Massive C^* -algebras, Winter 2021, I. Farah, Lecture 8

We are continuing the proof of (a version of) Keisler's theorem: all ultrapowers of a fixed separable C*-algebra associated with nonprincipal ultrafilters on \mathbb{N} are isomorphic, assuming: (CH) Every set of cardinality \mathfrak{c} has a well-ordering such that every proper initial segment is countable (i.e., a well-ordering of *type* \aleph_1). Recall:

Lemma If C is a C*-algebra of density character \aleph_1 , then $C = \bigcup_{\alpha < \aleph_1} C_{\alpha}$ for a continuous \aleph_1 -chain of separable elementary submodels C_{α} , for $\alpha < \aleph_1$.

(*Continuous* means that $C_{\beta} = \lim_{\alpha < \beta} C_{\alpha}$ for every limit ordinal β .)

Lemma Suppose that A and B have density character \aleph_1 and Φ is an isomorphism from A onto B. Then A and B can be represented as increasing unions of countable chains of separable elementary substructures, $A = \bigcup_{\alpha} A_{\alpha}$, $B = \bigcup_{\alpha} B_{\alpha}$, so that $\Phi[A_{\alpha}] = B_{\alpha}$ for all α . A correction to the statement made last time (thanks to Ben for pointing this out):

Fact

There are unital, separable, AF algebras A and B such that $A \equiv B$ and $A \ncong B$, but no explicit example of a pair of such simple algebras is known.

There is a family of \aleph_1 abelian examples (Eagle–Vignati): $C(\alpha + 1)$, for α a countable indecomposable ordinal.

$$\mathcal{A} = \mathcal{B} + \mathcal{Y} \qquad \frac{\mathcal{W} + \mathcal{W}}{\mathcal{W}^2}$$

$$= \mathcal{I} \mathcal{A} = \mathcal{I} \quad \mathcal{O}_{\mathcal{I}} \mathcal{A} = \mathcal{I} \quad \mathcal{W}^2$$

< ロ > < 同 > < E > < E > E の < C</p>

Two facts about types and elementary equivalence

We can define a type over $X \subseteq A$, for X which is not a subalgebra.

Lemma If t is a type over $X \subseteq A$ and $\Phi: A \preceq C$, then t is approximately satisfiable in A if and only if the (naturally defined) type $\Phi(t)$ (over $\Phi[X]$) is approximately satisfiable in C.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

 $\alpha \rightarrow \phi(\alpha)$

Two facts about types and elementary equivalence

We can define a type over $X \subseteq A$, for X which is not a subalgebra.

Lemma If t is a type over $X \subseteq A$ and $\Phi: A \preceq C$, then t is approximately satisfiable in A if and only if the (naturally defined) type $\Phi(t)$ (over $\Phi[X]$) is approximately satisfiable in C.

Exercise.

1. If
$$A \prec B$$
 and $B \prec C$, then $A \prec C$.
2. If $A \prec C$, $B \prec C$, and $A \subseteq B$, then $A \prec B$.
3. If $A_n \prec C$, and $A_n \subseteq A_{n+1}$ for all n , then $\overline{\bigcup_n A_n} \prec C$.

< □ > < 同 > < 三 >

A universality property of countably saturated algebras

- Thm Suppose that C is countably saturated.
 - 1. If A is separable and $A \equiv C$, then there is $\Phi \colon A \preceq C$.
 - 2. If A and B are separable, $\Phi: A \leq C$ and $\Psi: A \leq B$, then there exists $\Theta: B \leq C$ such that $\Theta \circ \Psi = \Phi$.

< ロ > < 同 > < E > < E > E の < C</p>

A universality property of countably saturated algebras

Thm Suppose that C is countably saturated.

 \bigcirc If A is separable and $A \equiv C$, then there is $\Phi: A \preceq C$.

2. If A and B are separable, $\Phi: A \leq C$ and $\Psi: A \leq B$, then there exists $\Theta: B \leq C$ such that $\Theta \circ \Psi = \Phi$.

Proof: Fix a sequence $\underline{a_n}$, for $n \in \mathbb{N}$, dense in A. type_A($\underline{a_0}/\emptyset$) is approximately satisfiable in C. Fix $\zeta \in \mathcal{C}$ type_A($\underline{a_0}/\emptyset$) = type_A($\underline{c_0}/\emptyset$)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

A universality property of countably saturated algebras

Thm Suppose that C is countably saturated.

- 1. If A is separable and $A \equiv C$, then there is $\Phi \colon A \preceq C$.
- 2. If A and B are separable, $\Phi: A \leq C$ and $\Psi: A \leq B$, then there exists $\Theta: B \leq C$ such that $\Theta \circ \Psi = \Phi$.

Proof: Fix a sequence a_n , for $n \in \mathbb{N}$, dense in A. type_A (a_0/\emptyset) is approximately satisfiable in C. We'll define $\Phi(a_n)$ by recursion, so that for all n:

 $\Phi(\mathsf{type}_A(\underline{a_n}/\{a_j|j < n\})) = \mathsf{type}_C(\Phi(a_n)/\{\Phi(a_j)|j < n\}).$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

3

Thm (Corollary 16.6.5, Keisler) Suppose that C and D are countably saturated, elementarily equivalent, and of density character \aleph_1 . Then $C \cong D$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Thm (Corollary 16.6.5, Keisler) Suppose that C and D are countably saturated, elementarily equivalent, and of density character \aleph_1 . Then $C \cong D$.

Proof: Write $C = \bigcup_{\alpha < \aleph_1} C_{\alpha}$ and $D = \bigcup_{\alpha < \aleph_1} D_{\alpha}$, continuous chains of elementary submodels.

se fordula

Thm (Corollary 16.6.5, Keisler) Suppose that C and D are countably saturated, elementarily equivalent, and of density character \aleph_1 . Then $C \cong D$.

Proof: Write $C = \bigcup_{\alpha < \aleph_1} C_{\alpha}$ and $D = \bigcup_{\alpha < \aleph_1} D_{\alpha}$, continuous chains of elementary submodels. We will find continuous increasing families $\alpha(\xi)$, $\beta(\xi)$, $\xi < \aleph_1$, and elementary embeddings $\Phi_{\xi} : C_{\alpha(\xi)} \to D$ and $\Psi_{\xi} : D_{\beta(\xi)} \to C$ such that for all $\xi < \eta$

1.
$$\Phi_{\xi}[C_{\alpha(\xi)}] \subseteq D_{\beta(\xi)}$$
. $\Psi_{\xi}[D_{\beta(\xi)}] \subseteq C_{\alpha(\xi+1)}$.

- 2. $\Psi_{\xi} \circ \Phi_{\xi}(a) = a$, for $a \in C_{\alpha(\xi)}$, $\Phi_{\xi+1} \circ \Psi_{\xi}(b) = b$, for $b \in D_{\alpha(\xi)}$,
- 3. Φ_{η} extends Φ_{ξ} , Ψ_{η} extends Ψ_{ξ} .

The proof gives a more precise statement:

Thm (Corollary 16.6.5) Suppose that C and D are countably saturated, elementarily equivalent, and of density character \aleph_1 . Then $C \cong D$, and the isomorphism can be chosen so that it extends any fixed isomorphism $\Phi_0: C_0 \to D_0$ between separable elementary submodels of C and D.

< ロ > < 同 > < E > < E > E の < C</p>

If the Continuum Hypothesis (CH) holds, A is a separable C^* -algebra, and \mathcal{U} and \mathcal{V} are nonprincipal ultrafilters on \mathbb{N} , then there is an isomorphism $\Phi: A_{\mathcal{U}} \to A_{\mathcal{V}}$ that commutes with the diagonal embedding of A.

ALA $|_{A \prec A_{U^{-}}}$ AUNA' - AUNA'

¹All ultrafilters are nonprincipal and over \mathbb{N} .

If the Continuum Hypothesis (CH) holds, A is a separable C^* -algebra, and \mathcal{U} and \mathcal{V} are nonprincipal ultrafilters on \mathbb{N} , then there is an isomorphism $\Phi: A_{\mathcal{U}} \to A_{\mathcal{V}}$ that commutes with the diagonal embedding of A.

Corollary $\chi(A) \leq \sqrt{1}$

If A is a <u>separable</u> C^* -algebra, then CH implies that all ultrapowers of A maps are isomorphic, and all relative commutants of A in its ultrapowers are isomorphic.¹

¹All ultrafilters are nonprincipal and over \mathbb{N} .

If the Continuum Hypothesis (CH) holds, A is a separable C^* -algebra, and \mathcal{U} and \mathcal{V} are nonprincipal ultrafilters on \mathbb{N} , then there is an isomorphism $\Phi: A_{\mathcal{U}} \to A_{\mathcal{V}}$ that commutes with the diagonal embedding of A.

Corollary

If A is a separable C^* -algebra, then CH implies that all ultrapowers of A on \mathbb{N} are isomorphic, and all relative commutants of A in its ultrapowers are isomorphic.¹

Corollary

There are nonisomorphic separable, simple, AF algebras with isomorphic ultrapowers.

¹All ultrafilters are nonprincipal and over \mathbb{N} .

If the Continuum Hypothesis (CH) holds, A is a separable C^* -algebra, and \mathcal{U} and \mathcal{V} are nonprincipal ultrafilters on \mathbb{N} , then there is an isomorphism $\Phi: A_{\mathcal{U}} \to A_{\mathcal{V}}$ that commutes with the diagonal embedding of A.

Corollary

If A is a separable C^* -algebra, then CH implies that all ultrapowers of A on \mathbb{N} are isomorphic, and all relative commutants of A in its ultrapowers are isomorphic.¹

Corollary

There are nonisomorphic separable, simple, AF algebras with isomorphic ultrapowers. Prop (Kirchberg) $A \equiv B$ does not imply $A_{\mathcal{U}} \cap A' \equiv B_{\mathcal{U}} \cap B'$, even for separable, simple, A and B.

¹All ultrafilters are nonprincipal and over \mathbb{N} .

That answers $\frac{1}{2}$ of Kirchberg's question. Now for McDuff.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

That answers $\frac{1}{2}$ of Kirchberg's question. Now for McDuff. Recall that R (the hyperfinite II₁ factor) is the operator algebra such that for all $n \ge 1$, the *n*-ball of R is the completion of the *n*-ball of $M_{2^{\infty}}$ in the 2-norm associated with the unique tracial state, $||a||_2 := \tau (a^*a)^{1/2}$.

That answers $\frac{1}{2}$ of Kirchberg's question. Now for McDuff. Recall that R (the hyperfinite II₁ factor) is the operator algebra such that for all $n \ge 1$, the *n*-ball of R is the completion of the *n*-ball of $M_{2^{\infty}}$ in the 2-norm associated with the unique tracial state, $||a||_2 := \tau (a^*a)^{1/2}$. The tracial ultrapower is

$$\mathbb{R}^{\mathcal{U}} := \frac{\ell_{\infty}(R)}{(a_n)} \lim_{n \to \mathcal{U}} \|a_n\|_2 = 0 \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ♪

That answers $\frac{1}{2}$ of Kirchberg's question. Now for McDuff. Recall that R (the hyperfinite II₁ factor) is the operator algebra such that for all $n \ge 1$, the *n*-ball of R is the completion of the *n*-ball of $M_{2^{\infty}}$ in the 2-norm associated with the unique tracial state, $||a||_2 := \tau (a^*a)^{1/2}$. The tracial ultrapower is

$$R^{\mathcal{U}} := \ell_{\infty}(R) / \{(a_n) | \lim_{n \to \mathcal{U}} ||a_n||_2 = 0\}.$$

Thus $R^{\mathcal{U}} \cong (M_{2^{\infty}})^{\mathcal{U}}$ and $R^{\mathcal{U}} \cap R' \cong (M_{2^{\infty}})^{\mathcal{U}} \cap (M_{2^{\infty}})'.$
Corollary
If \mathcal{U} and \mathcal{V} are nonprincipal ultrafilters on \mathbb{N} , then $R^{\mathcal{U}} \cong R^{\mathcal{V}}$ and $R^{\mathcal{U}} \cap R' \cong R^{\mathcal{V}} \cap R'$

That answers $\frac{1}{2}$ of Kirchberg's question. Now for McDuff. Recall that R (the hyperfinite II₁ factor) is the operator algebra such that for all $n \ge 1$, the *n*-ball of R is the completion of the *n*-ball of $M_{2^{\infty}}$ in the 2-norm associated with the unique tracial state, $||a||_2 := \tau (a^*a)^{1/2}$. The tracial ultrapower is

 $R^{\mathcal{U}} := \ell_{\infty}(R) / \{(a_n) | \lim_{n \to \mathcal{U}} ||a_n||_2 = 0 \}.$ Thus $R^{\mathcal{U}} \cong (M_{2^{\infty}})_{\mathcal{U}}$ and $R^{\mathcal{U}} \cap R' \cong (M_{2^{\infty}})_{\mathcal{U}} \cap (M_{2^{\infty}})'.$ Corollary If \mathcal{U} and \mathcal{V} are nonprincipal ultrafilters on \mathbb{N} , then $R^{\mathcal{U}} \cong R^{\mathcal{V}}$ and $R^{\mathcal{U}} \cap R' \cong R^{\mathcal{V}} \cap R'.$

Before (very briefly) discussing the model in which these conclusions fail, we'll take a look at automorphisms of ultrapowers.

 $\|f\|_2 = \int (f$

Thm Suppose that C is countably saturated and of density character \aleph_1 . Then C has 2^{\aleph_1} automorphisms.

A proof of this requires another idea and some bookkeeping.

Thm Suppose that C is countably saturated and of density character \aleph_1 . Then C has 2^{\aleph_1} automorphisms.

A proof of this requires another idea and some bookkeeping.

Lemma Suppose that C is countably saturated, $A \prec C$ is separable, and $b \in C \setminus A$. Then the set

$$\{\underline{c \in C} | \operatorname{type}_{C}(\underline{c/A}) = \operatorname{type}_{C}(\underline{b/A})\}$$

is nonseparable.

t = type (6/A) LA Let E= dist (6, A) (E>D) Lef $t_2(X,Y) = t(x) \cup t(Y) \cup ||X-Y|| \ge c$ by new tat (|×- 6μ//≥ ε.

Thm Suppose that C is countably saturated and of density character \aleph_1 . Then C has 2^{\aleph_1} automorphisms.

A proof of this requires another idea and some bookkeeping.

Lemma Suppose that C is countably saturated, $A \prec C$ is separable, and $b \in C \setminus A$. Then the set

$${c \in C | \operatorname{type}_{C}(c/A) = \operatorname{type}_{C}(b/A)}$$

is nonseparable.

Now for the bookkeeping. Let $\{0,1\}^{<\aleph_1}$ denote the set of all functions $s: \alpha \to \{0,1\}$, where α is a countable ordinal. Maximal chains in $\{0,1\}^{<\aleph_1}$ correspond to the elements of $\{0,1\}^{\aleph_1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへ⊙

Proof that if C is countably saturated and of density character \aleph_1 then C has 2^{\aleph_1} automorphisms.

Write $C = \bigcup_{\alpha} C_{\alpha}$, for a continuous chain of separable elementary submodels.

For $s \in \{0,1\}^{<\aleph_1}$ we will find separable $C_s \prec C$ and $D_s \prec C$ and an isomorphism $\Phi_s \colon C_s \to D_s$ (onto) so that for all s we have the following

▲□▶▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□▶

1. If $s \sqsubseteq t$ then $C_s \prec C_t$, $D_s \prec D_t$, and $\Psi_t \upharpoonright C_s = \Phi_s$.

Proof that if C is countably saturated and of density character \aleph_1 then C has 2^{\aleph_1} automorphisms.

Write $C = \bigcup_{\alpha} C_{\alpha}$, for a continuous chain of separable elementary submodels.

For $s \in \{0,1\}^{<\aleph_1}$ we will find separable $C_s \prec C$ and $D_s \prec C$ and an isomorphism $\Phi_s \colon C_s \to D_s$ (onto) so that for all s we have the following

1. If $s \sqsubseteq t$ then $C_s \prec C_t$, $D_s \prec D_t$, and $\Psi_t \upharpoonright C_s = \Phi_s$.

٩X

2. There is $x \in C_{s \frown 0} \cap C_{s \frown 1}$ such that $\Phi_{s \frown 0} \neq \Phi_{s \frown 1}(\mathcal{K})$

Proof that if C is countably saturated and of density character \aleph_1 then C has 2^{\aleph_1} automorphisms.

Write $C \neq \bigcup_{\alpha} C_{\alpha}$, for a continuous chain of separable elementary submodels.

For $s \in \{0,1\}^{<\aleph_1}$ we will find separable $C_s \prec C$ and $D_s \prec C$ and an isomorphism $\Phi_s \colon C_s \to D_s$ (onto) so that for all s we have the following

- 1. If $s \sqsubseteq t$ then $C_s \prec C_t$, $D_s \prec D_t$, and $\Psi_t \upharpoonright C_s = \Phi_s$.
- 2. There is $x \in C_{s \frown 0} \cap C_{s \frown 1}$ such that $\Phi_{s \frown 0} \neq \Phi_{s \frown 1}$. For $s \in \{0,1\}^{\alpha}$, $C_{s \frown 0} \supseteq C_{\alpha}$, $C_{s \frown 1} \supseteq C_{\alpha}$, $D_{s \frown 0} \supseteq C_{\alpha}$ and $D_{s \frown 1} \supseteq C_{\alpha}$.

U(1) = 2U(2) = C

< ロ > < 同 > < E > < E > E の < C</p>

Q: Is then a hodol 07 2FC S.F. all (M208) actions of Cu are "thirid"? $l_{\infty}(C) \xrightarrow{?} l_{\infty}(C)$ $\begin{pmatrix}
\phi \\
\mu
\end{pmatrix} \begin{pmatrix}
\phi \\
\mu
\end{pmatrix} \begin{pmatrix}
\phi \\
\mu
\end{pmatrix}$ (See Shelah, Vive la differer, N+. III.)

The dark side

CH is a very strong axiom, hence its negation is a very weak axiom. However...

²All ultrafilters are nonprincipal and over \mathbb{N} .

The dark side

CH is a very strong axiom, hence its negation is a very weak axiom. However...

Thm (F.–Hart–Sherman, F(–Shelah)) If the Continuum Hypothesis fails, then for every separable, infinite-dimensional C^* -algebra A there are $2^{2^{\aleph_0}}$ nonisomorphic ultrapowers $A_{\mathcal{U}}$ and $2^{2^{\aleph_0}}$ nonisomorphic relative commutants $A_{\mathcal{U}} \cap \overline{A'}$. There are also $2^{2^{\aleph_0}}$ nonisomorphic ultrapowers $R^{\mathcal{U}}$ and $2^{2^{\aleph_0}}$ nonisomorphic relative commutants.²

²All ultrafilters are nonprincipal and over \mathbb{N} . ▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

The dark side

CH is a very strong axiom, hence its negation is a very weak axiom. However...

Thm (F.–Hart–Sherman, F.–Shelah) If the Continuum Hypothesis fails, then for every separable, infinite-dimensional C*-algebra A there are $2^{2^{\aleph_0}}$ nonisomorphic ultrapowers $A_{\mathcal{U}}$ and $2^{2^{\aleph_0}}$ nonisomorphic relative commutants $A_{\mathcal{U}} \cap A'$. There are also $2^{2^{\aleph_0}}$ nonisomorphic ultrapowers $R^{\mathcal{U}}$ and $2^{2^{\aleph_0}}$ nonisomorphic relative commutants.²

Thm (F.–Hart–Sherman (Maharam)) All tracial ultrapowers of $L_{\infty}([0,1],\lambda)$ are isomorphic (even when the CH fails).

²All ultrafilters are nonprincipal and over \mathbb{N} .

For all practical purposes, all ultrapowers are 'isomorphic'

Def 8.2.8 Suppose C and D are nonseparable metric structures in the same language. A σ -complete back-and-forth system between C and D is a poset \mathbb{F} with the following properties.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

For all practical purposes, all ultrapowers are 'isomorphic'

Def 8.2.8 Suppose C and D are nonseparable metric structures in the same language. A σ -complete back-and-forth system between C and D is a poset \mathbb{F} with the following properties.

- 1. The elements of \mathbb{F} are partial isomorphisms $p = (A^p, B^p, \Phi^p)$.
- 2. The ordering is defined by $p \le q$ if $A^p \subseteq A^q$, $B^p \subseteq B^q$, and $\Phi^q \upharpoonright A^p = \Phi^p$.
- 3. For every $p \in \mathbb{F}$ and all $a \in A$ and $b \notin B$ there exists $q \ge p$ in \mathbb{F} such that $a \in A^q$ and $b \in B^q$.
 - ⁴ 𝔅 is σ-complete: For every increasing sequence p(n), for n ∈ ℕ, in 𝔅 we require that (identifying a function with its graph) $p := (\bigcup_n A^{p(n)}, \bigcup_n B^{p(n)}, \bigcup_n \Phi^{p(n)})$ belongs to 𝔅. We write

SQ (V

 $p = \sup_n p_n$.

For all practical purposes, all ultrapowers are 'isomorphic'

Def 8.2.8 Suppose C and D are nonseparable metric structures in the same language. A σ -complete back-and-forth system between C and D is a poset \mathbb{F} with the following properties.

- 1. The elements of \mathbb{F} are partial isomorphisms $p = (A^p, B^p, \Phi^p)$.
- 2. The ordering is defined by $p \le q$ if $A^p \subseteq A^q$, $B^p \subseteq B^q$, and $\Phi^q \upharpoonright A^p = \Phi^p$.
- 3. For every $p \in \mathbb{F}$ and all $a \in A$ and $b \in B$ there exists $q \ge p$ in \mathbb{F} such that $a \in A^q$ and $b \in B^q$.
- 4. \mathbb{F} is σ -complete: For every increasing sequence p(n), for $n \in \mathbb{N}$, in \mathbb{F} we require that (identifying a function with its graph) $p := (\bigcup_n A^{p(n)}, \bigcup_n B^{p(n)}, \bigcup_n \Phi^{p(n)})$ belongs to \mathbb{F} . We write $p = \sup_n p_n$.

Prop 16.6.1 Suppose C and D are metric structures of density character \aleph_1 . The following are equivalent.

There exists a σ -complete back-and-forth system between C and D. 2. The structures C and D are isomorphic.

Thm 16.6.4 Suppose C and D are countably saturated metric structures. The following are equivalent.

- 1. The metric structures C and D are elementarily equivalent.
- 2. There exists a σ -complete back-and-forth system between C and D.

Proof: This is what the proof that CH implies $C \cong D$ gives in the absence of CH.

A

 $F = \left(\begin{array}{c} (A, B, \phi) \middle| A < C, B < D \\ S \in P. \\ \phi : A = B \right) \right)$

The asymptotic sequence algebra (a few theorems with proofs omitted; see §16.3, §16.5) $c_0(B) := \{(a_n) \in \ell_{\infty}(B) | \lim_n ||a_n|| = 0\}.$ The algebra $B_{\infty} := \ell_{\infty}(B)/c_0(B)$ is the asymptotic sequence algebra.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

The asymptotic sequence algebra (a few theorems with proofs omitted; see §16.3, §16.5) $c_0(B) := \{(a_n) \in \ell_{\infty}(B) | \lim_n ||a_n|| = 0\}.$ The algebra $B_{\infty} := \ell_{\infty}(B)/c_0(B)$ is the asymptotic sequence algebra.

Łoś's Theorem generally fails for the diagonal embedding of B into B_{∞} .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

The asymptotic sequence algebra

(a few theorems with proofs omitted; see §16.3, §16.5) $c_0(B) := \{(a_n) \in \ell_{\infty}(B) | \lim_n ||a_n|| = 0\}.$ The algebra $B_{\infty} := \ell_{\infty}(B)/c_0(B)$ is the asymptotic sequence algebra.

Łoś's Theorem generally fails for the diagonal embedding of B into B_{∞} . Fefermon - Vary Lf tyle

Thm 16.3.1 (Ghasemi) It is possible to compute $\underline{\mathsf{Th}}(B_{\infty})$ from $\overline{\mathsf{Th}}(B)$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

The asymptotic sequence algebra

(a few theorems with proofs omitted; see §16.3, §16.5) $c_0(B) := \{(a_n) \in \ell_{\infty}(B) | \lim_n ||a_n|| = 0\}.$ The algebra $B_{\infty} := \ell_{\infty}(B)/c_0(B)$ is the asymptotic sequence algebra.

Łoś's Theorem generally fails for the diagonal embedding of B into B_{∞} .

Thm 16.3.1 (Ghasemi) It is possible to compute $Th(B_{\infty})$ from Th(B).

< ロ > < 同 > < E > < E > E の < C</p>

Thm 16.5.1 B_{∞} is countably saturated for every B.

The asymptotic sequence algebra

(a few theorems with proofs omitted; see $\S16.3$, $\S16.5$) $c_0(B) := \{(a_n) \in \ell_\infty(B) | \lim_n \|a_n\| = 0\}.$ The algebra $B_{\infty} := \ell_{\infty}(B)/c_0(B)$ is the asymptotic sequence algebra.

Łoś's Theorem generally fails for the diagonal embedding of B into B_{∞} .

Thm 16.3.1 (Ghasemi) It is possible to compute $Th(B_{\infty})$ from Th(B). Th (BOXCCHI)

Thm 16.5.1 B_{∞} is countably saturated for every B.

Thm (F., 2020) For any separable B we have

- 1. $B \cong B \otimes C(K)$ (K denotes the Cantor space).
- 2. Any 'diagonal' copy of $B\otimes C(K)$ in B_∞ is an elementary submodel.
- 3. CH implies that $\underline{B}_{\infty} \cong (B \otimes C(\mathcal{M}))_{\mathcal{U}}$, for any nonprincipal ultrafilter \mathcal{U} on \mathbb{N} . くしん 「「」(山)(山)(山)(山)

Another theorem with its proof omitted

Thm (F.–Hart–Rørdam–Tikuisis, 2017) CH implies that³

$$(\underline{M_{2^{\infty}}})_{\mathcal{U}}\cap (\underline{M_{2^{\infty}}})'\cong (\underline{M_{2^{\infty}}})_{\mathcal{U}}.$$

(One can replace $M_{2^{\infty}}$ with any strongly self-absorbing C^{*}-algebra, or with R with respect to a tracial ultrapower.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 $A_{\mathcal{U}} \cap A' < A_{\mathcal{U}}$

 $^{{}^{3}\}mathcal{U}$ is nonprincipal and over \mathbb{N} .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples of ideals on $\mathbb{N}:$

- 1. Fin.
- 2. Maximal ideals (i.e., the duals of ultrafilters).

Examples of ideals on \mathbb{N} :

1. Fin.

2. Maximal ideals (i.e., the duals of ultrafilters).

3. {
$$X \subseteq \mathbb{N} | \sum_{n \in X} \frac{1}{n+1} < \infty$$
 }.

- 4. $\{X \subseteq \mathbb{Q} | X \text{ is nowhere dense} \}$.
- 5. For a countable indecomposable ordinal α ,

 $\{X \subseteq \alpha | \text{ the order type of } X \text{ is } < \alpha \}.$

6. $\mathcal{Z}_0 := \{X \subseteq \mathbb{N} | \limsup_n |X \cap n| / n = 0\}$

Given a family of C*-algebras B_j , for $j \in \mathbb{J}$, and an ideal \mathcal{J} on \mathbb{J} , we let $\bigoplus_{\mathcal{J}} B_j := \{ \overline{b} \in \prod_{j \in \mathbb{J}} B_j : \lim \sup_{j \to \mathcal{J}} \|b_j\| = 0 \}$

Examples of ideals on \mathbb{N} :

1. Fin.

2. Maximal ideals (i.e., the duals of ultrafilters).

3.
$$\{X \subseteq \mathbb{N} | \sum_{n \in X} \frac{1}{n+1} < \infty\}.$$

- 4. $\{X \subseteq \mathbb{Q} | X \text{ is nowhere dense} \}$.
- 5. For a countable indecomposable ordinal α ,

 $\{X \subseteq \alpha | \text{ the order type of } X \text{ is } < \alpha \}.$

6. $\mathcal{Z}_0 := \{X \subseteq \mathbb{N} | \limsup_n |X \cap n| / n = 0\}$

Given a family of C*-algebras B_j , for $j \in \mathbb{J}$, and an ideal \mathcal{J} on \mathbb{J} , we let $\bigoplus_{\mathcal{J}} B_j := \{ \overline{b} \in \prod_{j \in \mathbb{J}} B_j : \limsup_{j \to \mathcal{J}} \|b_j\| = 0 \}$

Def 16.2.1 The reduced product of an indexed family B_j , for $j \in \mathbb{J}$, of \mathbb{C}^* -algebras associated with an ideal \mathcal{J} on \mathbb{J} is the quotient $\prod_j B_j / \bigoplus_{\mathcal{J}} B_j$. We will sometimes denote it $\prod_j B_j / \mathcal{J}$.

Examples of ideals on \mathbb{N} :

1. Fin.

2. Maximal ideals (i.e., the duals of ultrafilters).

3.
$$\{X \subseteq \mathbb{N} | \sum_{n \in X} \frac{1}{n+1} < \infty\}.$$

- 4. $\{X \subseteq \mathbb{Q} | X \text{ is nowhere dense} \}$.
- 5. For a countable indecomposable ordinal α ,

 $\{X \subseteq \alpha | \text{ the order type of } X \text{ is } < \alpha \}.$

6. $\mathcal{Z}_0 := \{X \subseteq \mathbb{N} | \limsup_n |X \cap n| / n = 0\}$

Given a family of C*-algebras B_j , for $j \in J$, and an ideal \mathcal{J} on J, we let $\bigoplus_{\mathcal{J}} B_j := \{ \overline{b} \in \prod_{j \in J} B_j : \limsup_{j \to \mathcal{J}} \|b_j\| = 0 \}$

Def 16.2.1 The reduced product of an indexed family B_j , for $j \in \mathbb{J}$, of C*-algebras associated with an ideal \mathcal{J} on \mathbb{J} is the quotient $\prod_j B_j / \bigoplus_{\mathcal{J}} B_j$. We will sometimes denote it $\prod_j B_j / \mathcal{J}$. Ghasemi's Feferman–Vaught Theorem still holds, but countable saturation may fail. (There is no known characterization of ideals for which every associated reduced product is countably saturated.)