Massive C*-algebras

Ilijas Farah

Winter 2021

I'll be posting lecture slides and recordings at https://ifarah.mathstats.yorku.ca/teachinig/ Last time: We defined the multiplier algebra of a C^{*}-algebra A. Let's revisit the construction.

Weak topology induced by a family of seminorms

Suppose that X is a topological vector space, \mathcal{N} is a family of seminorms on X, and \mathbb{F} is a filter on X.
 we have $\{y \in X \mid \rho(x-y) \leqslant \varepsilon\} \in \mathbb{F}$.
2. \mathbb{F} is Cauchy if for $\nmid \rho \in \mathcal{N}$ and all $\varepsilon>0$ we have $Y \in \mathbb{F}$ such that $|\rho(x-y)|<\varepsilon$ for all x and y in Y. Thus

$$
\text { 入 }<\quad \tilde{\rho}(\mathbb{F}):=\lim _{x \rightarrow \mathbb{F}} \rho(x)
$$

is well-defined for all ρ.
3. X is complete (with respect to the topology induced by \mathcal{N}) if every Cauchy filter on X converges.
$X \longrightarrow \mathbb{C}^{N}$

The completion \tilde{X} of X with respect to \mathcal{N} is defined in a natural way—see e.g., Gabriel Nagy's lecture notes (https://www.math.ksu.edu/ nagy/func-an-F07-S08.html, lecture TVS IV.). This is not a time or a place to go over the details of the construction, but I ought to say a few things.

The completion of an algebra X with respect to \mathcal{N} $\mathbb{C F}(X)$: The space of all Cauchy filters on X $(F+G:=\{x+y \mid x \in F, y \in G\}$, etc.)

$$
\begin{aligned}
& \mathbb{F}+\mathbb{G}:=\{F+G \mid F \in \mathbb{F}, G \in \mathbb{G}\} \\
& \underline{\mathbb{F}}:=\{F G \mid F \in \mathbb{F}, G \in \mathbb{G}\} \\
& \underline{\mathbb{F}}:=\{\lambda F \mid F \in \mathbb{F}\} \\
& \mathbb{F}^{*}:=\left\{F^{*} \mid F \in \mathbb{F}\right\} \\
& \begin{aligned}
\tilde{\tilde{\rho}(\mathbb{F})}: & :=\lim _{x \rightarrow \mathbb{F}} \rho(x) \\
\approx \mathbb{G} & \Leftrightarrow \mathbb{F}+(-1) \mathbb{G} \rightarrow 0 .
\end{aligned} \\
& X \mapsto \mathbb{C F}(X) \approx \underline{x} \mapsto\{\underline{\{Y X \mid x \in Y}\} .
\end{aligned}
$$

Claim $\tilde{X}=\mathbb{C F}(X) / \approx$ is an algebra complete w.r.t.
$\tilde{\mathcal{N}}:=\{\underline{\tilde{\rho}} \mid \rho \in \mathcal{N}\}$.

The completion of an algebra X with respect to \mathcal{N} $\mathbb{C F}(X)$: The space of all Cauchy filters on X ($F+G:=\{x+y \mid x \in F, y \in G\}$, etc.)

$$
\begin{aligned}
\mathbb{F}+\mathbb{G} & :=\{F+G \mid F \in \mathbb{F}, G \in \mathbb{G}\} \\
\mathbb{F} \mathbb{G} & :=\{F G \mid F \in \mathbb{F}, G \in \mathbb{G}\} \\
\lambda \mathbb{F} & :=\{\lambda \mid F \in \mathbb{F}\} \\
\mathbb{F}^{*} & :=\left\{F^{*} \mid F \in \mathbb{F}\right\} \\
\tilde{\rho}(\mathbb{F}) & :=\lim _{x \rightarrow \mathbb{P}} \rho(x) \\
\mathbb{F} \approx \mathbb{G} & \Leftrightarrow \mathbb{F}+(-1) \mathbb{G} \rightarrow 0 . \\
X \mapsto \mathbb{C F}(X) & : x \mapsto\{Y \subseteq X \mid x \in Y\} .
\end{aligned}
$$

Claim $\tilde{X}=\mathbb{C F}(X) / \approx$ is an algebra complete w.r.t.
$\tilde{\mathcal{N}}:=\{\tilde{\rho} \mid \rho \in \mathcal{N}\}$.
Proof: Use the sets $U_{\rho, \lambda, \varepsilon}:=\{x \in X \| \rho(x)-\lambda \mid<\varepsilon\}$.
Herrer

Strict topology

Def 13.1.1 Suppose $A \leq M$. To every $h \in A$ we associate two seminorms on $M, \lambda_{h}(b):=\|h b\|$ and $\rho_{h}(b):=\|b h\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Strict topology

Def 13.1.1 Suppose $A \leq M$. To every $h \in A$ we associate two seminorms on $M, \lambda_{h}(b):=\|h b\|$ and $\rho_{h}(b):=\|b h\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion $\mathcal{M}(A)$ of A in the strict topology is equipped with a unital C^{*}-algebra structure such that A is an essential ideal in $\mathcal{M}(A)$.

$$
\begin{aligned}
& A \leqslant M \quad e \sec x i c / \quad i d e c l \\
& \forall G \in M \quad \text { if } a b=0, \forall a \in A \\
& A^{\perp}=101 .
\end{aligned}
$$

Strict topology

Def 13.1.1 Suppose $A \leq M$. To every $h \in A$ we associate two seminorms on $M, \lambda_{h}(b):=\|h b\|$ and $\rho_{h}(b):=\|b h\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion $\mathcal{M}(A)$ of A in the strict topology is equipped with a unital C^{*}-algebra structure such that A is an essential ideal in $\mathcal{M}(A)$.

Proof: In addition to taking the completion as before, we need to define the norm on $\mathcal{M}(A)$. Fix an approximate unit \mathcal{E} for A.
$\sum \leq A_{+, 1} \quad \lim _{e \rightarrow \varepsilon}\left\|\sum_{a}-\underline{a}\right\|=0$

Strict topology

Def 13.1.1 Suppose $A \leq M$. To every $h \in A$ we associate two seminorms on $M, \lambda_{h}(b):=\|h b\|$ and $\rho_{h}(b):=\|b h\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion $\mathcal{M}(A)$ of A in the strict topology is equipped with a unital C^{*}-algebra structure such that A is an essential ideal in $\mathcal{M}(A)$.
Proof: In addition to taking the completion as before, we need to define the norm on $\mathcal{M}(A)$. Fix an approximate unit \mathcal{E} for A.
Claim If \mathbb{F} is a Cauchy filter on A, then $\sup _{e \in \mathcal{E}} \lim _{x \rightarrow \mathbb{F}} \lambda_{e}(x)<\infty$. (I.e., \mathbb{F} is bounded.)
otherwise:

$$
\text { Fix } e_{m} \in \mathcal{E}
$$

$$
\begin{aligned}
& e=\sum 2^{-h} e_{m_{1}} \quad\|e\| \leqslant 1 \\
& \|e a\| \geqslant 2^{-n}\left\|e_{m} a\right\|, \forall a \\
& e \geqslant 2^{-4} e_{m} \\
& \tilde{\lambda}_{e}(\mathbb{F}) \& k<\infty \\
& 2^{\mu}>k+\varepsilon \\
& F \in \mathbb{F} \quad \hat{\lambda}_{e}(\mathbb{F})<k \\
& \tilde{\lambda}_{e_{2}}(\mathbb{F})>2^{2 n}+\varepsilon \\
& \forall x \in F \quad \frac{\|e x\|<\pi}{\left\|e_{m} \times\right\|>2^{2 \mu}+\varepsilon}
\end{aligned}
$$

2^{c}

Strict topology

ML) A

Def 13.1.1 Suppose $A \leq M$. To every $h \in A$ we associate two seminorms on $M, \lambda_{h}(b):=\|h b\|$ and $\rho_{h}(b):=\|b h\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion $\mathcal{M}(A)$ of A in the strict topology is equipped with a unital C^{*}-algebra structure such that A is an essential ideal in $\mathcal{M}(A)$.
Proof: In addition to taking the completion as before, we need to define the norm on $\mathcal{M}(A)$. Fix an approximate unit \mathcal{E} for A.

Claim If \mathbb{F} is a Cauchy filter on A, then $\sup _{e \in \mathcal{E}} \lim _{x \rightarrow \mathbb{F}} \lambda_{e}(x)<\infty$. (I.e., \mathbb{F} is bounded.)

If \mathbb{F} is bounded, let $\|\mathbb{F}\|:=\sup _{\underline{e \in \mathcal{E}}} \tilde{\lambda}_{e}(\mathbb{F})$.

$$
\begin{aligned}
& X \\
& C_{6}(x)=\lfloor f=x \rightarrow \mathbb{C}) \|\left(f \|_{\infty}<\infty\right) \\
& A=C_{0}(X) \\
& \varphi \in A^{A} \mid \varphi \geqslant 0\|\varphi\|=\varphi(Y=1\}
\end{aligned}
$$

$$
x=\partial b
$$

(Continuing the sketch of the proof.) One can prove that this is a norm on \tilde{A}, that \tilde{A} is a Banach algebra, and that the C^{*}-equality holds. This is the sort of a proof that should not be presented in public; I'll post the details.

$$
n_{1}=\|\cdot\|=0
$$

(Continuing the sketch of the proof.) One can prove that this is a norm on \tilde{A}, that \tilde{A} is a Banach algebra, and that the C^{*}-equality holds. This is the sort of a proof that should not be presented in public; I'll post the details.

Def 13.1.6 $\mathcal{M}(A)$ is the multiplier algebra of A.

Example 13.2.4

1. If X is a locally compact Hausdorff space then $\mathcal{M}\left(C_{0}(X)\right) \cong C(\beta X)$.
2. $\mathcal{M}(\mathcal{K}(H)) \cong \mathcal{B}(H)$.
3. If B_{n}, for $n \in \mathbb{N}$, are unital C^{*}-algebras, then $\mathcal{M}\left(\bigoplus_{n} B_{n}\right) \cong \prod_{n} B_{n}$.

Coronas

Def 13.3.1 The corona of a nonunital C^{*}-algebra A is the quotient $\mathcal{Q}(A):=\mathcal{M}(A) / A$.

Coronas

Def 13.3.1 The corona of a nonunital C^{*}-algebra A is the quotient $\mathcal{Q}(A):=\mathcal{M}(A) / A$.

Example

1. $\mathcal{Q}(\mathcal{K}(H)) \cong \mathcal{B}(H) / \mathcal{K}(H)$ is the Calkin algebra.
2. If X is a locally compact Hausdorff space, then $\mathcal{Q}\left(C_{0}(X)\right) \cong C(\beta X) / C_{0}(X) \cong C(\beta X \backslash X)$.
3. If $X=\mathbb{N}$ (with discrete topology) then $C_{0}(\mathbb{N}) \cong c_{0}$, $C(\beta \backslash \mathbb{X}) \cong \ell_{\infty}$, and $C(\beta \mathbb{N} \backslash \mathbb{N}) \cong \ell_{\infty} / c_{0}$.
4. If $\mathbb{J} \subseteq \mathbb{N}$ is infinite, the corona of $\bigoplus_{n \in \mathbb{J}} M_{n}(\mathbb{C})$ is isomorphic to $\prod_{n \in \mathbb{J}} M_{n}(\mathbb{C}) / \bigoplus_{n \in \mathbb{J}} M_{n}(\mathbb{C})$.

Coronas

Def 13.3.1 The corona of a nonunital C^{*}-algebra A is the quotient $\mathcal{Q}(A):=\mathcal{M}(A) / A$.

Example

1. $\mathcal{Q}(\mathcal{K}(H)) \cong \mathcal{B}(H) / \mathcal{K}(H)$ is the Calkin algebra.
2. If X is a locally compact Hausdorff space, then $\mathcal{Q}\left(C_{0}(X)\right) \cong C(\beta X) / C_{0}(X) \cong C(\beta X \backslash X)$.
3. If $X=\mathbb{N}$ (with discrete topology) then $C_{0}(\mathbb{N}) \cong c_{0}$, $C(\beta \mathbb{M}) \cong \ell_{\infty}$, and $C(\beta \mathbb{N} \backslash \mathbb{N}) \cong \ell_{\infty} / c_{0}$.
4. If $\mathbb{J} \subseteq \mathbb{N}$ is infinite, the corona of $\bigoplus_{n \in \mathbb{J}} M_{n}(\mathbb{C})$ is isomorphic to $\prod_{n \in \mathbb{J}} M_{n}(\mathbb{C}) / \bigoplus_{n \in \mathbb{J}} M_{n}(\mathbb{C})$.

Exercise. How many nonisomorphic algebras as in (4) can you find?

The Calkin algebra, $\mathcal{B}(H) / \mathcal{K}(H)$

'The' Calkin algebra is associated with the separable, infinite-dimensional H.

Lemma
$\mathcal{B}(H)$ has exactly one nontrivial ideal, $\mathcal{K}(H)$.

The Calkin algebra, $\mathcal{B}(H) / \mathcal{K}(H)$

'The' Calkin algebra is associated with the separable, infinite-dimensional H.

Lemma
$\mathcal{B}(H)$ has exactly one nontrivial ideal, $\mathcal{K}(H)$.
$\mathcal{Q}(H)$ is simple.

The Calkin algebra, $\mathcal{B}(H) / \mathcal{K}(H)$

'The' Calkin algebra is associated with the separable, infinite-dimensional H.

Lemma
$\mathcal{B}(H)$ has exactly one nontrivial ideal, $\mathcal{K}(H)$.
$\mathcal{Q}(H)$ is simple.
Exercise. Suppose that κ is an infinite cardinal. Describe all (two-sided, norm-closed, proper, nontrivial) ideals of $\mathcal{B}(H)=\ell_{8}($ (Hint: If $\kappa=\aleph_{n}$, the n-th infinite cardinal, then there are $n+1$ such ideals. Counting starts at 0 , i.e., \aleph_{0} is the smallest infinite cardinal.)

$$
\left\|\left(a_{n}\right)\right\|=\left(\sum\left\|a_{n}\right\|^{2}\right)^{1 / z}
$$

Lemma 12.1.3 $\mathcal{B}(H)$ is isomorphic to a C^{*}-subalgebra of $\mathcal{Q}(H)$. Therefore every separable C^{*}-algebra is isomorphic to a
C^{*}-subalgebra of $\mathcal{Q}(H)$

$$
\begin{aligned}
& \text { " } l_{2} H \otimes l_{2}(N) \\
& B(H) \subset \prod_{S_{0}} B(H) \subset B\left(\mathbb{l}_{l_{2}} H\right) \\
& a \rightarrow(a, c, \ldots 0) a+a
\end{aligned}
$$

Lemma 12.1.3 $\mathcal{B}(H)$ is isomorphic to a C^{*}-subalgebra of $\mathcal{Q}(H)$. Therefore every separable C^{*}-algebra is isomorphic to a C*-subalgebra of $\mathcal{Q}(H)$.

Lemma $\quad \ell_{\infty}$ embeds into $\mathcal{B}(H)$.

Lemma 12.1.3 $\mathcal{B}(H)$ is isomorphic to a C^{*}-subalgebra of $\mathcal{Q}(H)$. Therefore every separable C^{*}-algebra is isomorphic to a C^{*}-subalgebra of $\mathcal{Q}(H)$.

Lemma $\quad \ell_{\infty}$ embeds into $\mathcal{B}(H)$.
ℓ_{∞} / c_{0} embeds into $\mathcal{Q}(H)$.

Lemma 12.1.3 $\mathcal{B}(H)$ is isomorphic to a C^{*}-subalgebra of $\mathcal{Q}(H)$. Therefore every separable C^{*}-algebra is isomorphic to a C*-subalgebra of $\mathcal{Q}(H)$.

Lemma $\quad \ell_{\infty}$ embeds into $\mathcal{B}(H)$. ℓ_{∞} / c_{0} embeds into $\mathcal{Q}(H)$.

A bit of rambling:
$\mathcal{B}(H)$: quantization of each one of $\ell_{\infty}(\mathcal{P}(\mathbb{N})$, qnd $\beta \mathbb{N}$.

Lemma 12.1.3 $\mathcal{B}(H)$ is isomorphic to a C^{*}-subalgebra of $\mathcal{Q}(H)$. Therefore every separable C^{*}-algebra is isomorphic to a C*-subalgebra of $\mathcal{Q}(H)$.

Lemma $\quad \ell_{\infty}$ embeds into $\mathcal{B}(H)$. ℓ_{∞} / c_{0} embeds into $\mathcal{Q}(H)$.

A bit of rambling:
$\mathcal{B}(H)$: quantization of each one of $\ell_{\infty}, \mathcal{P}(\mathbb{N})$, and $\beta \mathbb{N}$.
$\mathcal{Q}(H)$: quantization of each one of $\ell_{\infty} / c_{0}, \mathcal{P}(\mathbb{N}) /$ Fin, and $\beta \mathbb{N} \backslash \mathbb{N}$.

Lemma
There is a family $\mathrm{X}_{r}, r \in \mathbb{R}$, St infinite subsets of \mathbb{N} such that $^{\text {s }}$ $X_{r} \cap X_{s}$ is finite for all $r \neq s$.

$$
r \in \mathbb{R} \backslash \mathbb{Q} \quad x_{r} \subseteq \mathbb{Q}
$$

Lemma

There is a family $X_{r}, r \in \mathbb{R}$, of infinite subsets of \mathbb{N} such that $\mathrm{X}_{r} \cap \mathrm{X}_{s}$ is finite for all $r \neq s$.

Lemma
There is a family of $\mathfrak{c}:=2^{\aleph_{0}}$ orthogonal projections $\ln \ell_{\infty} / c_{0}$.
$X \in \mathbb{N}$

$$
x_{x} \quad 1_{x}
$$

The density character $\chi(X)$ of a topological space X is the minimal cardinality of a dense subset.

Example
$\chi(X) \leq \aleph_{0}$ if and only if X is separable.
$\chi(\mathcal{B}(H))=\mathfrak{c}\left(\mathfrak{c}:=2^{\aleph_{0}}\right.$, the cardinality of \mathbb{C}. $)$

The density character $\chi(X)$ of a topological space X is the minimal cardinality of a dense subset.

Example

$\chi(X) \leq \aleph_{0}$ if and only if X is separable.
$\chi(\mathcal{B}(H))=\mathfrak{c}\left(\mathfrak{c}:=2^{\aleph_{0}}\right.$, the cardinality of \mathbb{C}. $)$
Prop 12.1.4 The Calkin algebra $\mathcal{Q}(H)$ has density character \mathfrak{c}. It has a representation on a Hilbert space K if and only if the density character of K is at least \mathfrak{c}.

Projections in coronas

Def $\operatorname{Proj}(A)$ is the pose of projections in A.

$$
\left\{\rho \in A \mid \quad \beta=\rho^{*}, p=\rho^{2}\right\}
$$

Projections in coronas

Def $\operatorname{Proj}(A)$ is the poser of projections in A.
Fact. $\operatorname{Proj}(A) \subseteq A_{+} . p \leq q$ ff $p q=p$. aK

Projections in coronas

Def $\operatorname{Proj}(A)$ is the poset of projections in A.
Fact. $\operatorname{Proj}(A) \subseteq A_{+} . p \leq q$ iff $p q=p$.
Fact. If $a \in \mathcal{B}(H)$, then p is a projection if and only if there is a closed subspace K of H such that p is the orthogonal projection to K.

Fact. $\operatorname{Proj}(\mathcal{B}(H))$ is a lattice.

$p \vee \Sigma$

Projections in coronas

Def $\operatorname{Proj}(A)$ is the poset of projections in A.
Fact. $\operatorname{Proj}(A) \subseteq A_{+} . p \leq q$ iff $p q=p$.
Fact. If $a \in \mathcal{B}(H)$, then p is a projection if and only if there is a closed subspace K of H such that p is the orthogonal projection to K.

Fact. $\operatorname{Proj}(\mathcal{B}(H))$ is a lattice.
Prop (Weaver) The poset $\operatorname{Proj}(\mathcal{Q}(H))$ is not a lattice.
(For a proof see Proposition 13.3.3.)

Lemma 12.2.5 Assume p_{n}, for $n \in \mathbb{N}$, is a decreasing sequence of projections in $\mathcal{Q}(H)$. Then there is a nonzero projection p in $\mathcal{Q}(H)$ such that $p \leq p_{n}$ for all n. Therefore there exists a transfinite, uncountable, decreasing 'sequence' of projections in $\mathcal{Q}(H)$.

$$
P_{u} P_{n+6}=P_{n \tau 1}
$$

$B\left(H_{t}\right)$

$\pi: B(H) \rightarrow Q(H)$ - Evotient mat Leluma $\quad l \in Q(H)$, Proiectora then $\Rightarrow \widetilde{p} \in B(H)$, prosectia, $\pi(\widetilde{p})=p$. ft Fix $\quad a \in \mathbb{H}(H) \quad \pi(a)=P$

$$
\begin{aligned}
& \text { Let } a_{1}=\frac{a+a^{*}}{2} \pi\left(a_{1}\right)=p \\
& \left.\frac{s p\left(a_{1}\right)}{-} \quad i \quad \pi\left(a_{1}\right)^{2}=\pi\left(a_{1}\right)\right] \\
& \begin{array}{l}
P_{0} \longrightarrow \tilde{P}_{0} \\
P_{1} \longrightarrow \tilde{\Gamma}_{1}
\end{array} \\
& R\left(\tilde{e}_{0} H\right) \\
& P_{2} \longrightarrow \tilde{p}_{2}
\end{aligned}
$$

$\tilde{p}_{u} \quad i \quad B(H)$
choge orthonermal
$\left(\xi_{n}\right)_{n=0}^{\infty}$ in H

$$
\begin{aligned}
& K=\overline{\operatorname{san}}\left\{\xi_{n}|n \in N|\right. \\
& \widetilde{P}_{\alpha}=\operatorname{Prom}_{n} \\
& \widetilde{P}_{\infty}-\widetilde{P}_{n}-\widetilde{P}_{\infty} \in K(H) \\
& 1=\pi\left(\widetilde{P}_{\infty}\right)
\end{aligned}
$$

$A \triangleleft B$

Coronas of σ-unital C^{*}-algebras

$$
\begin{aligned}
& 0 \rightarrow A \rightarrow B \rightarrow B / A \rightarrow 0 \\
& \underline{c s i n t i d} B \rightarrow M(A)
\end{aligned}
$$

Def 1.6.7 (second part) $A \mathrm{C}^{*}$-algebra is σ-unital if it has a countable approximate unit.

Separable $\Rightarrow \sigma$-unital, but not vice versa.

Coronas of σ-unital C^{*}-algebras

Def 1.6.7 (second part) $A \mathrm{C}^{*}$-algebra is σ-unital if it has a countable approximate unit.

Separable $\Rightarrow \sigma$-unital, but not vice versa.
Exercise.Every C^{*}-algebra is isomorphic to a subalgebra of a σ-unital C^{*}-algebra.
en

$$
h=\sum 2^{-m} e_{m}
$$

Some unrelated (?) facts

Example

$$
C=Q\left(t_{t}\right) \quad l_{\infty} / C_{0}
$$

Suppose that $C=\mathcal{M}(A) / A$ is the corona of a σ-unital, non-unital, C^{*}-algebra A. Then the following holds.

1. If A and B are separable C^{*}-subalgebras of C and $A \perp B$ (ie., $a b=0=a b^{*}=a^{*} b=a^{*} b^{*}$ for all $a \in A$ and $b \in \overline{B) \text { then there }}$ $\overline{\text { exists }} c \overline{\in C}$ such that $a c=a$ and $\overline{c b=0}$ for all $a \in A$ and $b \in B$.

$$
C([0,1])
$$

Some unrelated (?) facts

Example

$$
A=K(H)
$$

Suppose that $C=\mathcal{M}(A) / A$ is the corona of a σ-unital, non-unital, C^{*}-algebra A. Then the following holds.

1. If A and B are separable C^{*}-subalgebras of C and $A \perp B$ (i.e., $a b=0=a b^{*}=a^{*} b=a^{*} b^{*}$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that $a c=a$ and $c b=0$ for all $a \in A$ and $b \in B$.
2. For all a_{n}, b_{n}, for $n \in \mathbb{N}$, in C_{+}satisfying $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}$ for all n there exists a positive $\overline{c \in C}$ such that $a_{n} \leq c \leq b_{n}$ for all n.

$$
a_{0} \leq a_{1} \leq \ldots c \ldots \leq b_{1} \leq b_{0}
$$

Some unrelated (?) facts

Example

Suppose that $C=\mathcal{M}(A) / A$ is the corona of a σ-unital, non-unital, C^{*}-algebra A. Then the following holds.

1. If A and B are separable C^{*}-subalgebras of C and $A \perp B$ (ie., $a b=0=a b^{*}=a^{*} b=a^{*} b^{*}$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that $a c=a$ and $c b=0$ for all $a \in A$ and $b \in B$.
2. For all a_{n}, b_{n}, for $n \in \mathbb{N}$, in C_{+}satisfying $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}$ for all n there exists a positive $c \in C$ such that $a_{n} \leq c \leq b_{n}$ for all n.
3. For every sequence $a_{n}, n \in \mathbb{N}$, in $C_{+, 1}$ such that $a_{n} a_{n+1}=a_{n+1}$ for all n there exists $a \in C_{+, 1}$ such that
$a_{n} a=a$ for all n.

$$
a<c \quad \cdots a_{n+1} \ll a_{4}
$$

Some unrelated (?) facts

Example

Suppose that $C=\mathcal{M}(A) / A$ is the corona of a σ-unital, non-unital, C^{*}-algebra A. Then the following holds.

1. If A and B are separable C^{*}-subalgebras of C and $A \perp B$ (i.e., $a b=0=a b^{*}=a^{*} b=a^{*} b^{*}$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that $a c=a$ and $c b=0$ for all $a \in A$ and $b \in B$.
2. For all a_{n}, b_{n}, for $n \in \mathbb{N}$, in C_{+}satisfying $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}$ for all n there exists a positive $c \in C$ such that $a_{n} \leq c \leq b_{n}$ for all n.
3. For every sequence $a_{n}, n \in \mathbb{N}$, in $C_{+, 1}$ such that $a_{n} a_{n+1}=a_{n+1}$ for all n there exists $a \in C_{+, 1}$ such that $a_{n} a=a$ for all n.
4. If $a \in C_{+}$and $0 \in \operatorname{sp}(a)$ then $\frac{a^{\perp} \cap C \neq\{0\}}{\Delta \int(a b=C a=0)}$

Some unrelated (?) facts

Example

Suppose that $C=\mathcal{M}(A) / A$ is the corona of a σ-unital, non-unital, C^{*}-algebra A. Then the following holds.

1. If A and B are separable C^{*}-subalgebras of C and $A \perp B$ (i.e., $a b=0=a b^{*}=a^{*} b=a^{*} b^{*}$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that $a c=a$ and $c b=0$ for all $a \in A$ and $b \in B$.
2. For all a_{n}, b_{n}, for $n \in \mathbb{N}$, in C_{+}satisfying $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}$ for all n there exists a positive $c \in C$ such that $a_{n} \leq c \leq b_{n}$ for all n.
3. For every sequence $a_{n}, n \in \mathbb{N}$, in $C_{+, 1}$ such that $a_{n} a_{n+1}=a_{n+1}$ for all n there exists $a \in C_{+, 1}$ such that $a_{n} a=a$ for all n.
4. If $a \in C_{+}$and $0 \in \operatorname{sp}(a)$ then $a^{\perp} \cap C \neq\{0\}$.
(5.) Suppose a_{n}, b_{n}, for $n \in \mathbb{N}$, are in C_{+}and $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}$ for all n. Furthermore suppose $D \leq C$ is separable and $\lim _{n}\left\|\left[a_{n}, d\right]\right\|=0$ for every $d \in D$. Then there exists $C \in D^{\prime} \cap C_{+}$such that $a_{n} \leq c \leq b_{n}$ for all n.

Def (commutator) $[a, b]:=a b-b a$. (relative commutant) If $D \leq \bar{C}$, then $D^{\prime} \cap C:=\{c \in C \mid[c, d]=0\}$.

A unified framework for the facts from the previous slide Taking the syntax seriously will pay off. . . just bear with me.

A unified framework for the facts from the previous slide Taking the syntax seriously will pay off. . . just bear with me.
Def 15.1.1 A degree- 1 condition over a C^{*}-algebra C is an

$$
C=Q(H)
$$ expression of the form

with the coefficients in C and $r \in \mathbb{R}_{+}$.
The condition $\|\underline{P(x)}\|=r$ is satisfied in C by b if $\|P(b)\|=r$.

A unified framework for the facts from the previous slide Taking the syntax seriously will pay off. . . just bear with me.

Def 15.1.1 A degree- 1 condition over a C^{*}-algebra C is an expression of the form

$$
\begin{equation*}
\left\|a_{0} x a_{1}+a_{2} x * a_{3}+a\right\|=r \tag{1}
\end{equation*}
$$

with the coefficients in C and $r \in \mathbb{R}_{+}$. The condition $\|P(x)\|=r$ is satisfied in C by b if $\|P(b)\|=r$.

Def 15.1.2 A degree-1 type over C is a set of degree- 1 conditions over C. A type $\mathrm{t}(x)$ is realized in C if there exists b in the unit ball of C such that every condition in $\mathrm{t}(x)$ is satisfied by b.

A unified framework for the facts from the previous slide

 Taking the syntax seriously will pay off. . . just bear with me.Def 15.1.1 A degree-1 condition over a C^{*}-algebra C is an expression of the form

$$
\begin{equation*}
\left\|a_{0} x a_{1}+a_{2} x * a_{3}+a\right\|=r \tag{1}
\end{equation*}
$$

with the coefficients in C and $r \in \mathbb{R}_{+}$.
The condition $\|P(x)\|=r$ is satisfied in C by b if $\|P(b)\|=r$.
Def 15.1.2 A degree-1 type over C is a set of degree- 1 conditions over C. A type $\mathrm{t}(x)$ is realized in C if there exists b in the unit ball of C such that every condition in $\mathrm{t}(x)$ is satisfied by b. A type $\mathrm{t}(x)$ is approximately realized in C (or satisfiable) if for every finite subset $\mathrm{t}_{0}(x)$ of $\mathrm{t}(x)$ and every $\varepsilon>0$ there exists b in the unit ball of C such that for every condition $\|P(\bar{x})\|=r$ in $t_{0}(\bar{x})$ we have $|||P(b) \|-r|<\varepsilon$. Such b is a partial realization of $\mathrm{t}(x)$.
(All this can be defined for types in n variables for $n \leq \aleph_{0}$.)

Each of these examples asserts that a certain type is realized

1. If A and B are separable C^{*}-subalgebras of C and $A \perp B$ (i.e., $a b=0=a b^{*}=a^{*} b=a^{*} b^{*}$ for all $a \in A$ and $\left.b \in B\right)$ then there exists $c \in C$ such that $a c=a$ and $c b=0$ for all $a \in A$ and $b \in B$.

$$
t(x)=\begin{array}{ll}
\|a \times-a\|=0 & a \in A_{0} \\
\|\in b\|=0, & A_{0} \leq A \\
b+\|_{0} & b_{0} \leq g
\end{array}
$$

Each of these examples asserts that a certain type is realized

1. If A and B are separable C^{*}-subalgebras of C and $A \perp B$ (i.e., $a b=0=a b^{*}=a^{*} b=a^{*} b^{*}$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that $a c=a$ and $c b=0$ for all $a \in A$ and $b \in B$.
2. For all a_{n}, b_{n}, for $n \in \mathbb{N}$, in C_{+}satisfying $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}$ for all n there exists a positive $c \in C$ such that $a_{n} \leq c \leq b_{n}$ for all n.

$$
a_{n} \leq x, \quad x \leq L
$$

Exercise: express)" $x \geqslant 0^{\text {" }}$ using

$$
\frac{\text { Exercise: }}{\text { degree -1 combitims }}
$$

Each of these examples asserts that a certain type is

 realized1. If A and B are separable C^{*}-subalgebras of C and $A \perp B$ (i.e., $a b=0=a b^{*}=a^{*} b=a^{*} b^{*}$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that $a c=a$ and $c b=0$ for all $a \in A$ and $b \in B$.
2. For all a_{n}, b_{n}, for $n \in \mathbb{N}$, in C_{+}satisfying $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}$ for all n there exists a positive $c \in C$ such that $a_{n} \leq c \leq b_{n}$ for all n.
3. For every sequence $a_{n}, n \in \mathbb{N}$, in $C_{+, 1}$ such that $a_{n} a_{n+1}=a_{n+1}$ for all n there exists $a \in \dot{C}_{+, 1}$ such that $a_{n} a=a$ for all n.

$$
\begin{aligned}
\left\|a_{n} x-x\right\| & =0 \\
\| & * \|
\end{aligned}
$$

Each of these examples asserts that a certain type is realized

1. If A and B are separable C^{*}-subalgebras of C and $A \perp B$ (i.e., $a b=0=a b^{*}=a^{*} b=a^{*} b^{*}$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that $a c=a$ and $c b=0$ for all $a \in A$ and $b \in B$.
2. For all a_{n}, b_{n}, for $n \in \mathbb{N}$, in C_{+}satisfying $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}$ for all n there exists a positive $c \in C$ such that $a_{n} \leq c \leq b_{n}$ for all n.
3. For every sequence $a_{n}, n \in \mathbb{N}$, in $C_{+, 1}$ such that $a_{n} a_{n+1}=a_{n+1}$ for all n there exists $a \in C_{+, 1}$ such that $a_{n} a=a$ for all n.
4. If $a \in C_{+}$and $0 \in \operatorname{sp}(a)$ then $a^{\perp} \cap C \neq\{0\}$.

Each of these examples asserts that a certain type is

realized

1. If A and B are separable C^{*}-subalgebras of C and $A \perp B$ (i.e., $a b=0=a b^{*}=a^{*} b=a^{*} b^{*}$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that $a c=a$ and $c b=0$ for all $a \in A$ and $b \in B$.
2. For all a_{n}, b_{n}, for $n \in \mathbb{N}$, in C_{+}satisfying $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}$ for all n there exists a positive $c \in C$ such that $a_{n} \leq c \leq b_{n}$ for all n.
3. For every sequence $a_{n}, n \in \mathbb{N}$, in $C_{+, 1}$ such that $a_{n} a_{n+1}=a_{n+1}$ for all n there exists $a \in C_{+, 1}$ such that $a_{n} a=a$ for all n.
4. If $a \in C_{+}$and $0 \in \operatorname{sp}(a)$ then $a^{\perp} \cap C \neq\{0\}$.
5. Suppose a_{n}, b_{n}, for $n \in \mathbb{N}$, are in C_{+}and $a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}$ for all n. Furthermore suppose $D \leq C$ is separable and $\lim _{n}\left\|\left[a_{n}, d\right]\right\|=0$ for every $d \in D$. Then there exists $c \in D^{\prime} \cap C_{+}$ such that $a_{n} \leq c \leq b_{n}$ for all n.

[^0]\[

$$
\begin{aligned}
& a \rightarrow\left(\begin{array}{cc}
a & a \\
a & a
\end{array}\right) \\
& b \in B(K) \\
& \Leftrightarrow \forall \varepsilon>0 \quad \exists K \leq H, \operatorname{din}(L) \\
& \left(\left(1-P_{L}\right) b U C r\right.
\end{aligned}
$$
\]

[^0]:

 4
 $B(t)$
 $b(H)$
 \rightarrow

