Θ : $B \prec C$ *such that* $\Theta \circ \Psi = \Phi$.

Proof: $\sqrt[n]{F}$ ix a sequence a_n , for $n \in \mathbb{N}$, dense in *A*. type_A(a_0 / \emptyset) is approximately satisfiable in *C*. mately satisfiable in c.
 $F_{1}\times G \stackrel{e}{\leftarrow} G \qquad F_{2}P_{6}(G_{1}/G) = F_{2}P_{6}(G_{6}/G)$

4 ロ > 4 団 > 4 ミ > 4 ミ > ニ = 0 Q Q

A universality property of countably saturated algebras

Thm *Suppose that C is countably saturated.*

- 1. If A is separable and $A \equiv C$, then there is $\Phi: A \prec C$.
- 2. If *A* and *B* are separable, Φ : $A \preceq C$ and Ψ : $A \preceq B$, then *there exists* Θ : $B \preceq C$ *such that* $\Theta \circ \Psi = \overline{\Phi}$. 2. If A and B are separable, $\Phi: A \preceq C$ and $\Psi: A \preceq B$, then
there exists $\Theta: B \preceq C$ such that $\Theta \circ \Psi = \Phi$.
Proof: Fix a sequence $\widehat{a_n}$ for $n \in \mathbb{N}$, dense in A. type_A(a_0/\emptyset) is

Proot: Fix a sequence a_{ny} tor t
approximately satisfiable in *C*. We'll define $\Phi(a_n)$ by recursion, so that for all *n*: $\left(\&\right)$ = $\left(\right)$

 $\Phi(\text{type}_A(a_n/\{a_j|j < n\})) = \text{type}_C(\Phi(a_n)/\{\Phi(a_j)|j < n\}).$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ │ ヨ

Thm (Corollary 16.6.5, Keisler) *Suppose that C and D are countably saturated, elementarily equivalent, and of density character* \aleph_1 *. Then* $C \cong D$ *.*

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君 │ め Q ⊘

Thm (Corollary 16.6.5, Keisler) *Suppose that C and D are countably saturated, elementarily equivalent, and of density character* \aleph_1 *. Then* $C \cong D$ *.*

Proof: Write $C = \bigcup_{\alpha < \aleph_1} C_\alpha$ and $D = \bigcup_{\alpha < \aleph_1} D_\alpha$, continuous chains of elementary submodels.

Separate

Thm (Corollary 16.6.5, Keisler) *Suppose that C and D are countably saturated, elementarily equivalent, and of density character* \aleph_1 *. Then* $C \cong D$ *.*

Proof: Write $C = \bigcup_{\alpha < \aleph_1} C_{\alpha}$ and $D = \bigcup_{\alpha < \aleph_1} D_{\alpha}$, continuous chains of elementary submodels. We will find continuous increasing families $\alpha(\xi)$, $\beta(\xi)$, $\xi < \aleph_1$, and elementary embeddings Φ_{ξ} : $C_{\alpha(\xi)} \to D$ and $\forall \Psi_{\mathcal{E}}: D_{\beta(\mathcal{E})} \to C$ such that for all $\xi < \eta$

1.
$$
\Phi_{\xi}[C_{\alpha(\xi)}] \subseteq D_{\beta(\xi)}
$$
. $\Psi_{\xi}[D_{\beta(\xi)}] \subseteq C_{\alpha(\xi+1)}$.

- 2. $\Psi_{\xi} \circ \Phi_{\xi}(a) = a$, for $a \in C_{\alpha(\xi)}$, $\Phi_{\xi+1} \circ \Psi_{\xi}(b) = b$, for $b \in D_{\alpha(\xi)}$,
- 3. Φ_n extends Φ_{ε} , Ψ_n extends Ψ_{ε} .

The proof gives a more precise statement:

Thm (Corollary 16.6.5) *Suppose that C and D are countably saturated, elementarily equivalent, and of density character* \aleph_1 . *Then* $C \cong D$, and the isomorphism can be chosen so that it *extends any fixed isomorphism* Φ_0 : $C_0 \rightarrow D_0$ *between separable elementary submodels of C and D.*

$$
\frac{1}{\sqrt{2\cdot10^{10}}}
$$

If the Continuum Hypothesis (CH) holds, A is a separable C⇤*-algebra, and U and V are nonprincipal ultrafilters on* N*, then there is an isomorphism* Φ : $A_{\mathcal{U}} \rightarrow A_{\mathcal{V}}$ *that commutes with the diagonal embedding of A.*

 $A \nightharpoonup A_{11}$ $\begin{array}{c} 1 \\ A \prec A_{1} \end{array}$ $A_{\mu} \wedge A^{T} \rightarrow A_{\nu} \wedge A^{T}$

 1 All ultrafilters are nonprincipal and over $\mathbb N.$

⁴ ロ > 4 団 > 4 ミ > 4 ミ > ニ ミ - 9 Q Q +

If the Continuum Hypothesis (CH) holds, A is a separable C⇤*-algebra, and U and V are nonprincipal ultrafilters on* N*, then there is an isomorphism* Φ : $A_{\mathcal{U}} \rightarrow A_{\mathcal{V}}$ *that commutes with the diagonal embedding of A.*

Corollary χ (Al \leq $\frac{1}{5}$

If A is a separable C^* -algebra, then *CH* implies that all ultrapowers *of A on* N *are isomorphic, and all relative commutants of A in its* of A enext are isomorphic, all
ultrapowers are isomorphic.¹

 1 All ultrafilters are nonprincipal and over $\mathbb N.$ 4 ロ > 4 団 > 4 ミ > 4 ミ > ニ ミ - 9 Q Q +

If the Continuum Hypothesis (CH) holds, A is a separable C⇤*-algebra, and U and V are nonprincipal ultrafilters on* N*, then there is an isomorphism* Φ : $A_{\mathcal{U}} \rightarrow A_{\mathcal{V}}$ *that commutes with the diagonal embedding of A.*

Corollary

If A is a separable C⇤*-algebra, then CH implies that all ultrapowers of A on* N *are isomorphic, and all relative commutants of A in its ultrapowers are isomorphic.*¹

Corollary

There are nonisomorphic separable, simple, AF algebras with isomorphic ultrapowers.

 1 All ultrafilters are nonprincipal and over $\mathbb N.$ K □ ▶ K @ ▶ K ミ X K E X 는 통 X 9 Q Q Q

If the Continuum Hypothesis (CH) holds, A is a separable C⇤*-algebra, and U and V are nonprincipal ultrafilters on* N*, then there is an isomorphism* Φ : $A_{\mathcal{U}} \rightarrow A_{\mathcal{V}}$ *that commutes with the diagonal embedding of A.*

Corollary

If A is a separable C⇤*-algebra, then CH implies that all ultrapowers of A on* N *are isomorphic, and all relative commutants of A in its ultrapowers are isomorphic.*¹

Corollary

There are nonisomorphic separable, simple, AF algebras with isomorphic ultrapowers. Prop (Kirchberg) $A \equiv B$ does not imply $A_{\mathcal{U}} \cap A' \equiv B_{\mathcal{U}} \cap B'$, even *for separable, simple, A and B.* rapowers. $\tau h(A)$ $\tau L (A_{\iota} \wedge A) =$

 1 All ultrafilters are nonprincipal and over $\mathbb N.$

That answers $\frac{1}{2}$ of Kirchberg's question. Now for McDuff.

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q

That answers $\frac{1}{2}$ of Kirchberg's question. Now for McDuff. Recall that R (the hyperfinite II_1 factor) is the operator algebra such that for all $n > 1$, the *n*-ball of R is the completion of the *n*-ball of $M_{2\infty}$ in the 2-norm associated with the unique tracial state, $||a||_2 := \tau(a^*a)^{1/2}$.

That answers $\frac{1}{2}$ of Kirchberg's question. Now for McDuff. Recall that R (the hyperfinite II_1 factor) is the operator algebra such that for all $n \geq 1$, the *n*-ball of *R* is the completion of the *n*-ball of $M_{2\infty}$ in the 2-norm associated with the unique tracial state, $||a||_2 := \tau(a^*a)^{1/2}$. The tracial ultrapower is

$$
R^{\mathcal{U}} := \underbrace{\ell_{\infty}(R)} / \{ (a_n) | \lim_{n \to \mathcal{U}} ||a_n||_2 = 0 \}.
$$

4 ロ ト 4 伊 ト 4 ヨ ト 4 ヨ ト - ヨ - タ Q Q

4 ロ ト 4 伊 ト 4 ヨ ト 4 ヨ ト - ヨ - タ Q Q

That answers $\frac{1}{2}$ of Kirchberg's question. Now for McDuff. Recall that R (the hyperfinite II_1 factor) is the operator algebra such that for all $n > 1$, the *n*-ball of R is the completion of the *n*-ball of $M_{2\infty}$ in the 2-norm associated with the unique tracial state, $||a||_2 := \tau(a^*a)^{1/2}$. The tracial ultrapower is

$$
R^{\mathcal{U}} := \ell_{\infty}(R)/\{(a_n) | \lim_{n \to \mathcal{U}} ||a_n||_2 = 0\}.
$$

\nThus $R^{\mathcal{U}} \cong (M_{2\infty})_{\mathcal{U}}^{\mathcal{U}}$ and $R^{\mathcal{U}} \cap R' \cong (M_{2\infty})_{\mathcal{U}}^{\mathcal{U}} \cap (M_{2\infty})'.$
\nCorollary
\nIf \mathcal{U} and \mathcal{V} are nonprincipal ultrafilters on \mathbb{N} , then $R^{\mathcal{U}} \cong R^{\mathcal{V}}$ and
\n $R^{\mathcal{U}} \cap R' \cong R^{\mathcal{V}} \cap R'.$

That answers $\frac{1}{2}$ of Kirchberg's question. Now for McDuff. Recall that R (the hyperfinite II_1 factor) is the operator algebra such that for all $n > 1$, the *n*-ball of R is the completion of the *n*-ball of $M_{2\infty}$ in the 2-norm associated with the unique tracial state, $||a||_2 := \tau(a^*a)^{1/2}$. The tracial ultrapower is

 $R^{\mathcal{U}} := \ell_{\infty}(R)/\{(a_n) | \lim_{n \to \mathcal{U}} ||a_n||_2 = 0\}.$ Thus $R^{\mathcal{U}} \cong (M_{2^{\infty}})_{\mathcal{U}}$ and $R^{\mathcal{U}} \cap R^{\prime} \cong (M_{2^{\infty}})_{\mathcal{U}} \cap (M_{2^{\infty}})^{\prime}.$ **Corollary** *If U and V are nonprincipal ultrafilters on* N*, then R^U* ⇠= *R^V and* EH $R^U \cap R' \cong R^V \cap R'$.

Before (very briefly) discussing the model in which these conclusions fail, we'll take a look at automorphisms of ultrapowers. 1

 $\|f\|_{22} = \int (f$ $\|f\|_{22} = \int (f$ $\|f\|_{22} = \int (f$

Thm *Suppose that C is countably saturated and of density character* \aleph_1 *. Then C has* 2^{\aleph_1} *automorphisms.*

A proof of this requires another idea and some bookkeeping.

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q ⊙

Thm *Suppose that C is countably saturated and of density character* \aleph_1 *. Then C has* 2^{\aleph_1} *automorphisms.*

A proof of this requires another idea and some bookkeeping.

Lemma *Suppose that* C *is countably saturated,* $A \prec C$ *is separable, and* $b \in C \setminus A$. Then the set

$$
\{ \underline{c} \in C | \, \text{type}_C(\underline{c/A}) = \text{type}_C(\underline{b/A}) \}
$$

is nonseparable.

 L_{\bigoplus} t = type (b/A) Let $c = dist (b, \mu)$ $(s > 0)$ Let $t_{2}(X,Y)=t(X)\cup t(Y)\cup ||X-Y||\geq t$ b_{u} $u \in \mathcal{N}$ t cc t_i $||x-\frac{1}{2}| \geq \epsilon$.

Thm *Suppose that C is countably saturated and of density character* \aleph_1 *. Then C has* 2^{\aleph_1} *automorphisms.*

A proof of this requires another idea and some bookkeeping.

Lemma *Suppose that* C *is countably saturated,* $A \prec C$ *is separable, and* $b \in C \setminus A$. Then the set

$$
\{c \in C | \, \mathsf{type}_C(c/A) = \mathsf{type}_C(b/A) \}
$$

is nonseparable.

Now for the bookkeeping. Let $\{0,1\}^{< \aleph_1}$ denote the set of all functions $s: \alpha \rightarrow \{0,1\}$, where α is a countable ordinal. Maximal chains in $\{0,1\}^{<\aleph_1}$ correspond to the elements of / $\left\{0,1\right\}^{\aleph_1}$

Proof that if C is countably saturated and of density character \aleph_1 then *C* has 2^{N_1} automorphisms.

Write $\underline{\mathcal{C}} = \bigcup_{\alpha} \mathcal{C}_{\alpha}$, for a continuous chain of separable elementary submodels.

For $s \in \{0,1\}^{< N_1}$ we will find separable $C_s \prec C$ and $D_s \prec C$ and an isomorphism Φ_s : $C_s \rightarrow D_s$ (onto) so that for all *s* we have the following

4 ロ ト 4 団 ト 4 ミ ト 4 ミ ト - 三 - 5 - 5 0 Q Q

1. If $s \subseteq t$ then $C_s \prec C_t$, $D_s \prec D_t$, and $\Psi_t \upharpoonright C_s = \Phi_s$.

Proof that if C is countably saturated and of density character \aleph_1 then C has 2^{k_1} automorphisms.

Write $\mathcal{C} = \bigcup_{\alpha} \mathcal{C}_{\alpha}$, for a continuous chain of separable elementary submodels.

For $s \in \{0,1\}^{< N_1}$ we will find separable $C_s \prec C$ and $D_s \prec C$ and an isomorphism Φ_s : $C_s \rightarrow D_s$ (onto) so that for all *s* we have the following

1. If $s \sqsubseteq t$ then $C_s \prec C_t$, $D_s \prec D_t$, and $\Psi_t \upharpoonright C_s = \Phi_s$.

 $\overline{\mathbf{X}}$

2. There is $x \in C_{s_0} \cap C_{s_1}$ such that $\Phi_{s_0} \notin \Phi_{s_0} \neq \emptyset$.

i
iperte

Proof that if C is countably saturated and of density character \aleph_1 then C has 2^{N_1} automorphisms.

Write $C = \bigcup_{\alpha} C_{\alpha}$, for a continuous chain of separable elementary
submodels. $\bigcup_{\alpha} C_{\alpha}$, for a continuous chain of separable elementary submodels.

For $s \in \{0,1\}^{< N_1}$ we will find separable $C_s \prec C$ and $D_s \prec C$ and an isomorphism Φ_s : $C_s \rightarrow D_s$ (onto) so that for all *s* we have the following

- 1. If $s \sqsubset t$ then $C_s \prec C_t$, $D_s \prec D_t$, and $\Psi_t \upharpoonright C_s = \Phi_s$.
- 2. There is $x \in C_{s-0} \cap C_{s-1}$ such that $\Phi_{s-0} \neq \Phi_{s-1}$. For $s \in \{0,1\}^{\alpha}$, $C_{s\cap 0}$ $\mathcal{Q}(C_{\alpha})$ $C_{s\cap 1} \supseteq C_{\alpha}$, $D_{s\cap 0}$ $\mathcal{Q}(C_{\alpha})$ and $D_{s\cap 1} \supseteq C_{\alpha}$. $D_{\epsilon-1} \supset C\alpha$.

 $U(\zeta)$ 2 $U(\zeta) = c$

 $Q: Is then a $log_{10}l$$ \circ f $2FC$ s.f. all $\frac{1}{2}$ a utomorphism of C_u ave "fpivid"? a $l_{\infty}(\zeta) \longrightarrow l_{\infty}(\zeta)$ $\frac{d}{dx}$ to $\frac{d}{dx}$ $u \xrightarrow{\varphi} C_{\nu}$ See Shelah Vive la differ $N+$

The dark side

CH is a very strong axiom, hence its negation is a very weak axiom. However. . .

 2 All ultrafilters are nonprincipal and over $\mathbb N.$

The dark side

CH is a very strong axiom, hence its negation is a very weak axiom. However. . .

Thm (F.–Hart–Sherman, F./–Shelah) *If the Continuum Hypothesis*
fails, then for every separable, infinite-dimensional C*-algebra A *fails, then for every separable, infinite-dimensional* C^* -algebra A *there are* $2^{2^{k_0}}$ *nonisomorphic ultrapowers* (A_U) and $2^{2^{k_0}}$ *there are* $2^{2^{n_0}}$ nonisomorphic ultrapowers $A_{\mathcal{U}}$ and $2^{2^{n_0}}$ nonisomorphic relative commutants $A_{\mathcal{U}} \cap A'$. There are also $2^{2^{n_0}}$ *nonisomorphic ultrapowers R^U and* 22@⁰ *nonisomorphic relative commutants.*²

 $1 = 2^{16}$ $1 = 2^{16}$ $1 = 2^{16}$ $1 = 2^{16}$ $1 = 2^{16}$

is $0.11 - 66$

 $C\sim$ $4 = M$

 2 All ultrafilters are nonprincipal and over $\mathbb N.$ K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆ 9 Q (*

The dark side

CH is a very strong axiom, hence its negation is a very weak axiom. However. . .

Thm (F.–Hart–Sherman, F.–Shelah) *If the Continuum Hypothesis* fails, then for every separable, infinite-dimensional C^{*}-algebra A *there are* $2^{2^{N_0}}$ *nonisomorphic ultrapowers* $A_{\mathcal{U}}$ *and* $2^{2^{N_0}}$ *nonisomorphic relative commutants* $A_{\mathcal{U}} \cap A'$ *. There are also* $2^{2^{\aleph_0}}$ *nonisomorphic ultrapowers* R^{U} *and* $2^{2^{N_0}}$ *nonisomorphic relative commutants.*²

Thm (F.–Hart–Sherman (Maharam)) *All tracial ultrapowers of* $L_\infty([0,1],\lambda)$ are isomorphic (even when the CH fails). \ll

 2 All ultrafilters are nonprincipal and over $\mathbb N.$

For all practical purposes, all ultrapowers are 'isomorphic'

Def [8.2.8](#page-0-0) *Suppose C and D are nonseparable metric structures in the same language. A -complete back-and-forth system between C and D is a poset* F *with the following properties.*

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ - 트 - K 9 Q Q

For all practical purposes, all ultrapowers are 'isomorphic'

Def [8.2.8](#page-0-0) *Suppose C and D are nonseparable metric structures in the same language.* A σ -complete back-and-forth system between C and D is *a poset* F *with the following properties.*

- poset **F** with the rollowing properties.
1. The elements of $\mathbb F$ are partial isomorphisms $p = (A^p, B^p, \Phi^p)$.
- 2. *The ordering is defined by* $p \le q$ *if* $A^p \subseteq A^q$, $B^p \subseteq B^q$, and $\Phi^q \restriction A^p = \Phi^p$.
- 3. For every $p \in \mathbb{F}$ and all a \ominus **A** and $b \ominus \emptyset$ there exists $q \geq p$ in \mathbb{F} *such that* $a \in A^q$ *and* $b \in B^q$ *.* $\begin{aligned} \widehat{a} &\in \widehat{B}^q. \ \widehat{B}^q &\in B^q. \end{aligned}$
- \mathbb{F} *is* σ -complete: For every increasing sequence $p(n)$, for $n \in \mathbb{N}$, in \mathbb{F} *we require that (identifying a function with its graph)* $p := (\overline{\bigcup_n A^{p(n)}}, \overline{\bigcup_n B^{p(n)}}, \overline{\bigcup_n \Phi^{p(n)}})$ belongs to $\mathbb F$ *. We write* [I](#page-0-0)

 $p = \sup_{n} p_n$.

For all practical purposes, all ultrapowers are 'isomorphic'

Def [8.2.8](#page-0-0) *Suppose C and D are nonseparable metric structures in the same language.* A σ -complete back-and-forth system between C and D is *a poset* F *with the following properties.*

- 1. *The elements of* $\mathbb F$ *are partial isomorphisms* $p = (A^p, B^p, \Phi^p)$ *.*
- 2. *The ordering is defined by* $p \le q$ *if* $A^p \subseteq A^q$, $B^p \subseteq B^q$, and $\Phi^q \restriction A^p = \Phi^p$.
- 3. For every $p \in \mathbb{F}$ and all $a \in A$ and $b \in B$ there exists $q \geq p$ in \mathbb{F} *such that* $a \in A^q$ *and* $b \in B^q$.
- 4. F is σ -complete: For every increasing sequence $p(n)$, for $n \in \mathbb{N}$, in F *we require that (identifying a function with its graph)* $p := (\overline{\bigcup_n A^{p(n)}}, \overline{\bigcup_n B^{p(n)}}, \overline{\bigcup_n \Phi^{p(n)}})$ belongs to $\mathbb F$ *. We write* $p = \sup_{n} p_n$.

Prop [16.6.1](#page-0-0) *Suppose C and D are metric structures of density character* \aleph_1 . The following are equivalent.

1. *There exists a -complete back-and-forth system between C and D.* 2. The structures C and D are isomorphic. $\left\{\begin{array}{ccc} \bullet & \bullet & \bullet \end{array} \right\}$

<u>and</u>

0

Thm [16.6.4](#page-0-0) *Suppose C and D are countably saturated metric structures. The following are equivalent.*

- 1. *The metric structures C and D are elementarily equivalent.*
- 2. There exists a σ -complete back-and-forth system between σ *and D.*

Proof: This is what the proof that CH implies $C \cong D$ gives in the absence of CH.

 A

 $F = \begin{cases} (A, B, \phi) | A < C, B < D \\ \text{Set} \\ \phi : A \stackrel{\frown}{\Rightarrow} B \end{cases}$

The asymptotic sequence algebra (a few theorems with proofs omitted; see $\S 16.3$, $\S 16.5$) $c_0(B) := \{(a_n) \in \ell_\infty(B) | \lim_n ||a_n|| = 0\}.$ The algebra $B_{\infty} := \ell_{\infty}(B)/c_0(B)$ is the *asymptotic sequence*
algebra. *algebra*. $B \nprec B$

4 ロ > 4 団 > 4 ミ > 4 ミ > ニ ミ - 9 Q Q +

The asymptotic sequence algebra (a few theorems with proofs omitted; see $\S 16.3$, $\S 16.5$) $c_0(B) := \{(a_n) \in \ell_\infty(B) | \lim_{n} ||a_n|| = 0\}.$ The algebra $B_{\infty} := \ell_{\infty}(B)/c_0(B)$ is the *asymptotic sequence algebra*.

Los's Theorem generally fails for the diagonal embedding of *B* into B_{∞} .

The asymptotic sequence algebra (a few theorems with proofs omitted; see $\S 16.3, \ \S 16.5)$ $c_0(B) := \{(a_n) \in \ell_\infty(B) | \lim_{n} ||a_n|| = 0\}.$ The algebra $B_{\infty} := \ell_{\infty}(B)/c_0(B)$ is the *asymptotic sequence algebra*.

Los's Theorem generally fails for the diagonal embedding of *B* into B_{∞} . Fefermen -VayLt type

KORK ERKER SHIPPER

Thm [16.3.1](#page-0-0) (Ghasemi) *It is possible to compute* $\text{Th}(B_{\infty})$ *from* Th(*B*)*.*

The asymptotic sequence algebra (a few theorems with proofs omitted; see $\S 16.3$, $\S 16.5$) $c_0(B) := \{(a_n) \in \ell_\infty(B) | \lim_{n} ||a_n|| = 0\}.$ The algebra $B_{\infty} := \ell_{\infty}(B)/c_0(B)$ is the *asymptotic sequence algebra*.

Los's Theorem generally fails for the diagonal embedding of *B* into B_{∞} .

Thm [16.3.1](#page-0-0) (Ghasemi) It is possible to compute $\text{Th}(B_{\infty})$ from Th(*B*)*.*

Thm [16.5.1](#page-0-0) B_{∞} *is countably saturated for every B.*

The asymptotic sequence algebra (a few theorems with proofs omitted; see $\S 16.3$, $\S 16.5$) $c_0(B) := \{(a_n) \in \ell_\infty(B) | \lim_{n} ||a_n|| = 0\}.$ The algebra $B_{\infty} := \ell_{\infty}(B)/c_0(B)$ is the *asymptotic sequence algebra*.

Los's Theorem generally fails for the diagonal embedding of *B* into B_{∞} .

Thm [16.3.1](#page-0-0) (Ghasemi) *It is possible to compute* $\text{Th}(B_{\infty})$ *from* Th(*B*)*.* $\pi(\text{BocCH})$

Thm [16.5.1](#page-0-0) B_{∞} *is countably saturated for every B.*

Thm (F., 2020) *For any separable B we have*

- 1. $B \equiv B \otimes C(K)$ *(K denotes the Cantor space).*
- 2. Any 'diagonal' copy of $B \otimes C(K)$ in B_{∞} is an elementary *submodel.*
- 3. CH implies that $B_{\infty} \cong (B \otimes C(\mathbb{R}^N))_{\mathcal{U}}$, for any nonprincipal ultrafilter $\mathcal U$ on $\overline{\mathbb{N}}$. *ultrafilter U on* N*.*

Another theorem with its proof omitted

Thm (F.–Hart–Rørdam–Tikuisis, 2017) *CH implies that*³

$$
(\underline{M_{2^{\infty}}})_{\mathcal{U}} \cap (\underline{M_{2^{\infty}}})' \cong (\underline{M_{2^{\infty}}})_{\mathcal{U}}.
$$

*(One can replace M*_{2∞} *with any strongly self-absorbing* C^{*}-algebra, *or with R with respect to a tracial ultrapower.)*

 $A_{\mathcal{U}} \cap A' < A_{\mathcal{U}}$

 $^3\mathcal{U}$ is nonprincipal and over $\mathbb{N}.$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君 │ め Q ⊘

Examples of ideals on N:

- 1. Fin.
- 2. Maximal ideals (i.e., the duals of ultrafilters).

Examples of ideals on N:

1. Fin.

2. Maximal ideals (i.e., the duals of ultrafilters).

3.
$$
\{X \subseteq \mathbb{N} | \sum_{n \in \mathcal{X}} \frac{1}{n+1} < \infty\}.
$$

- $4. \{X \subseteq \mathbb{Q}|X$ is nowhere dense}.
- 5. For a countable indecomposable ordinal α ,

 ${X \subseteq \alpha}$ the order type of X is $\langle \alpha \rangle$.

6. $\mathcal{Z}_0 := \{ X \subseteq \mathbb{N} | \limsup_n |X \cap n| / n = 0 \}$

Given a family of C^{*}-algebras B_i , for $j \in \mathbb{J}$, and an ideal $\mathcal J$ on $\mathbb J$, $\mathsf{w}\mathsf{e}$ let $\bigoplus_{\mathcal{J}}B_j := \{\bar{b}\in\prod_{j\in\mathbb{J}}B_j: \limsup_{j\to\mathcal{J}}\|b_j\|=0\}$

KORK ERKER SHIPPER

Examples of ideals on N:

1. Fin.

2. Maximal ideals (i.e., the duals of ultrafilters).

3.
$$
\{X \subseteq \mathbb{N} | \sum_{n \in \mathcal{X}} \frac{1}{n+1} < \infty\}.
$$

- $4. \{X \subseteq \mathbb{Q}|X$ is nowhere dense}.
- 5. For a countable indecomposable ordinal α ,

 ${X \subseteq \alpha}$ the order type of X is $\langle \alpha \rangle$.

6. $\mathcal{Z}_0 := \{ X \subseteq \mathbb{N} | \limsup_n |X \cap n| / n = 0 \}$

Given a family of C^{*}-algebras B_i , for $j \in \mathbb{J}$, and an ideal $\mathcal J$ on $\mathbb J$, $\mathsf{w}\mathsf{e}$ let $\bigoplus_{\mathcal{J}}B_j := \{\bar{b}\in\prod_{j\in\mathbb{J}}B_j: \limsup_{j\to\mathcal{J}}\|b_j\|=0\}$

Def [16.2.](#page-0-0)1 *The reduced product of an indexed family B^j , for* $j \in \mathbb{J}$, of C^* -algebras associated with an ideal $\mathcal J$ on $\mathbb J$ is the f *quotient* $\prod_j B_j/\bigoplus_{\mathcal{J}} B_j$. We will sometimes denote it $\prod_j B_j/\mathcal{J}$.

Examples of ideals on N:

1. Fin.

2. Maximal ideals (i.e., the duals of ultrafilters).

3.
$$
\{X \subseteq \mathbb{N} | \sum_{n \in \mathcal{X}} \frac{1}{n+1} < \infty\}.
$$

- $4. \{X \subseteq \mathbb{Q}|X$ is nowhere dense}.
- 5. For a countable indecomposable ordinal α ,

 ${X \subseteq \alpha}$ the order type of *X* is $\langle \alpha \rangle$.

6. $\mathcal{Z}_0 := \{ X \subseteq \mathbb{N} | \limsup_n |X \cap n| / n = 0 \}$

Given a family of C^{*}-algebras B_i , for $j \in \mathbb{J}$, and an ideal $\mathcal J$ on $\mathbb J$, $\mathsf{w}\mathsf{e}$ let $\bigoplus_{\mathcal{J}}B_j := \{\bar{b}\in\prod_{j\in\mathbb{J}}B_j: \limsup_{j\to\mathcal{J}}\|b_j\|=0\}$

Def [16.2.](#page-0-0)1 *The reduced product of an indexed family B^j , for* $j \in \mathbb{J}$, of C^* -algebras associated with an ideal $\mathcal J$ on $\mathbb J$ is the f *quotient* $\prod_j B_j/\bigoplus_{\mathcal{J}} B_j$. We will sometimes denote it $\prod_j B_j/\mathcal{J}$. Ghasemi's Feferman–Vaught Theorem still holds, but countable saturation may fail. (There is no known characterization of ideals for which every associated reduced product i[s c](#page-47-0)[ou](#page-48-0)[n](#page-44-0)[t](#page-45-0)[ab](#page-48-0)[ly](#page-0-0) [sa](#page-48-0)[tur](#page-0-0)[at](#page-48-0)[ed](#page-0-0).