
Massive C⇤
-algebras, Winter 2021, I. Farah, Lecture 8

We are continuing the proof of (a version of) Keisler’s theorem: all

ultrapowers of a fixed separable C⇤
-algebra associated with

nonprincipal ultrafilters on N are isomorphic, assuming:

(CH) Every set of cardinality c has a well-ordering such that every

proper initial segment is countable (i.e., a well-ordering of type @1).

Recall:

Lemma If C is a C⇤-algebra of density character @1, then
C =

S
↵<@1

C↵ for a continuous @1-chain of separable elementary
submodels C↵, for ↵ < @1.

(Continuous means that C� = lim↵<� C↵ for every limit ordinal �.)

Lemma Suppose that A and B have density character @1 and �

is an isomorphism from A onto B. Then A and B can be
represented as increasing unions of countable chains of separable
elementary substructures, A =

S
↵ A↵, B =

S
↵ B↵, so that

�[A↵] = B↵ for all ↵.

 



A correction to the statement made last time (thanks to Ben for

pointing this out):

Fact

There are unital, separable, AF algebras A and B such that A ⌘ B
and A 6⇠= B, but no explicit example of a pair of such simple
algebras is known.
There is a family of @1 abelian examples (Eagle–Vignati):
C (↵+ 1), for ↵ a countable indecomposable ordinal.
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Two facts about types and elementary equivalence

We can define a type over X ✓ A, for X which is not a subalgebra.

Lemma If t is a type over X ✓ A and � : A � C, then t is
approximately satisfiable in A if and only if the (naturally defined)
type �(t) (over �[X ]) is approximately satisfiable in C.

Exercise.

1. If A � B and B � C , then A � C .

2. If A � C , B � C , and A ✓ B , then A � B .

3. If An � C , and An ✓ An+1 for all n, then
S

n An � C .
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A universality property of countably saturated algebras

Thm Suppose that C is countably saturated.

1. If A is separable and A ⌘ C, then there is � : A � C.

2. If A and B are separable, � : A � C and  : A � B, then
there exists ⇥ : B � C such that ⇥ �  = �.

Proof: Fix a sequence an, for n 2 N, dense in A. typeA(a0/;) is
approximately satisfiable in C .

We’ll define �(an) by recursion, so that for all n:

�(typeA(an/{aj |j < n})) = typeC (�(an)/{�(aj)|j < n}).
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Thm (Corollary 16.6.5, Keisler) Suppose that C and D are
countably saturated, elementarily equivalent, and of density
character @1. Then C ⇠= D.

Proof: Write C =
S

↵<@1
C↵ and D =

S
↵<@1

D↵, continuous chains of

elementary submodels. We will find continuous increasing families ↵(⇠),
�(⇠), ⇠ < @1, and elementary embeddings �⇠ : C↵(⇠) ! D and

 ⇠ : D�(⇠) ! C such that for all ⇠ < ⌘

1. �⇠[C↵(⇠)] ✓ D�(⇠).  ⇠[D�(⇠)] ✓ C↵(⇠+1).

2.  ⇠ � �⇠(a) = a, for a 2 C↵(⇠), �⇠+1 � ⇠(b) = b, for b 2 D↵(⇠),

3. �⌘ extends �⇠,  ⌘ extends  ⇠.

Then � :=
S

⇠ �⇠ is an isomorphism, and  :=
S

⇠  ⇠ is its inverse.
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The proof gives a more precise statement:

Thm (Corollary 16.6.5) Suppose that C and D are countably
saturated, elementarily equivalent, and of density character @1.
Then C ⇠= D, and the isomorphism can be chosen so that it
extends any fixed isomorphism �0 : C0 ! D0 between separable
elementary submodels of C and D.



Corollary

If the Continuum Hypothesis (CH) holds, A is a separable
C⇤-algebra, and U and V are nonprincipal ultrafilters on N, then
there is an isomorphism � : AU ! AV that commutes with the
diagonal embedding of A.

Corollary

If A is a separable C⇤-algebra, then CH implies that all ultrapowers
of A on N are isomorphic, and all relative commutants of A in its
ultrapowers are isomorphic.1

Corollary

There are nonisomorphic separable, simple, AF algebras with
isomorphic ultrapowers.

Prop (Kirchberg) A ⌘ B does not imply AU \ A0 ⌘ BU \ B 0, even
for separable, simple, A and B.

1All ultrafilters are nonprincipal and over N.

AL Au
TAL Ar

Aunt TAMA



Corollary

If the Continuum Hypothesis (CH) holds, A is a separable
C⇤-algebra, and U and V are nonprincipal ultrafilters on N, then
there is an isomorphism � : AU ! AV that commutes with the
diagonal embedding of A.

Corollary

If A is a separable C⇤-algebra, then CH implies that all ultrapowers
of A on N are isomorphic, and all relative commutants of A in its
ultrapowers are isomorphic.1

Corollary

There are nonisomorphic separable, simple, AF algebras with
isomorphic ultrapowers.

Prop (Kirchberg) A ⌘ B does not imply AU \ A0 ⌘ BU \ B 0, even
for separable, simple, A and B.

1All ultrafilters are nonprincipal and over N.

ATHEIST

E



Corollary

If the Continuum Hypothesis (CH) holds, A is a separable
C⇤-algebra, and U and V are nonprincipal ultrafilters on N, then
there is an isomorphism � : AU ! AV that commutes with the
diagonal embedding of A.

Corollary

If A is a separable C⇤-algebra, then CH implies that all ultrapowers
of A on N are isomorphic, and all relative commutants of A in its
ultrapowers are isomorphic.1

Corollary

There are nonisomorphic separable, simple, AF algebras with
isomorphic ultrapowers.

Prop (Kirchberg) A ⌘ B does not imply AU \ A0 ⌘ BU \ B 0, even
for separable, simple, A and B.

1All ultrafilters are nonprincipal and over N.



Corollary

If the Continuum Hypothesis (CH) holds, A is a separable
C⇤-algebra, and U and V are nonprincipal ultrafilters on N, then
there is an isomorphism � : AU ! AV that commutes with the
diagonal embedding of A.

Corollary

If A is a separable C⇤-algebra, then CH implies that all ultrapowers
of A on N are isomorphic, and all relative commutants of A in its
ultrapowers are isomorphic.1

Corollary

There are nonisomorphic separable, simple, AF algebras with
isomorphic ultrapowers.

Prop (Kirchberg) A ⌘ B does not imply AU \ A0 ⌘ BU \ B 0, even
for separable, simple, A and B.

1All ultrafilters are nonprincipal and over N.

tho that Th Y



That answers
1
2 of Kirchberg’s question. Now for McDu↵.

Recall that R (the hyperfinite II1 factor) is the operator algebra

such that for all n � 1, the n-ball of R is the completion of the

n-ball of M21 in the 2-norm associated with the unique tracial

state, kak2 := ⌧(a⇤a)1/2. The tracial ultrapower is

RU
:= `1(R)/{(an)| lim

n!U
kank2 = 0}.

Thus RU ⇠= (M21)U and RU \ R 0 ⇠= (M21)U \ (M21)
0
.

Corollary

If U and V are nonprincipal ultrafilters on N, then RU ⇠= RV and
RU \ R 0 ⇠= RV \ R 0.

Before (very briefly) discussing the model in which these

conclusions fail, we’ll take a look at automorphisms of ultrapowers.
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Thm Suppose that C is countably saturated and of density
character @1. Then C has 2@1 automorphisms.

A proof of this requires another idea and some bookkeeping.

Lemma Suppose that C is countably saturated, A � C is
separable, and b 2 C \ A. Then the set

{c 2 C | typeC (c/A) = typeC (b/A)}

is nonseparable.

Now for the bookkeeping. Let {0, 1}<@1 denote the set of all

functions s : ↵ ! {0, 1}, where ↵ is a countable ordinal.

Maximal chains in {0, 1}<@1 correspond to the elements of

{0, 1}@1 .
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Proof that if C is countably saturated and of density character @1

then C has 2
@1 automorphisms.

Write C =
S

↵ C↵, for a continuous chain of separable elementary

submodels.

For s 2 {0, 1}<@1 we will find separable Cs � C and Ds � C and

an isomorphism �s : Cs ! Ds (onto) so that for all s we have the

following

1. If s v t then Cs � Ct , Ds � Dt , and  t � Cs = �s .

2. There is x 2 Cs_0 \ Cs_1 such that �s_0 6= �s_1.

For s 2 {0, 1}↵, Cs_0 ✓ C↵, Cs_1 ◆ C↵, Ds_0 ✓ C↵ and

Ds_1 ◆ C↵.
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The dark side

CH is a very strong axiom, hence its negation is a very weak

axiom. However. . .

Thm (F.–Hart–Sherman, F.–Shelah) If the Continuum Hypothesis
fails, then for every separable, infinite-dimensional C⇤-algebra A
there are 2

2@0 nonisomorphic ultrapowers AU and 2
2@0

nonisomorphic relative commutants AU \ A0. There are also 2
2@0

nonisomorphic ultrapowers RU and 2
2@0 nonisomorphic relative

commutants.2

Thm (F.–Hart–Sherman (Maharam)) All tracial ultrapowers of
L1([0, 1],�) are isomorphic (even when the CH fails).

2All ultrafilters are nonprincipal and over N.
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For all practical purposes, all ultrapowers are ‘isomorphic’

Def 8.2.8 Suppose C and D are nonseparable metric structures in the
same language. A �-complete back-and-forth system between C and D is
a poset F with the following properties.

1. The elements of F are partial isomorphisms p = (Ap,Bp,�
p
).

2. The ordering is defined by p  q if Ap ✓ Aq, Bp ✓ Bq, and
�

q � Ap
= �

p.

3. For every p 2 F and all a 2 A and b 2 B there exists q � p in F
such that a 2 Aq and b 2 Bq.

4. F is �-complete: For every increasing sequence p(n), for n 2 N, in F
we require that (identifying a function with its graph)

p := (
S

n A
p(n),

S
n B

p(n),
S

n �p(n)) belongs to F. We write
p = supn pn.

Prop 16.6.1 Suppose C and D are metric structures of density character
@1. The following are equivalent.

1. There exists a �-complete back-and-forth system between C and D.

2. The structures C and D are isomorphic.

OO
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Thm 16.6.4 Suppose C and D are countably saturated metric
structures. The following are equivalent.

1. The metric structures C and D are elementarily equivalent.

2. There exists a �-complete back-and-forth system between C
and D.

Proof: This is what the proof that CH implies C ⇠= D gives in the

absence of CH.
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The asymptotic sequence algebra

(a few theorems with proofs omitted; see §16.3, §16.5)
c0(B) := {(an) 2 `1(B)| limn kank = 0}.
The algebra B1 := `1(B)/c0(B) is the asymptotic sequence
algebra.

 Loś’s Theorem generally fails for the diagonal embedding of B into

B1.

Thm 16.3.1 (Ghasemi) It is possible to compute Th(B1) from
Th(B).

Thm 16.5.1 B1 is countably saturated for every B.

Thm (F., 2020) For any separable B we have
1. B ⇠= B ⌦ C (K ) (K denotes the Cantor space).
2. Any ‘diagonal’ copy of B ⌦ C (K ) in B1 is an elementary

submodel.
3. CH implies that B1 ⇠= (B ⌦ C (2

N
))U , for any nonprincipal

ultrafilter U on N.
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Another theorem with its proof omitted

Thm (F.–Hart–Rørdam–Tikuisis, 2017) CH implies that3

(M21)U \ (M21)
0 ⇠= (M21)U .

(One can replace M21 with any strongly self-absorbing C⇤-algebra,
or with R with respect to a tracial ultrapower.)

3U is nonprincipal and over N.

ASIA'sAu



Other reduced powers

Examples of ideals on N:
1. Fin.

2. Maximal ideals (i.e., the duals of ultrafilters).

3. {X ✓ N|
P

n2X
1

n+1 < 1}.
4. {X ✓ Q|X is nowhere dense}.
5. For a countable indecomposable ordinal ↵,

{X ✓ ↵| the order type of X is < ↵}.
6. Z0 := {X ✓ N| lim supn |X \ n|/n = 0}

Given a family of C⇤
-algebras Bj , for j 2 J, and an ideal J on J,

we let
L

J Bj := {b̄ 2
Q

j2J Bj : lim supj!J kbjk = 0}
Def 16.2.1 The reduced product of an indexed family Bj , for
j 2 J, of C⇤-algebras associated with an ideal J on J is the
quotient

Q
j Bj/

L
J Bj . We will sometimes denote it

Q
j Bj/J .

Ghasemi’s Feferman–Vaught Theorem still holds, but countable

saturation may fail. (There is no known characterization of ideals

for which every associated reduced product is countably saturated.)
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