Massive C^* -algebras, Winter 2021 Ilijas Farah. Lecture 6, January 30. Recall: \mathfrak{F}_A : the algebra of of formulas over A with a seminorm, $\|\varphi(\bar{x})\| = \sup_{B,\bar{b}} |\varphi^B(\bar{b})|.$ \mathfrak{W}_{A} : the (real) Banach algebra $(\mathfrak{F}_{A}/\|\cdot\|)$. Thm 16.2.8, Łoś's Theorem If $\varphi(\bar{x}) \in \mathfrak{F}_A$ then $\varphi^{\prod_{\mathcal{U}} A_j}(\bar{a}) = \lim_{i \to \mathcal{U}} \varphi^{A_j}(\bar{a}_i)$ for every $\bar{a} = (\bar{a}_i)_{i \in \mathbb{J}}$ in $\prod_{\mathcal{U}} A_i$ of the appropriate sort. Def 16.1.4 If $A \leq C$ and $\bar{b} \in C^{\mathbb{N}}$, the type of \bar{b} , type_C(\bar{b}/A), is the

character $\widehat{\mathscr{S}_{A}} \mapsto \mathbb{R} : \varphi(\bar{x}) \mapsto \varphi^{C}(\bar{b})$. Alternatively, type t is identified with the set of conditions $\varphi(\bar{x}) = r$, with $\varphi(\bar{x}) - r \in \text{ker}(t)$.

C is countably saturated if every countable, approximately satisfiable type over C is realized in it.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are \mathbb{C}^* -algebras. Then the ultraproduct $C := \prod_{\mathcal{U}} A_j$ is countably saturated.

Last time:

Lemma If $A \leq C$, $\overline{b} \in C^n$, then $\ker(\operatorname{type}_C(\overline{b}/A)) = \{\varphi(\overline{x}) - r : \varphi^C(\overline{b}) = r\}.$

Last time:

Lemma If $A \leq C$, $b \in C^n$, then $\operatorname{ker}(\operatorname{type}_{C}(\overline{b}/A)) = \{\varphi(\overline{x}) - r : \varphi^{C}(\overline{b}) = r\}.$

Thm *C* is countably saturated if and only if for every $n \ge 1$ and every separable $A \le C$, the set

$$\{\operatorname{\mathsf{type}}_{\mathcal{C}}(ar{b}/\mathcal{A})|ar{b}\in\mathcal{C}^n\}$$

is weak*-closed.

Let's see why this is true (a vague discussion of the above result with no concrete applications follows).

The w-closure of Style ([/A//LE is the set of allow. sotisfich(-tyle

A type $t(\bar{x})$ over A can be identified with a functional $\tilde{t}: \mathfrak{F}_A^{\bar{x}} \to \mathbb{R}$ such that

$$\tilde{t}(\varphi) = r$$

if the condition $\varphi(\bar{x}) = r$ belongs to t. Suppose $\bar{x} = (x_0, \ldots, x_{n-1})$.

Lemma

A type $t(\bar{x})$ over $A \leq B$ is approximately satisfiable in C if and only if \tilde{t} is in the weak*-closure of type_C(\bar{b}/A), for \bar{b} in Cⁿ

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Quantifier-free conditions, quantifier-free types, and quantifier-free saturation are defined in a natural way.

For $n \ge 2$, degree-*n* conditions, degree-*n* types, and degree-*n* saturation are defined in a natural way.

Quantifier-free conditions, quantifier-free types, and quantifier-free saturation are defined in a natural way.

For $n \ge 2$, degree-*n* conditions, degree-*n* types, and degree-*n* saturation are defined in a natural way.

Fact Saturation \Rightarrow quantifier-free saturation $\Rightarrow ... \Rightarrow$ degree-n + 1 saturation \Rightarrow degree-n saturation $\Rightarrow ... \Rightarrow$ degree-2 saturation \Rightarrow degree-1 saturation Q: Which, if any, of these arrows are reversible? Fact: deg-2-sort. => deg.-& saf. $\int \frac{1}{|X|^2} \frac{|X|^2}{|X|^2} = \frac{1}{|X|^2} = \frac{1}{|X|^2$

Quantifier-free conditions, quantifier-free types, and quantifier-free saturation are defined in a natural way.

For $n \ge 2$, degree-*n* conditions, degree-*n* types, and degree-*n* saturation are defined in a natural way.

Fact

 $Saturation \Rightarrow quantifier$ -free saturation $\Rightarrow ... \Rightarrow degree-n+1$ saturation $\Rightarrow degree-n$ saturation $\Rightarrow ... \Rightarrow degree-2$ saturation \Rightarrow degree-1 saturation

Q: Which, if any, of these arrows are reversible?

Prop. If C is countably saturated and $A \le C$ is separable, then $A' \cap C$ is countably quantifier-free saturated but not necessarily countably saturated. $\Rightarrow \upsilon \beta$

(ALS)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めへぐ

(Proof available upon request.)

Notably, the proofs of Łoś's Theorem and countable saturation of ultraproducts have nothing to do with C*-algebras. They are general theorems of model theory, applicable to arbitrary (appropriately defined) metric structures. Let's take a look at a relevant example.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$ $T \left[A_{+}\right] \subseteq \mathbb{R}_{+}$ $M_{u}(\mathbb{C})$ $M_{u}(\mathbb{C})$ π^{+}

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$

Def A unital C^{*}-algebra A is finite if there is no $v \in A$ such that $v^*v = 1_A$ and $vv^* < 1_A$. It is stably finite if $M_n(A)$ is finite for all n.

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$

Def A unital C*-algebra A is finite if there is no $v \in A$ such that $v^*v = 1_A$ and $vv^* < 1_A$. It is stably finite if $M_n(A)$ is finite for all n. Fact $f = \int_{a} \int_$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少♀?

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$

Def A unital C*-algebra A is finite if there is no $v \in A$ such that $v^*v = 1_A$ and $vv^* < 1_A$. It is stably finite if $M_n(A)$ is finite for all n.

Fact $\neq A$ $\sum m($ if $T(A) \neq \emptyset$ then A is stably finite.

The converse is an open problem (deep partial results by Haagerup, Kirchberg, Haagrup–Thornbjørsen.) (Note that 'A is not finite' is equivalent to $\psi^A = 0$, with ψ defined as

$$(f: \inf_{\|x\| \le 1} \|1 - x^* x\| + |1 - \|1 - xx^*\||.$$

Lemma If $au \in T(A)$ then $\|a\|_{2, au} := au(a^*a)^{1/2}$

is a seminorm on A and $J_{\tau} := \{a | \|a\|_{2,\tau} = 0\}$ is an ideal of A.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Lemma If $\tau \in T(A)$ then $\|a\|_{2,\tau} := \tau(a^*a)^{1/2} \qquad \|a\|_{2,\tau} \leq \|Ca\|_{2,\tau}$

is a seminorm on A and $J_{\tau} := \{a | \|a\|_{2,\tau} = 0\}$ is an ideal of A. If $T(A) \neq \emptyset$, then

$$\|\underline{a}\|_{2,u} := \sup_{\tau \in T(A)} \frac{\|\underline{a}\|_{2,\tau}}{\|\underline{a}\|_{2,\tau}}$$

is a seminorm on A and $J := \{a | ||a||_{2,u} = 0\}$ is an ideal of A.

Lemma If $\tau \in T(A)$ then

$$\|a\|_{2, au}:= au(a^*a)^{1/2}$$

is a seminorm on A and $J_{\tau} := \{a | ||a||_{2,\tau} = 0\}$ is an ideal of A. If $T(A) \neq \emptyset$, then

$$||a||_{2,u} := \sup_{\tau \in T(A)} ||a||_{2,\tau}$$

is a seminorm on A and $J := \{a | ||a||_{2,u} = 0\}$ is an ideal of A.

Exercise. If A is abelian, then $\|\cdot\|$ and $\|\cdot\|_{2,u}$ agree on A. Caveat: $\|\cdot\|_{2,u}$ is uniformly continuous with respect to $\|\cdot\|$, but not vice versa, except in very specific situations.

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필 _ .

5900

Def D.2.14, C.7.1 Suppose \mathcal{U} is an ultrafilter on an index set \mathbb{J} , A_j , for $j \in \mathbb{J}$, are unital C^{*}-algebras with $T(A_j) \neq \emptyset$. Then

$$\mathcal{J}_{\mathcal{U}} := \{ \underline{a \in \prod_{j} A_{j}} : \lim_{j \to \mathcal{U}} \|\underline{a_{j}}\|_{2,u} = 0 \}$$

is a two-sided, self-adjoint, norm-closed ideal of $\prod_i A_j$.

Def D.2.14, C.7.1 Suppose \mathcal{U} is an ultrafilter on an index set \mathbb{J} , A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then

$$J_{\mathcal{U}} := \{ a \in \prod_j A_j : \lim_{j \to \mathcal{U}} \|a_j\|_{2,u} = 0 \}$$

is a two-sided, self-adjoint, norm-closed ideal of $\prod_j A_j$. The quotient

$$\prod^{\mathcal{U}} A_j := \prod_j A_j / \mathcal{J}_{\mathcal{U}}$$

is the (tracial) ultraproduct associated to \mathcal{U} . If all A_j are equal to some A, the tracial ultraproduct is denoted $A^{\mathcal{U}}$ and called tracial ultrapower.

(See e.g., C. Schafhauser A new proof of the Tikuisis–White–Winter theorem, Crelle, 2020 or Castillejos et. al., Nuclear dimension of simple C*-algbras, Inv. Math. 2020)

Formulas, revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*. Suppose $T(A) \neq \emptyset$ and A is unital.

Def D.2.2 Formulas over A are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- 3. If φ is a formula, x is a variable, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas.

The space $\mathfrak{F}_{A,t}$ of formulas over A has an algebra structure.

Formulas, revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*. Suppose $T(A) \neq \emptyset$ and A is unital.

Def D.2.2 Formulas over A are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少へ⊙

If φ is a formula, x is a variable, and k < ∞, then both inf_{||x||≤k} φ and sup_{||x||≤k} φ are formulas.
 The space 𝔅_{A,t} of formulas over A has an algebra structure.

Def If $\varphi(\bar{x})$ is in $\mathfrak{F}_{A,t}$, $A \leq B$, $T(B) \neq \emptyset$, \bar{b} in B of the same 'sort' as \bar{x} , define the interpretation $\varphi^B(b)$ by recursion on complexity of φ .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ are unital, $T(A_j) \neq \emptyset$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x}) \in \mathfrak{F}_{A,t}$, and $C := \prod^{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for all \bar{a} in $\prod^{\mathcal{U}} A_j$ of the appropriate sort.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then the ultraproduct $C := \prod^{\mathcal{U}} A_j$ is countably saturated (with respect to the tracial language $\mathfrak{F}_{C,t}$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ♪

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ are unital, $T(A_j) \neq \emptyset$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x}) \in \mathfrak{F}_{A,t}$, and $C := \prod^{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for all \bar{a} in $\prod^{\mathcal{U}} A_j$ of the appropriate sort.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then the ultraproduct $C := \prod^{\mathcal{U}} A_j$ is countably saturated (with respect to the tracial language $\mathfrak{F}_{C,t}$).

Coro If \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} and A_n , for $n \in \mathbb{N}$, are unital \mathbb{C}^* -algebras, $T(A_n) \neq \emptyset$, $C := \prod^{\mathcal{U}} A_n$, then C is countably saturated with respect to $\mathfrak{F}_{C,t}$. It is therefore SAW^* , $CRISP,\ldots$

.. ..

くして 前 ふぼとうぼう ふしゃ

Q: If $a \in C$, $0 \le a \le 1$ and $0 \in \operatorname{sp}(a)$, is $a^{\perp} \cap C \ne \{0\}$?

 $\frac{1}{4} \frac{1}{4} \frac{1}$ the traced lay-ge: In $\| X A \|_{2, \mathcal{U}} = 3 \qquad \| X \|_{2, \mathcal{U}} = 1$

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ are unital, $T(A_j) \neq \emptyset$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x}) \in \mathfrak{F}_{A,t}$, and $C := \prod^{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for all \bar{a} in $\prod^{\mathcal{U}} A_j$ of the appropriate sort.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then the ultraproduct $C := \prod^{\mathcal{U}} A_j$ is countably saturated (with respect to the tracial language $\mathfrak{F}_{C,t}$).

Coro If \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} and A_n , for $n \in \mathbb{N}$, are unital \mathbb{C}^* -algebras, $T(A_n) \neq \emptyset$, $C := \prod^{\mathcal{U}} A_n$, then C is countably saturated with respect to $\mathfrak{F}_{C,t}$. It is therefore SAW^{*}, CRISP,...

Q: If $a \in C$, $0 \le a \le 1$ and $0 \in sp(a)$, is $a^{\perp} \cap C \ne \{0\}$? A: Not necessarily! Let's see why.

Example
Let A be the CAR algebra
$$M_{2^{\infty}}$$
. It has a unique tracial state τ . let
 $C := A^{\mathcal{U}}$. Choose $a \in A_+$ such that $\operatorname{sp}(a) = [0, 1]$ and
 $\tau^{\mathcal{U}} \upharpoonright \mathbb{C}^*(a) \cong C([0, 1])$ is the Lebesgue measure. (I.e.,
 $\tau(f(a)) = \int f d\lambda$ for all $f \in C([0, 1])$.)
 $\| x \|_{2, \mathcal{U}} = \int \frac{\| x \|_{2, \mathcal{U}}}{\int (\alpha x x x c)} = \int \frac{(x x x c)}{(x x x c)} = \int \frac{(x x x$

Formulas, re-revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*.

Def D.2.2 Formulas in \mathfrak{F}_{A,t^+} are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||$ or $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めへぐ

3. If φ is a formula, x is a variable, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas.

The space $\mathfrak{F}_{A,t^+}^{\bar{x}}$ of formulas over A has an algebra structure.

Formulas, re-revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*.

Def D.2.2 Formulas in \mathfrak{F}_{A,t^+} are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||_2$ or $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- 3. If φ is a formula, x is a variable, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas.

The space $\mathfrak{F}_{A,t^+}^{\bar{x}}$ of formulas over A has an algebra structure.

This language describes pairs (C, C/J), where $J = \{a | ||a||_{2,u} = 0\}$ (the quotient map $\pi \colon C \to C/J$ is definable in this language).

Fix FCD, E>. Evosi-control Ju has a control unit. Find eEJu & that # L E F $O \| e [q,d] - [q,d] \| \leq \varepsilon_{1}$ $\textcircled{2} | [e, d] | < \underbrace{\mathcal{E}}_{(2llal)}$ Let =(1-e)qTT(b) = T((1-e)a) = T(0) $\|\left[\mathcal{L}, \mathcal{A} \right] \| < \varepsilon$

Suppose that A is a separable C*-algebra, $T(A) \neq \emptyset$. If $D \leq A_{\mathcal{U}}$ is separable and $a \in \pi[D]' \cap A^{\mathcal{U}}$, consider the type with conditions

$$||a - x||_2 = 0, ||[d, x]|| = 0, \ d \in D.$$

This type is consistent and "countable". So there is $\tilde{a} \in A_{\mathcal{U}} \cap D'$ such that $\pi(\tilde{a}) = a$. Prop (Sato, Kirchberg–Rørdam) If $T(A) \neq \emptyset$ and $D \leq A_{\mathcal{U}}$ is separable, then $\pi[D' \cap A_{\mathcal{U}}] = \pi[D]' \cap A^{\mathcal{U}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ◆ ●

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで

Fact

If A is unital, then $F(A) = A_U \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Kirchberg's invariant: $F(A) = (A_{\mathcal{U}} \cap A')/(A^{\perp} \cap A_{\mathcal{U}}).$

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.) In the following, all ultrafilters are nonprincipal and on \mathbb{N} . Question (McDuff, 1970) Are all ultrapowers of the hyperfinite II₁ factor isomorphic? $(\Leftrightarrow \text{ are all tracial ultrapowers of } M_{2^{\infty}} \text{ isomorphic?})$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ の�?

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.) In the following, all ultrafilters are nonprincipal and on \mathbb{N} . Question (*McDuff, 1970*) Are all ultrapowers of the

hyperfinite II₁ factor isomorphic? (\Leftrightarrow are all tracial ultrapowers of $M_{2^{\infty}}$ isomorphic?) (Kirchberg, 2004) If A is a separable C^{*}-algebra, does F(A) depend on the choice of the ultrafilter?

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.) In the following, all ultrafilters are nonprincipal and on \mathbb{N} . Question (McDuff, 1970) Are all ultrapowers of the

hyperfinite II₁ factor isomorphic? (\Leftrightarrow are all tracial ultrapowers of $M_{2^{\infty}}$ isomorphic?) (Kirchberg, 2004) If A is a separable C^{*}-algebra, does F(A) depend on the choice of the ultrafilter?

Thm (F.–Hart–Sherman) The answer to either question cannot be decided in ZFC.

We will prove $\frac{1}{2}$ of this theorem (and argue that this is the relevant half).

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.) In the following, all ultrafilters are nonprincipal and on \mathbb{N} . Question (McDuff, 1970) Are all ultrapowers of the

hyperfinite II₁ factor isomorphic? (\Leftrightarrow are all tracial ultrapowers of $M_{2^{\infty}}$ isomorphic?) (Kirchberg, 2004) If A is a separable C^{*}-algebra, does F(A) depend on the choice of the ultrafilter?

Thm (F.–Hart–Sherman) The answer to either question cannot be decided in ZFC.

We will prove $\frac{1}{2}$ of this theorem (and argue that this is the relevant half). This will involve a bit of a digression.

A spoiler

Thm (Keisler) Assume the Continuum Hypothesis. If A is a separable C^* -algebra and \mathcal{U} and \mathcal{V} are nonprincipal ultrafilters on \mathbb{N} , then $A_{\mathcal{U}} \cong A_{\mathcal{V}}$.

(The theorem applies to tracial von Neumann algebras, Banach spaces, countable discrete structures...)

Back-and-forth method

A linear ordering is *dense* if x < y implies there is z such that without end Bints x < z < y. Thm (Cantor) Every two countable, linearly ordered sets are isomorphic. F_{ix} (L, <) , (M, <) $L = \{G_{\mu}\} \ u \in N \{$ $M = \{ \mathcal{L}_{\mathcal{L}} \mid \mathcal{L} \in \mathcal{M} \}$ Define LuCEL MuCEM [1], <ロト < 同ト < ヨト < ヨト Ξ. SQ (V

 $L_{u} \leq L_{utr}, M_{u}$ S Muti $\begin{array}{c}
f_{n_{t_{1}}} / L_{\eta} = f_{\eta} \\
\hline
\alpha_{n} \in L_{\eta} \\
\hline
\lambda_{\eta} \in \mathcal{H}_{\eta} \\
\hline
f_{1} & f_{1} \\
\hline
f_{\eta} & f_{\eta} \\
\hline
f_{$ 4L G 7 4 Mz (C) & U2 T(a, L) = $\overline{(0)}$

Back-and-forth method

A linear ordering is *dense* if x < y implies there is z such that x < z < y. Thm (Cantor) Every two countable,/linearly ordered sets are isomorphic.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Exercise. Every two countable atomless Boolean algebras are isomorphic.