
Massive C⇤
-algebras, Winter 2021

Ilijas Farah. Lecture 6, January 30. Recall:
FA: the algebra of of formulas over A with a seminorm,

k'(x̄)k = supB,b̄ |'B
(b̄)|.

WA: the (real) Banach algebra (FA/k · k).
Thm 16.2.8,  Loś’s Theorem If '(x̄) 2 FA then

'
Q

U Aj (ā) = limj!U 'Aj (āj)

for every ā = (āj)j2J in
Q

U Aj of the appropriate sort.

Def 16.1.4 If A  C and b̄ 2 C
N
, the type of b̄, typeC (b̄/A), is the

character Fx̄
A 7! R : '(x̄) 7! 'C

(b̄). Alternatively, type t is identified with

the set of conditions '(x̄) = r , with '(x̄)� r 2 ker(t).

C is countably saturated if every countable, approximately satisfiable

type over C is realized in it.

Thm 16.4.1 Suppose that U is a countably incomplete ultrafilter on J
and that Aj , for j 2 J, are C⇤

-algebras. Then the ultraproduct

C :=
Q

U Aj is countably saturated.

 



Last time:

Lemma

If A  C , b 2 C
n
, then

ker(typeC (b̄/A)) = {'(x̄)� r : 'C
(b̄) = r}.

Thm C is countably saturated if and only if for every n � 1 and

every separable A  C , the set

{typeC (b̄/A)|b̄ 2 C
n}

is weak*-closed.

Let’s see why this is true (a vague discussion of the above result

with no concrete applications follows).
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A type t(x̄) over A can be identified with a functional t̃ : Fx̄
A ! R

such that

t̃(') = r

if the condition '(x̄) = r belongs to t. Suppose x̄ = (x0, . . . , xn�1).

Lemma

A type t(x̄) over A  B is approximately satisfiable in C if and

only if t̃ is in the weak*-closure of typeC (b̄/A), for b̄ in C
n



A formula ' is quantifier-free if it does not involve quantifiers sup

or inf; that is, ' = f ( 0, . . . , n�1) for atomic formulas  j , j < n.

Quantifier-free formulas over A form an algebra.

Quantifier-free conditions, quantifier-free types, and quantifier-free

saturation are defined in a natural way.

For n � 2, degree-n conditions, degree-n types, and degree-n

saturation are defined in a natural way.

Fact

Saturation ) quantifier-free saturation ). . .) degree-n + 1

saturation ) degree-n saturation ) . . .) degree-2 saturation )
degree-1 saturation

Q: Which, if any, of these arrows are reversible?

Prop If C is countably saturated and A  C is separable, then

A
0 \ C is countably quantifier-free saturated but not necessarily

countably saturated.

(Proof available upon request.)
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Notably, the proofs of  Loś’s Theorem and countable saturation of

ultraproducts have nothing to do with C⇤
-algebras. They are

general theorems of model theory, applicable to arbitrary

(appropriately defined) metric structures.

Let’s take a look at a relevant example.



Tracial ultraproducts

Def A state ⌧ on a C⇤
-algebra is a positive functional of norm 1.

It is tracial if ⌧(ab) = ⌧(ba) for all a and b in A.

T (A) := {⌧ |⌧ is a tracial state on A}.

Def A unital C⇤
-algebra A is finite if there is no v 2 A such that

v
⇤
v = 1A and vv

⇤ < 1A.

It is stably finite if Mn(A) is finite for all n.

Fact

if T (A) 6= ; then A is stably finite.

The converse is an open problem (deep partial results by

Haagerup, Kirchberg, Haagrup–Thornbjørsen.)

(Note that ‘A is not finite’ is equivalent to  A
= 0, with  defined

as

inf
kxk1

k1� x
⇤
xk+ |1� k1� xx

⇤k|.
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Lemma If ⌧ 2 T (A) then

kak2,⌧ := ⌧(a⇤a)1/2

is a seminorm on A and J⌧ := {a|kak2,⌧ = 0} is an ideal of A.

If T (A) 6= ;, then

kak2,u := sup

⌧2T (A)
kak2,⌧

is a seminorm on A and J := {a|kak2,u = 0} is an ideal of A.

Exercise. If A is abelian, then k · k and k · k2,u agree on A.

Caveat: k · k2,u is uniformly continuous with respect to k · k, but
not vice versa, except in very specific situations.
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Tracial ultraproduct

Def D.2.14, C.7.1 Suppose U is an ultrafilter on an index set J,
Aj , for j 2 J, are unital C⇤

-algebras with T (Aj) 6= ;. Then

JU := {a 2
Q

j Aj : limj!U kajk2,u = 0}

is a two-sided, self-adjoint, norm-closed ideal of
Q

j Aj .

The

quotient QU
Aj :=

Q
j Aj/cU

is the (tracial) ultraproduct associated to U . If all Aj are equal to

some A, the tracial ultraproduct is denoted A
U
and called tracial

ultrapower.

(See e.g., C. Schafhauser A new proof of the Tikuisis–White–Winter

theorem, Crelle, 2020 or Castillejos et. al., Nuclear dimension of simple

C⇤
-algbras, Inv. Math. 2020)
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Formulas, revisited

Recall that A[x̄ ] is the algebra of
⇤
-polynomials in x̄ with

coe�cients in A, called terms. Suppose T (A) 6= ; and A is unital.

Def D.2.2 Formulas over A are defined recursively:

1. The atomic formulas are expressions of the form kP(x̄)k2 for

P(x̄) a term over A.

2. If n � 1, f : Rn ! R is a continuous function, and

'0, . . . ,'n�1 are formulas then f ('0, . . . ,'n�1) is a formula.

3. If ' is a formula, x is a variable, and k < 1, then both

infkxkk ' and supkxkk ' are formulas.

The space FA,t of formulas over A has an algebra structure.
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Def If '(x̄) is in FA,t , A  B , T (B) 6= ;, b̄ in B of the same

‘sort’ as x̄ , define the interpretation 'B
(b̄) by recursion on

complexity of '.



 Loś’s Theorem and countable saturation hold for tracial

ultraproducts

Thm 16.2.8,  Loś’s Theorem If A  Aj are unital, T (Aj) 6= ; for all

j 2 J, U is an ultrafilter on J, '(x̄) 2 FA,t , and C :=
QU

Aj , then

'C
(ā) = limj!U 'Aj (āj) for all ā in

QU
Aj of the appropriate sort.

Thm 16.4.1 Suppose that U is a countably incomplete ultrafilter

on J and that Aj , for j 2 J, are unital C⇤
-algebras with T (Aj) 6= ;.

Then the ultraproduct C :=
QU

Aj is countably saturated (with

respect to the tracial language FC ,t).

Coro If U is a nonprincipal ultrafilter on N and An, for n 2 N, are unital

C⇤
-algebras, T (An) 6= ;, C :=

QU
An, then C is countably saturated

with respect to FC ,t . It is therefore SAW
⇤
, CRISP,. . .

Q: If a 2 C , 0  a  1 and 0 2 sp(a), is a
? \ C 6= {0}?

A: Not necessarily! Let’s see why.
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(ā) = limj!U 'Aj (āj) for all ā in
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Example

Let A be the CAR algebra M21 . It has a unique tracial state ⌧ . let
C := A

U
. Choose a 2 A+ such that sp(a) = [0, 1] and

⌧U � C⇤
(a) ⇠= C ([0, 1]) is the Lebesgue measure. (I.e.,

⌧(f (a)) =
R
f d� for all f 2 C ([0, 1]).)
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Formulas, re-revisited

Recall that A[x̄ ] is the algebra of
⇤
-polynomials in x̄ with

coe�cients in A, called terms.

Def D.2.2 Formulas in FA,t+ are defined recursively:

1. The atomic formulas are expressions of the form kP(x̄)k
or kP(x̄)k2 for P(x̄) a term over A.

2. If n � 1, f : Rn ! R is a continuous function, and

'0, . . . ,'n�1 are formulas then f ('0, . . . ,'n�1) is a formula.

3. If ' is a formula, x is a variable, and k < 1, then both

infkxkk ' and supkxkk ' are formulas.

The space Fx̄
A,t+ of formulas over A has an algebra structure.

This language describes pairs (C ,C/J), where J = {a|kak2,u = 0}
(the quotient map ⇡ : C ! C/J is definable in this language).
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Suppose that A is a separable C⇤
-algebra, T (A) 6= ;. If D  AU is

separable and a 2 ⇡[D]
0 \ A

U
, consider the type with conditions

ka� xk2 = 0, k[d , x ]k = 0, d 2 D.

This type is consistent and “countable”.

So there is ã 2 AU \ D
0
such that ⇡(ã) = a.

Prop (Sato, Kirchberg–Rørdam) If T (A) 6= ; and D  AU is

separable, then ⇡[D 0 \ AU ] = ⇡[D]
0 \ A

U
.
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Kirchberg’s invariant:

F (A) = (AU \ A
0
)/(A? \ AU ).

Fact

If A is unital, then F (A) = AU \ A
0
.

(Even if not, F (A) still ought to be countably quantifier-free

saturated, but nobody verified this yet as far as I know.)

In the following, all ultrafilters are nonprincipal and on N.
Question (McDu↵, 1970) Are all ultrapowers of the

hyperfinite II1 factor isomorphic?

(, are all tracial ultrapowers of M21 isomorphic?)

(Kirchberg, 2004) If A is a separable C⇤
-algebra, does F (A)

depend on the choice of the ultrafilter?

Thm (F.–Hart–Sherman) The answer to either question cannot be

decided in ZFC.

We will prove
1
2 of this theorem (and argue that this is the relevant

half). This will involve a bit of a digression.
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(, are all tracial ultrapowers of M21 isomorphic?)

(Kirchberg, 2004) If A is a separable C⇤
-algebra, does F (A)

depend on the choice of the ultrafilter?

Thm (F.–Hart–Sherman) The answer to either question cannot be

decided in ZFC.

We will prove
1
2 of this theorem (and argue that this is the relevant

half). This will involve a bit of a digression.
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A spoiler

Thm (Keisler) Assume the Continuum Hypothesis. If A is a

separable C⇤
-algebra and U and V are nonprincipal ultrafilters on

N, then AU ⇠= AV .

(The theorem applies to tracial von Neumann algebras, Banach

spaces, countable discrete structures. . . )
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Back-and-forth method

A linear ordering is dense if x < y implies there is z such that

x < z < y .

Thm (Cantor) Every two countable, linearly ordered sets are

isomorphic.

Exercise. Every two countable atomless Boolean algebras are

isomorphic.

1. We’d like to extend the back-and-forth method to the

uncountable.

2. Cantor’s theorem fails for uncountable dense linear

orderings—there are both trivial and nontrivial

counterexamples.

3. Countable saturation is tailor-made for transfinite extension of

the back-and-forth method up to @1 (the least uncountable

ordinal).
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