Massive C^* -algebras

Ilijas Farah

Winter 2021

I'll be posting lecture slides and recordings at https://ifarah.mathstats.yorku.ca/teachinig/ Last time: We defined the multiplier algebra of a C*-algebra A. Let's revisit the construction.

Weak topology induced by a family of seminorms

Suppose that X is a topological vector space, \mathcal{N} is a family of seminorms on X, and \mathbb{F} is a filter on X.

Def

- 1. \mathbb{F} converges to $x \in X$, $\mathbb{F} \to x$, if for all $\rho \in \mathcal{N}$ and all $\varepsilon > 0$ we have $\{y \in X | \rho(x - y) \leq \varepsilon\} \in \mathbb{F}$.
- 2. \mathbb{F} is Cauchy if for all $\rho \in \mathcal{N}$ and all $\varepsilon > 0$ we have $Y \in \mathbb{F}$ such that $\rho(x y) < \varepsilon$ for all x and y in Y. Thus

$$\widetilde{
ho}(\mathbb{F}):=\lim_{ extsf{x}
ightarrow \mathbb{F}}
ho(extsf{x})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is well-defined for all ρ .

 $\mathcal{A} \leq$

 \times

3. X is complete (with respect to the topology induced by N) if every Cauchy filter on X converges. The completion \tilde{X} of X with respect to \mathcal{N} is defined in a natural way—see e.g., Gabriel Nagy's lecture notes (https://www.math.ksu.edu/ nagy/func-an-F07-S08.html, lecture TVS IV.). This is not a time or a place to go over the details of the construction, but I ought to say a few things.

The completion of an algebra X with respect to \mathcal{N} $\mathbb{CF}(X)$: The space of all Cauchy filters on X $(F + G := \{x + y | x \in F, y \in G\}, \text{ etc.})$

$$\begin{aligned}
\mathbb{F} + \mathbb{G} &:= \{F + G | F \in \mathbb{F}, G \in \mathbb{G}\} \\
\mathbb{F} \mathbb{G} &:= \{FG | F \in \mathbb{F}, G \in \mathbb{G}\} \\
\widehat{\lambda}\mathbb{F} &:= \{\lambda F | F \in \mathbb{F}\} \\
\mathbb{F}^* &:= \{F^* | F \in \mathbb{F}\} \\
\widetilde{\rho}(\mathbb{F}) &:= \lim_{X \to \mathbb{F}} \rho(X) \qquad \text{for } \mathcal{F} \in \mathcal{F} \\
\mathbb{F} \approx \mathbb{G} \Leftrightarrow \mathbb{F} + (-1)\mathbb{G} \to 0. \\
X \mapsto \mathbb{C}\mathbb{F}(X) := X \mapsto \{Y \subseteq X | x \in Y\}. \\
\widetilde{X} &= \mathbb{C}\mathbb{F}(X) / \approx \text{ is an algebra complete w.r.t.}
\end{aligned}$$

Claim $\underbrace{\tilde{X} = \mathbb{CF}(X) / \approx}_{\tilde{N}}$ is an algebra complete w.r.t. $\underbrace{\tilde{N}}_{\tilde{N}} := \{ \underline{\tilde{\rho}} | \rho \in \mathcal{N} \}.$ The completion of an algebra X with respect to \mathcal{N} $\mathbb{CF}(X)$: The space of all Cauchy filters on X $(F + G := \{x + y | x \in F, y \in G\}, \text{ etc.})$

$$\mathbb{F} + \mathbb{G} := \{F + G | F \in \mathbb{F}, G \in \mathbb{G}\}$$
$$\mathbb{F}\mathbb{G} := \{FG | F \in \mathbb{F}, G \in \mathbb{G}\}$$
$$\lambda \mathbb{F} := \{\lambda F | F \in \mathbb{F}\}$$
$$\mathbb{F}^* := \{F^* | F \in \mathbb{F}\}$$
$$\tilde{\rho}(\mathbb{F}) := \lim_{x \to \mathbb{F}} \rho(x)$$
$$\mathbb{F} \approx \mathbb{G} \Leftrightarrow \mathbb{F} + (-1)\mathbb{G} \to 0.$$
$$X \mapsto \mathbb{C}\mathbb{F}(X) : x \mapsto \{Y \subseteq X | x \in Y\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Strict topology

Def 13.1.1 Suppose $A \le M$. To every $h \in A$ we associate two seminorms on M, $\lambda_h(b) := \|hb\|$ and $\rho_h(b) := \|bh\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Strict topology

Def 13.1.1 Suppose $A \le M$. To every $h \in A$ we associate two seminorms on M, $\lambda_h(b) := \|hb\|$ and $\rho_h(b) := \|bh\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion $\mathcal{M}(A)$ of A in the strict topology is equipped with a unital C^{*}-algebra structure such that A is an essential ideal in $\mathcal{M}(A)$.

Strict topology

Def 13.1.1 Suppose $A \le M$. To every $h \in A$ we associate two seminorms on M, $\lambda_h(b) := \|hb\|$ and $\rho_h(b) := \|bh\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion $\mathcal{M}(A)$ of A in the strict topology is equipped with a unital C^{*}-algebra structure such that A is an essential ideal in $\mathcal{M}(A)$.

Proof: In addition to taking the completion as before, we need to define the norm on $\mathcal{M}(A)$. Fix an approximate unit \mathcal{E} for A.

$$\Sigma \leq A_{+,1}$$
 $\lim_{e \to \Sigma} \|e_{A} - a\| = 0$

Strict topology

40(X)

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Def 13.1.1 Suppose $A \le M$. To every $h \in A$ we associate two seminorms on M, $\lambda_h(b) := \|hb\|$ and $\rho_h(b) := \|bh\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion $\mathcal{M}(A)$ of A in the strict topology is equipped with a unital C^{*}-algebra structure such that A is an essential ideal in $\mathcal{M}(A)$.

Proof: In addition to taking the completion as before, we need to define the norm on $\mathcal{M}(A)$. Fix an approximate unit \mathcal{E} for A.

 $C = \sum 2^{-ly} C_{y}$ $\|\ell\| \leq 1$ lleal ≥2-~ llen a//, ta C 7/ 2 Cm $\tilde{\lambda}_{o}(F) \ll \langle -\infty \rangle$ 2 7 K+E $F \in F$ $\widehat{\Lambda}_e(F) < K$ $\tilde{\lambda}_{e}(F) > 2^{2h} + \varepsilon$ $||e_X|| \leq ||$ HXEF $\left|\left|\mathcal{C}_{u_{1}}X\right|\right| > 2^{z_{u_{1}}} + \varepsilon$

H < H

20

Strict topology M(AI A

Def 13.1.1 Suppose $A \le M$. To every $h \in A$ we associate two seminorms on M, $\lambda_h(b) := \|hb\|$ and $\rho_h(b) := \|bh\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion $\mathcal{M}(A)$ of A in the strict topology is equipped with a unital C^{*}-algebra structure such that A is an essential ideal in $\mathcal{M}(A)$.

Proof: In addition to taking the completion as before, we need to define the norm on $\mathcal{M}(A)$. Fix an approximate unit \mathcal{E} for A.

Claim If \mathbb{F} is a Cauchy filter on A, then $\sup_{e \in \mathcal{E}} \lim_{x \to \mathbb{F}} \lambda_e(x) < \infty$. (I.e., \mathbb{F} is bounded.)

If \mathbb{F} is bounded, let $\|\mathbb{F}\| := \sup_{e \in \mathcal{E}} \tilde{\lambda}_e(\mathbb{F})$.

 $\frac{1}{2(X)} = \frac{1}{4} \times \infty \int \frac{1}{4} \int \frac{1}{4}$

 $A = C_{o}(X)$

4EA 470 [[4][=4(H=1))

X = 2P

(Continuing the sketch of the proof.) One can prove that this is a norm on \tilde{A} , that \tilde{A} is a Banach algebra, and that the C^{*}-equality holds. This is the sort of a proof that should not be presented in public; I'll post the details.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ の�?

 $\Lambda_1 = \|\cdot\| = \rho$

(Continuing the sketch of the proof.) One can prove that this is a norm on \tilde{A} , that \tilde{A} is a Banach algebra, and that the C^{*}-equality holds. This is the sort of a proof that should not be presented in public; I'll post the details.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めへぐ

Def 13.1.6 $\mathcal{M}(A)$ is the multiplier algebra of A.

Example 13.2.4

- 1. If X is a locally compact Hausdorff space then $\mathcal{M}(C_0(X)) \cong C(\beta X).$
- 2. $\mathcal{M}(\mathcal{K}(H)) \cong \mathcal{B}(H)$.
- 3. If B_n , for $n \in \mathbb{N}$, are unital C*-algebras, then $\mathcal{M}(\bigoplus_n B_n) \cong \prod_n B_n$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Coronas

Def 13.3.1 The corona of a nonunital C^* -algebra A is the quotient $Q(A) := \mathcal{M}(A)/A$.

<□> <□> <□> <□> <=> <=> <=> <=> <<

Coronas

Def 13.3.1 The corona of a nonunital C^* -algebra A is the quotient $\mathcal{Q}(A) := \mathcal{M}(A)/A$.

Example

- 1. $\mathcal{Q}(\mathcal{K}(H)) \cong \mathcal{B}(H)/\mathcal{K}(H)$ is the Calkin algebra.
- 2. If X is a locally compact Hausdorff space, then $\mathcal{Q}(C_0(X)) \cong C(\beta X)/C_0(X) \cong C(\beta X \setminus X).$
- 3. If $X = \mathbb{N}$ (with discrete topology) then $C_0(\mathbb{N}) \cong c_0$, $C(\beta \mathbb{N}) \cong \ell_{\infty}$, and $C(\beta \mathbb{N} \setminus \mathbb{N}) \cong \underline{\ell_{\infty}/c_0}$.
- 4. If $\mathbb{J} \subseteq \mathbb{N}$ is infinite, the corona of $\bigoplus_{n \in \mathbb{J}} \underline{M_n(\mathbb{C})}$ is isomorphic to $\prod_{n \in \mathbb{J}} \underline{M_n(\mathbb{C})} / \bigoplus_{n \in \mathbb{J}} \underline{M_n(\mathbb{C})}$.

Coronas

Def 13.3.1 The corona of a nonunital C^* -algebra A is the quotient $\mathcal{Q}(A) := \mathcal{M}(A)/A$.

Example

- 1. $\mathcal{Q}(\mathcal{K}(H)) \cong \mathcal{B}(H)/\mathcal{K}(H)$ is the Calkin algebra.
- 2. If X is a locally compact Hausdorff space, then $\mathcal{Q}(C_0(X)) \cong C(\beta X)/C_0(X) \cong C(\beta X \setminus X).$
- 3. If $X = \mathbb{N}$ (with discrete topology) then $C_0(\mathbb{N}) \cong c_0$, $C(\beta \mathbb{M}) \cong \ell_{\infty}$, and $C(\beta \mathbb{N} \setminus \mathbb{N}) \cong \ell_{\infty}/c_0$.
- If J ⊆ N is infinite, the corona of ⊕_{n∈J} M_n(C) is isomorphic to ∏_{n∈J} M_n(C)/⊕_{n∈J} M_n(C).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Exercise. How many nonisomorphic algebras as in (4) can you find?

The Calkin algebra, $\mathcal{B}(H)/\mathcal{K}(H)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

'The' Calkin algebra is associated with the separable, infinite-dimensional *H*.

Lemma $\mathcal{B}(H)$ has exactly one nontrivial ideal, $\mathcal{K}(H)$.

The Calkin algebra, $\mathcal{B}(H)/\mathcal{K}(H)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

'The' Calkin algebra is associated with the separable, infinite-dimensional H.

Lemma

 $\mathcal{B}(H)$ has exactly one nontrivial ideal, $\mathcal{K}(H)$. $\mathcal{Q}(H)$ is simple.

The Calkin algebra, $\mathcal{B}(H)/\mathcal{K}(H)$

'The' Calkin algebra is associated with the separable, infinite-dimensional *H*.

Lemma $\mathcal{B}(H)$ has exactly one nontrivial ideal, $\mathcal{K}(H)$. $\mathcal{Q}(H)$ is simple.

Exercise. Suppose that κ is an infinite cardinal. Describe all (two-sided, norm-closed, proper, nontrivial) ideals of $\mathcal{B}(H) \not\subset \mathcal{L}_{\mathcal{I}}(\mathcal{K})$ (Hint: If $\kappa = \aleph_n$, the *n*-th infinite cardinal, then there are n + 1 such ideals. Counting starts at 0, i.e., \aleph_0 is the smallest infinite cardinal.)

 $\|(G_n)\| = (\Sigma \|G_n\|^2)^{1/2}$

Lemma 12.1.3 $\mathcal{B}(H)$ is isomorphic to a C^{*}-subalgebra of $\mathcal{Q}(H)$. Therefore every separable C^* -algebra is isomorphic to a C^* -subalgebra of $\mathcal{Q}(H)$. e chly Conjo, $H \cong \bigoplus H \qquad H \otimes l_2(N)$ $B(H) \subseteq \prod_{x \in Y} B(H) \subseteq B(DH)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Lemma ℓ_{∞} embeds into $\mathcal{B}(H)$.

Lemma ℓ_{∞} embeds into $\mathcal{B}(H)$. ℓ_{∞}/c_0 embeds into $\mathcal{Q}(H)$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

Lemma ℓ_{∞} embeds into $\mathcal{B}(H)$. ℓ_{∞}/c_0 embeds into $\mathcal{Q}(H)$.

A bit of rambling: $\mathcal{B}(H)$: quantization of each one of ℓ_{∞} , $\mathcal{P}(\mathbb{N})$, and $\beta\mathbb{N}$.

Lemma ℓ_{∞} embeds into $\mathcal{B}(H)$. ℓ_{∞}/c_0 embeds into $\mathcal{Q}(H)$.

A bit of rambling:

 $\mathcal{B}(H)$: quantization of each one of ℓ_{∞} , $\mathcal{P}(\mathbb{N})$, and $\beta \mathbb{N}$. $\mathcal{Q}(H)$: quantization of each one of ℓ_{∞}/c_0 , $\mathcal{P}(\mathbb{N})/Fin$, and $\beta \mathbb{N} \setminus \mathbb{N}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Lemma

There is a family X_r , $r \in \mathbb{R}$, infinite subsets of \mathbb{N} such that $X_r \cap X_s$ is finite for all $r \neq s$.

 $r \in \mathbb{R} \setminus \mathbb{Q}$ $X_{r} \leq Q$

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

X. -シレ

Lemma

There is a family X_r , $r \in \mathbb{R}$, of infinite subsets of \mathbb{N} such that $X_r \cap X_s$ is finite for all $r \neq s$.

Lemma

 $X \leq \mathcal{N}$

$$n \ell_{\infty}/c_0.$$

$$l_{\infty}/c_{o}$$

 \mathcal{X}_{χ}

The *density character* $\chi(X)$ of a topological space X is the minimal cardinality of a dense subset.

Example

 $\chi(X) \leq \aleph_0$ if and only if X is separable. $\chi(\mathcal{B}(H)) = \mathfrak{c} \ (\mathfrak{c} := 2^{\aleph_0}$, the cardinality of \mathbb{C} .) The *density character* $\chi(X)$ of a topological space X is the minimal cardinality of a dense subset.

Example

 $\chi(X) \leq \aleph_0$ if and only if X is separable. $\chi(\mathcal{B}(H)) = \mathfrak{c} \ (\mathfrak{c} := 2^{\aleph_0}$, the cardinality of \mathbb{C} .)

Prop 12.1.4 The Calkin algebra Q(H) has density character \mathfrak{c} . It has a representation on a Hilbert space K if and only if the density character of K is at least \mathfrak{c} .

Def Proj(A) is the poset of projections in A.

$$\langle P \in A | P = P^{*}, P = P^{2} \rangle$$

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 > < ⊙ < ⊙

<□> <□> <□> <□> <=> <=> <=> <=> <<

Def Proj(A) is the poset of projections in A.

Fact.
$$Proj(A) \subseteq A_+$$
. $p \leq q$ iff $pq = p$.

Def Proj(A) is the poset of projections in A.

Fact.
$$Proj(A) \subseteq A_+$$
. $p \leq q$ iff $pq = p$.

Fact. If $a \in \mathcal{B}(H)$, then p is a projection if and only if there is a closed subspace K of H such that p is the orthogonal projection to K.

Fact. $Proj(\mathcal{B}(H))$ is a lattice.

PAE PVE

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Def Proj(A) is the poset of projections in A.

Fact. $Proj(A) \subseteq A_+$. $p \leq q$ iff pq = p.

Fact. If $a \in \mathcal{B}(H)$, then p is a projection if and only if there is a closed subspace K of H such that p is the orthogonal projection to K.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Fact. $Proj(\mathcal{B}(H))$ is a lattice.

 $\underbrace{\frac{\text{Prop (Weaver)}}{\text{(For a proof see Proposition 13.3.3.)}} The poset <math>\operatorname{Proj}(\mathcal{Q}(H))$ is not a lattice.

Lemma 12.2.5 Assume p_n , for $n \in \mathbb{N}$, is a decreasing sequence of projections in $\mathcal{Q}(H)$. Then there is a nonzero projection p in $\mathcal{Q}(H)$ such that $p \leq p_n$ for all n. Therefore there exists a transfinite, uncountable, decreasing 'sequence' of projections in $\mathcal{Q}(H)$.

. p B (14/ Q(H) TT: B(H) - Q(H) - Evotient Incl Lelyna lEQ(HI, Projection then FPEB(H), Projection, TT(P) =P. $a \in \mathcal{K}(H) \quad T(a) = P$ 1£ Fix ata* Let (a_i) $TI(C_i) = i^2$ S P(G,) $\overline{II}(G_{i}) \stackrel{\sim}{=} \overline{II}(G_{i})$ [v/ [v/ lo R.(P.H/ Pz P, P in B(H) orthonormal Choose

 $\left(\frac{5}{5}\right)^{\infty}$ in H $P_{u} \stackrel{\diamond}{}_{\Sigma} = \stackrel{\diamond}{}_{\Sigma}$ 44 Рь $\overline{\beta}_{1}$ × چہ -P. (H) P. [H] Z P. [H) K > Sland Sylhens Por = Proin Pa-Pa-Pa EK(H) $p = \pi(\tilde{p}_{\infty})$

AAB

Coronas of σ -unital C*-algebras

Def 1.6.7 (second part) A C*-algebra is σ -unital if it has a countable approximate unit.

Separable $\Rightarrow \sigma$ -unital, but not vice versa.

Coronas of σ -unital C*-algebras

Def 1.6.7 (second part) A C*-algebra is σ -unital if it has a countable approximate unit.

Separable $\Rightarrow \sigma$ -unital, but not vice versa.

Exercise. Every C*-algebra is isomorphic to a subalgebra of a σ -unital C*-algebra.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Example

 $C = Q(H) \quad loo/Co$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Suppose that $C = \mathcal{M}(A)/A$ is the corona of a σ -unital, non-unital, C^* -algebra A. Then the following holds.

1. If A and B are separable C*-subalgebras of C and $A \perp B$ (i.e., $ab = 0 = ab^* = a^*b = a^*b^*$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that ac = a and cb = 0 for all $a \in A$ and $b \in B$.

Some unrelated (?) facts A = K H A

Suppose that $C = \mathcal{M}(A)/A$ is the corona of a σ -unital, non-unital, C^* -algebra A. Then the following holds.

Example

- 1. If A and B are separable C*-subalgebras of C and $A \perp B$ (i.e., $ab = 0 = ab^* = a^*b = a^*b^*$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that ac = a and cb = 0 for all $a \in A$ and $b \in B$.
- 2. For all a_n, b_n , for $n \in \mathbb{N}$, in C_+ satisfying $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$ for all *n* there exists a positive $c \in C$ such that $a_n \leq c \leq b_n$ for all *n*.

$$G_0 \leq Q_1 \leq \dots \leq G_n \leq G_n$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Example

G/c

Suppose that $C = \mathcal{M}(A)/A$ is the corona of a σ -unital, non-unital, C^* -algebra A. Then the following holds.

- 1. If A and B are separable C^* -subalgebras of C and $A \perp B$ (i.e., $ab = 0 = ab^* = a^*b = a^*b^*$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that ac = a and cb = 0 for all $a \in A$ and $b \in B$.
- 2. For all a_n, b_n , for $n \in \mathbb{N}$, in C_+ satisfying $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$ for all *n* there exists a positive $c \in C$ such that $a_n \leq c \leq b_n$ for all *n*.
- 3. For every sequence a_n , $n \in \mathbb{N}$, in $C_{+,1}$ such that $a_n a_{n+1} = a_{n+1}$ for all n there exists $a \in C_{+,1}$ such that $a_n a = a$ for all n. ~ ~ Gu +1 << Qy

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少♀?

Example

Suppose that $C = \mathcal{M}(A)/A$ is the corona of a σ -unital, non-unital, C^{*}-algebra A. Then the following holds.

- 1. If A and B are separable C*-subalgebras of C and $A \perp B$ (i.e., $ab = 0 = ab^* = a^*b = a^*b^*$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that ac = a and cb = 0 for all $a \in A$ and $b \in B$.
- 2. For all a_n, b_n , for $n \in \mathbb{N}$, in C_+ satisfying $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$ for all *n* there exists a positive $c \in C$ such that $a_n \leq c \leq b_n$ for all *n*.
- 3. For every sequence a_n , $n \in \mathbb{N}$, in $C_{+,1}$ such that $a_n a_{n+1} = a_{n+1}$ for all n there exists $a \in C_{+,1}$ such that $a_n a = a$ for all n.

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ● ● ● ●

4. If $a \in C_+$ and $0 \in \operatorname{sp}(a)$ then $a^{\perp} \cap C \neq \{0\}$. $i = \int \int da = a = 0$

Example

Suppose that $C = \mathcal{M}(A)/A$ is the corona of a σ -unital, non-unital, C^* -algebra A. Then the following holds.

- If A and B are separable C*-subalgebras of C and A ⊥ B (i.e., ab = 0 = ab* = a*b = a*b* for all a ∈ A and b ∈ B) then there exists c ∈ C such that ac = a and cb = 0 for all a ∈ A and b ∈ B.
 For all a_n, b_n, for n ∈ N, in C₊ satisfying a_n ≤ a_{n+1} ≤ b_{n+1} ≤ b_n for all n there exists a positive c ∈ C such that a_n < c < b_n for all n.
 - 3. For every sequence a_n , $n \in \mathbb{N}$, in $C_{+,1}$ such that $a_n a_{n+1} = a_{n+1}$ for all n there exists $a \in C_{+,1}$ such that $a_n a = a$ for all n.
 - 4. If $a \in C_+$ and $0 \in \operatorname{sp}(a)$ then $a^{\perp} \cap C \neq \{0\}$.

5. Suppose a_n, b_n , for $n \in \mathbb{N}$, are in C_+ and $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$ for all n. Furthermore suppose $D \leq C$ is separable and $\lim_n \|[a_n, d]\| = 0$ for every $d \in D$. Then there exists $C \in D' \cap C_+$ such that $a_n \leq c \leq b_n$ for all n.

Def (commutator) $[a, b] := \underline{ab - ba}$. (relative commutant) If $D \leq C$, then $D' \cap C := \{c \in C | [c, d] = 0\}$.

A unified framework for the facts from the previous slide Taking the syntax seriously will pay off...just bear with me.

A unified framework for the facts from the previous slide Taking the syntax seriously will pay off... just bear with me. Def 15.1.1 A degree-1 condition over a C*-algebra C is an expression of the form $||a_0xa_1 + a_2xa_3 + a|| = r$ (1) with the coefficients in C and $r \in \mathbb{R}_+$. The condition ||P(x)|| = r is satisfied in C by b if ||P(b)|| = r.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

A unified framework for the facts from the previous slide Taking the syntax seriously will pay off. . . just bear with me. Def 15.1.1 A degree-1 condition over a C*-algebra C is an

expression of the form

$$||a_0xa_1 + a_2x * a_3 + a|| = r$$
 (1)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

with the coefficients in C and $r \in \mathbb{R}_+$. The condition ||P(x)|| = r is satisfied in C by b if ||P(b)|| = r.

Def 15.1.2 A degree-1 type over C is a set of degree-1 conditions over C. A type t(x) is realized in C if there exists <u>b</u> in the unit ball of C such that every condition in t(x) is satisfied by b. A unified framework for the facts from the previous slide Taking the syntax seriously will pay off. . . just bear with me. Def 15.1.1 A degree-1 condition over a C*-algebra C is an

expression of the form

$$\|a_0 x a_1 + a_2 x * a_3 + a\| = r \tag{1}$$

with the coefficients in C and $r \in \mathbb{R}_+$. The condition ||P(x)|| = r is satisfied in C by b if ||P(b)|| = r.

Def 15.1.2 A degree-1 type over C is a set of degree-1 conditions over C. A type t(x) is realized in C if there exists b in the unit ball of C such that every condition in t(x) is satisfied by b. A type t(x)is approximately realized in C (or satisfiable) if for every finite subset $t_0(x)$ of t(x) and every $\varepsilon > 0$ there exists b in the unit ball of C such that for every condition $||P(\bar{x})|| = r$ in $t_0(\bar{x})$ we have $|||P(b)|| - r| < \varepsilon$. Such b is a partial realization of t(x).

(All this can be defined for types in *n* variables for $n \leq \aleph_0$.)

1. If A and B are separable C*-subalgebras of C and $A \perp B$ (i.e., $ab = 0 = ab^* = a^*b = a^*b^*$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that ac = a and cb = 0 for all $a \in A$ and $b \in B$.

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필 _ .

JQ (~

1. If A and B are separable C^* -subalgebras of C and $A \perp B$ (i.e., $ab = 0 = ab^* = a^*b = a^*b^*$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that ac = a and cb = 0 for all $a \in A$ and $b \in B$. 2. For all a_n, b_n , for $n \in \mathbb{N}$, in C_+ satisfying $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$ for all *n* there exists a positive $c \in C$ such that $a_n \leq c \leq b_n$ for all *n*.

- 1. If A and B are separable C*-subalgebras of C and $A \perp B$ (i.e., $ab = 0 = ab^* = a^*b = a^*b^*$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that ac = a and cb = 0 for all $a \in A$ and $b \in B$.
- 2. For all a_n, b_n , for $n \in \mathbb{N}$, in C_+ satisfying $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$ for all *n* there exists a positive $c \in C$ such that $a_n \leq c \leq b_n$ for all *n*.
- 3. For every sequence a_n , $n \in \mathbb{N}$, in $C_{+,1}$ such that $a_n a_{n+1} = a_{n+1}$ for all *n* there exists $a \in C_{+,1}$ such that $a_n a = a$ for all *n*.

$$\begin{aligned} \|\mathbf{q}_{\mathbf{x}} \times - \mathbf{x}\| &= \mathbf{0} \\ \|\mathbf{x}\| &= \mathbf{0} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ∽000

- 1. If A and B are separable C*-subalgebras of C and $A \perp B$ (i.e., $ab = 0 = ab^* = a^*b = a^*b^*$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that ac = a and cb = 0 for all $a \in A$ and $b \in B$.
- 2. For all a_n, b_n , for $n \in \mathbb{N}$, in C_+ satisfying $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$ for all *n* there exists a positive $c \in C$ such that $a_n \leq c \leq b_n$ for all *n*.
- 3. For every sequence a_n , $n \in \mathbb{N}$, in $C_{+,1}$ such that $a_n a_{n+1} = a_{n+1}$ for all *n* there exists $a \in C_{+,1}$ such that $a_n a = a$ for all *n*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ∽000

4. If $a \in C_+$ and $0 \in \operatorname{sp}(a)$ then $a^{\perp} \cap C \neq \{0\}$.

- 1. If A and B are separable C*-subalgebras of C and $A \perp B$ (i.e., $ab = 0 = ab^* = a^*b = a^*b^*$ for all $a \in A$ and $b \in B$) then there exists $c \in C$ such that ac = a and cb = 0 for all $a \in A$ and $b \in B$.
- 2. For all a_n, b_n , for $n \in \mathbb{N}$, in C_+ satisfying $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$ for all *n* there exists a positive $c \in C$ such that $a_n \leq c \leq b_n$ for all *n*.
- 3. For every sequence a_n , $n \in \mathbb{N}$, in $C_{+,1}$ such that $a_n a_{n+1} = a_{n+1}$ for all *n* there exists $a \in C_{+,1}$ such that $a_n a = a$ for all *n*.
- 4. If $a \in C_+$ and $0 \in \operatorname{sp}(a)$ then $a^{\perp} \cap C \neq \{0\}$.
- 5. Suppose a_n, b_n , for $n \in \mathbb{N}$, are in C_+ and $a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$ for all n. Furthermore suppose $D \leq C$ is separable and $\lim_n \|[a_n, d]\| = 0$ for every $d \in D$. Then there exists $c \in D' \cap C_+$ such that $a_n \leq c \leq b_n$ for all n. Q (H/A) Q(H/A) Q(H/A) Q(H/A)

▲□▶▲□▶▲□▶▲□▶ = の�?

 $b \in B(K)$ $\left(\left(1-P_{L}\right)\right) \int \left(1 < \varepsilon\right)$