Massive C*-algebras, Winter 2021
llijas Farah. Lecture 6, January 30. Recall:

Sa: the algebra of of formulas over A with a seminorm,
le()| = supg 5 [ (b)|-

Wa: the (real) Banach algebra (Fa/| - ||)-

Thm 16.2.8, Lo$'s Theorem If p(X) € §a then

Pl 2i(3) = lim;y 0 (5))
for every a = (j)jey in [ [, Aj of the appropriate sort.
Def 16.1.4 If A< C and b € CV, the type of b, typec(b/A), is the

characte — R: gp/()?) — ¢ (b). Alternatively, type t is identified with
the set of conditions p(x) = r, with o(x) — r € ker(t).

C is countably saturated if every countable, approximately satisfiable
type over C is realized in it.

Thm 16.4.1 Suppose that U is a countably incomplete ultrafilter on J
and that A;, for j € J, are C*-algebras. Then the ultraproduct
C := [, Aj is countably saturated.



Last time:

Lemma
IFA< C, be C" then

ker(tlpeC(B/A)') — {ﬂ)?) —r :ﬁc(t_)) =r}.




Last time:

Lemma

IngC,b_e C" then .
ker(typec(b/A)) = {p(X) — r: ¢ (b) - A

Thm C is countably saturated if and only if for every n > 1 and
every separable A < C, the set

{typec(b/A)|b € C"}

is weak*-closed.

Let's see why this is true (a vague discussion of the above result
with no concrete applications follows).
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A type t(X) over A can be identified with a functional t: §5 — R
such that
tlp) =r

—
e

if the condition ¢(X) = r belongs to t. Suppose X = (xp, ..., Xn—1).
A

A type t(X) over A < B is approximately satisfiable in C if and

Lemma
Ln/y if T is in the weak*-closure of typec(b/A), for b in C"



A formula ¢ is quantifier-free if it does not involve quantifiers sup
or inf; that is, ¢ = f(vo,...,¥n—1) for atomic formulas 1;, j < n.
Quantifier-free formulas over A form an algebra.
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A formula ¢ is quantifier-free if it does not involve quantifiers sup
or inf; that is, ¢ = f(vo,...,1¥n—1) for atomic formulas 1}, j < n.
Quantifier-free formulas over A form an algebra.

Quantifier-free conditions, quantifier-free types, and quantifier-free
saturation are defined in a natural way.

For n > 2, degree-n conditions, degree-n types, and degree-n
saturation are defined in a natural way.

= _¢uantifier-free saturation =-...=- degree-n + 1
—_—

aturation = degree-n saturation = ...=>degree-2 saturatio =
degree-1 saturation

Q: Which, if any, of these arrows are reversibj?
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A formula ¢ is quantifier-free if it does not involve quantifiers sup
or inf; that is, ¢ = f(vo,...,1¥n—1) for atomic formulas 1}, j < n.
Quantifier-free formulas over A form an algebra.

Quantifier-free conditions, quantifier-free types, and quantifier-free
saturation are defined in a natural way.

For n > 2, degree-n conditions, degree-n types, and degree-n
saturation are defined in a natural way.

Fact

Saturation = quantifier-free saturation =...=> degree-n + 1
saturation = degree-n saturation = ...=> degree-2 saturation =
degree-1 saturation

Q: Which, if any, of these arrows are reversible?
Prop_ If C is countably saturated and A < C is_separable, then

is countably quantifier-free saturated but not necessarily
{
countably saturated. s uff 4N C

(A<, —_—

(Proof available upon request.)



Notably, the proofs of Los's Theorem and countable saturation of
ultraproducts have nothing to do with C*-algebras. They are
general theorems of model theory, applicable to arbitrary
(appropriately defined) metric structures.

Let's take a look at a relevant example.



Tracial ultraproducts

Def A state 7 on a C*-algebra is a positive functional of norm 1.
It is tracial if T(ab) = 7(ba) for all a and b in A. T

T(A) := {7|7 is a tracial state on A}.
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Tracial ultraproducts

Def A state 7 on a C*-algebra is a positive functional of norm 1.
It is tracial if T(ab) = 7(ba) for all a and b in A.

T(A) := {7|7 is a tracial state on A}.

Def A unital C*-algebra A is finite if there is no v € A such that
viv =14 and w* < 14.
It is stably finite if M,(A) is finite for all n.




Tracial ultraproducts

Def A state 7 on a C*-algebra is a positive functional of norm 1.

It is tracial if T(ab) = 7(ba) for all a and b in A.
T(A) := {7|7 is a tracial state on A}.

Def A unital C*-algebra A is finite if there is no v € A such that
viv =14 and w* < 14.

It is stably finite if M,(A) is finite for all n.
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if T(A) # @4hen A is stably finite.
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Tracial ultraproducts

Def A state 7 on a C*-algebra is a positive functional of norm 1.
It is tracial if T(ab) = 7(ba) for all a and b in A.

T(A) := {7|7 is a tracial state on A}.

Def A unital C*-algebra A is finite if there is no v € A such that
viv =14 and w* < 14.

It is stably finite if M,(A) is finite for all n.

Fact t 4 Fro (

if T(A) # Q)/then A is stably finite.

The converse is an open problem (deep partial results by
Haagerup, Kirchberg, Haagrup—Thornbjgrsen.)

(Note that ‘A is not finite’ is equivalent to YA =0, with 1) defined
as

Coinf 1= x| 1 — 11— ]l
NS

—_—




Lemma [If 7 € T(A) then

lallz- := 7(a*a)*/?

a—

is @ seminorm on A and J; := {al||a||2, = 0} is an ideal of A.
. p —_—



HE

Lemma [If 7 € T(A) then
VR L1 < (e

|all2,7 := 7(a"a)

is @ seminorm on A and J; := {al||a||2, = 0} is an ideal of A.
If T(A) # (), then

2,4 = sup |lall
/LL IET(A)/L

is a seminorm on A and J := {all|a||2,, = 0} is an ideal of A.



Lemma [If 7 € T(A) then
lallzr := 7(a*a)*/?

is @ seminorm on A and J; := {al||a||2, = 0} is an ideal of A.
If T(A) # (), then

lallo,u == sup |all27
TET(A)

is @ seminorm on A and J := {all|a||2,, = 0} is an ideal of A.

Exercise. If A is abelian, then || - || and || - ||2,, agree on A.

Caveat: || - ||2,4 is uniformly continuous with respect to || - ||, but
not vice versa, except in very specific situations.
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Def D.2.14, C.7.1 Suppose U is an ultrafilter on an index set J,
Aj, for j € J, are unital C*-algebras with T(A;) # 0. Then
—_ : ——— "

Tracial ultraproduct

Ju=Aa eIl A limjy [lajll2,u = 0}

is a two-sided, self-adjoint, norm-closed ideal of || i A;.




Tracial ultraproduct A (IUL,A

Def D.2.14, C.7.1 Suppose U is an ultrafilter on an index set J,jj?‘%(
Aj, for j € J, are unital C*-algebras with T(A;) # 0. Then

Jy = {a c Hj Aj ) |imj_>u ||aj|\27u = 0}
—

is a two-sided, self-adjoint, norm-closed ideal of || i Aj. The
quotient

U
QH Aj = Hj Aj | Ju
is the (tracial) ultraprc;luct associated to U. If all A; are equal to

some A, the tracial ultraproduct is denoted A" and called tracial
ultrapower.

(See e.g., C. Schafhauser A new proof of the Tikuisis—White—Winter
theorem, Crelle, 2020 or Castillejos et. al., Nuclear dimension of simple

C*-algbras, Inv. Math. 2020)



Formulas, revisited

Recall that A[X] is the algebra of *-polynomials in X with
coefficients in A, called terms. Suppose T(A) # () and A is unital.

Def D.2.2 Formulas over A are defined recursively:
1. The atomic formulas are expressions of the form ||P(x)||2 for
P(x) a term over A.

2. Ifn>1, f : R" — R is a continuous function, and
©0, - - -, Yn—1 are formulas then f(yq,...,pn_1) is a formula.

3. If ¢ is a formula, x is a variable, and k < oo, then both
inf”XHSk QY and SupHXHSk Y are formulas.

The space §a+ of formulas over A has an algebra structure.



Formulas, revisited

Recall that A[X] is the algebra of *-polynomials in X with
coefficients in A, called terms. Suppose T(A) # () and A is unital.

Def D.2.2 Formulas over A are defined recursively:
1. The atomic formulas are expressions of the form ||P(x)||> for

P(x) a term over A. —_—

2. Ifn>1, f : R" — R is a continuous function, and
©0, - - -, Yn—1 are formulas then f(yq,...,pn_1) is a formula.

3. If ¢ is a formula, x is a variable, and k < oo, then both
inf”XHSk QY and SupHXHSk Y are formulas.

The space §a+ of formulas over A has an algebra structure.

—_—



Def If p(X) isin§ar, A< B, T(B)#1, b in B of the same

—

‘sort’ as X, define the interpretation p®(b) by recursion on
complexity of .




t 0os$'s Theorem and countable saturation hold for tracial
ultraproducts



t 0os$'s Theorem and countable saturation hold for tracial
ultraproducts

Thm 16.2.8, Los's Theorem If A < A; are unital, T(A;) # 0 for all

J €1J, U is an ultrafilter on J, o(X) € Fat, and C := [T Aj, then

0C(3) = lim;_y ©™(3;) for all 3 in T A; of the appropriate sort.
-_\
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Thm 16.4.1 Suppose that U is a countably incomplete ultrafilter
on J and that A;, for j € J, are unital C*-algebras with T(A;) # 0.

Then the ultraproduct C := [[" A; is countably saturated (with
respect to the tracial language §c +).
\




t 0os$'s Theorem and countable saturation hold for tracial
ultraproducts

Thm 16.2.8, Los's Theorem If A < A; are unital, T(A;) # 0 for all

J €1, U is an ultrafilter on J, p(X) € §a+, and C := [T A;, then
C

€ (3) = lim;_yys ©™(3;) for all 3 in T A; of the appropriate sort.
Thm 16.4.1 Suppose that U is a countably incomplete ultrafilter
on J and that A;, for j € J, are unital C*-algebras with T(A;) # 0.

Then the ultraproduct C := [[" A; is countably saturated (with
respect to the tracial language §c +).

C*-algebras, T(A,) £ 0, C =¥ A, then C is countably saturated
with respect to §c . It is therefore SAW*, CRISP.. ..

—

Q:lfac C,0<a<1and0csp(a),isatNC#{0}7?

(\Coro If U is a nonprincipal ultrafilter on N and A,, for n € N, are unital







t 0os$'s Theorem and countable saturation hold for tracial
ultraproducts

Thm 16.2.8, Los's Theorem If A < A; are unital, T(A;) # 0 for all
J €1, U is an ultrafilter on J, p(X) € §a+, and C := HMA-, then
€ (3) = lim;_yys ©™(3;) for all 3 in T A; of the appropriate sort.

Thm 16.4.1 Suppose that U is a countably incomplete ultrafilter
on J and that A;, for j € J, are unital C*-algebras with T(A;) # 0.
Then the ultraproduct C := [[" A; is countably saturated (with
respect to the tracial language §c +).

Coro IfU is a nonprincipal ultrafilter on N and A, for n € N, are unital
C*-algebras, T(A,) # 0, C := Hu A,, then C is countably saturated
with respect to §c+. It is therefore SAW*, CRISP.. ..

Q:lfac C,0<a<1and0csp(a),isatNC#{0}7?
A: Not necessarily! Let's see why.
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CAR algebra M. It has a unique tracial state 7. let
oose a € A, such that sp(a) = [0, 1] and
C([0,1]) is the Lebesgue measure. (l.e.,

Example

Let A bet
C .= AU

7(f(a)) = [ fdX for all f € C([0,1]).)
( =, ( /([/2 =/ f(kﬁé/: /
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Formulas, re-revisited

Recall that A[X] is the algebra of *-polynomials in X with
coefficients in A, called terms.
Def D.2.2 Formulas in §a ¢+ are defined recursively:

1. The atomic formulas are expressions of the form ||P(x)||
or ||P(x)||2 for P(x) a term over A.

2. Ifn>1, f : R" — R is a continuous function, and
©0, - - -, Pn—1 are formulas then f(pq,...,pn—1) is a formula.

3. If o is a formula, x is a variable, and k < oo, then both
inf)|x||<k ¥ and sup < ¢ are formulas.

The space Sf\ .+ of formulas over A has an algebra structure.



Formulas, re-revisited

Recall that A[X] is the algebra of *-polynomials in X with
coefficients in A, called terms.

Def D.2.2 Formulas in §a ¢+ are defined recursively:
1. The atomic formulas are expressions of the for
o for P(x) a term over A.

Ifn>T1, f:R" — R jsa continuous function, and
©0, - - -, Pn—1 are formulas then f(pq,...,pn—1) is a formula.
If o is a formula, x is a variable, and k < oo, then both

inf)|x||<k ¥ and sup < ¢ are formulas.

The space §% .. of formulas over A has an algebra structure.
P At 8

This language describes pairs (C, C/J), where J = {a||a|[2,, = 0}
(the quotient map w: C — C/J is definable in this language).

—_—



t 0$'s Theorem and countable saturation hold for tracial

ultraproducts
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Suppose that A is a separable{C*—aIgebra, T(A)£0. If D<Ay is
separable andfajc w[D]' N A4, consider the type with conditions

A (C,‘K/:’O
= |la—x|2=0,||[d,x]|| =0, d € D.
L . | il

e )

This type is consistent and “countable”.
/s —7
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Suppose that A is a separable C*-algebra, T(A) # 0. If D < Ay is
separable and a € 7[D]' N A4, consider the type with conditions

la—x[[2=0,[[d,x][| =0, d € D.

This type is consistent and “countable”. ,L/
So there is 3 € Ay N D’ such that 7(3) = a. P

/

Prop (Sato, Kirchberg—-Rgrdam) If T(A) £ () and D < Ay is

separable, then w[D’ N Ay] = w[D] N AY. —
>

- 4
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EKirchberg's Invariant:
F(A) = (AunA)/(A N Ay = .
FactN . /i

If A is unital, then F(A) = Ay N A’
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Kirchberg's invariant:

F(A) = (AyNA) /(AL N AY).

Fact

If A is unital, then F(A) = Ay N A’

(Even if not, F(A) still ought to be countably quantifier-free
saturated, but nobody verified this yet as far as | know.)
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(Kirchberg, 2004) If A is a separable C*-algebra, does F(A)
depend on the choice of the ultrafilter?
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Fact
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Thm (F.—Hart-Sherman) The answer to either question cannot be
decided in ZFC.

We will prove % of this theorem (and argue that this is the relevant
half).



Kirchberg's invariant:
F(A) = (AyNA) /(AL N AY).

Fact
If A is unital, then F(A) = Ay N A’

(Even if not, F(A) still ought to be countably quantifier-free
saturated, but nobody verified this yet as far as | know.)

In the following, all ultrafilters are nonprincipal and on N.
Question  (McDuff, 1970) Are all ultrapowers of the

hyperfinite |l factor isomorphic?
(< are all tracial ultrapowers of Mps isomorphic?)

(Kirchberg, 2004) If A is a separable C*-algebra, does F(A)
depend on the choice of the ultrafilter?

Thm (F.—Hart-Sherman) The answer to either question cannot be
decided in ZFC.

We will prove % of this theorem (and argue that this is the relevant
half). This will involve a bit of a digression.



A spoiler

Thm (Keisler) Assume the Continuum Hypothesis. If A is a
C*-a/gebra and U and )V are nonprincipal ultrafilters on
N, then Ay = Ay.

S A
(The theorem applies to tracial von Neumann algebras, Banach

spaces, countable discrete structures. . .)



ﬁBack—and—forth method

A linear ordering is dense if x < y implies there is z such that

x<z<y. C[FMV ol e»J?Z,;,\fj
Thm (Cantor) Every two countablelinearly ordered sets’are

Y

Isomorphic.
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Back-and-forth method
A linear ordering is dense if x < y implies there is z such that

x<z<y. ds ne ey

Thm (Cantor) Every two countable/linearly ordered sets {9re
Isomorphic. ’

Exercise. Every two countable atomless Boolean algebras are
iIsomorphic.



