Massive C*-algebras

llijas Farah

Winter 2021

I'll be posting lecture slides and recordings at
https://ifarah.mathstats.yorku.ca/teachinig/

Last time: We defined the multiplier algebra of a C*-algebra A.
Let's revisit the construction.



Weak topology induced by a family of seminorms

Suppose that X is a topological vector space, N is a family of
seminorms on X, and [F is a filter on X.

== N

1. F converges tox € X, F — x, if forall p €¢ N and all e > 0
we have {y € X|p(x —y) < e} €F.

2. I is Cauchy if for aff p € nd all ¢ > 0 we have Y € IF such

that— y)(< e for all x and y in' Y. Thus

< p(F) := lim p(x) Fﬁ?/

is well-defined for all p. /p K ) a
3. M@te (with respect to the topology induced by N') i

every Cauchy filter on X converges.
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The completion X of X with respect to N is defined in a natural
way—see e.g., Gabriel Nagy's lecture notes

(https: //www.math.ksu.edu/ nagy/func-an-F07-S08.html, lecture
TVS IV.). This is not a time or a place to go over the details of

the construction, but | ought to say a few things.



The completion of an algebra X with respect to N

CF(X): The space of all Cauchy filters on X
(F+ G:={x+y|xe F,y € G}, etc.)

w::{FJrG]FeF,GeG}
FG:={FG|F €F,G € G}
AF := {\F|F € F}

F* = {F*|F € F}
0 = |im @l/l/
) = lim p() g
F ~ G@]FJr 1)G — 0.

X — CF( X)/._)_<l—>{Y§X|XE Y1,

o ———
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Claim F)_(/_z_%is an algebra complete w.r.t.
N={plpeN}.



The completion of an algebra X with respect to N/

CF(X): The space of all Cauchy filters on X
(F+ G:={x+y|xe F,y € G}, etc.)

F+G:={F+G|FeF,GeG}
FG :={FG|F € F,G € G}
AF .= {\F|F € F} /
F* .= {F*|F € F}
p(F) := lim p(x)
x—F
F~G&F+(-1)G —0.
X = CF(X): x—={YCX|xe Y}

Claim X = CF(X)/ ~ is an algebra complete w.r.t. / //]

K= {plo € N} AF

Proof: Use the sets U, ». := {x € X||p(x) — A| < ¢}.
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Strict topology

Def 13.1.1 Suppose A < M. To every h € A we associate two
seminorms on M, \p(b) := ||hb|| and pu(b) := ||bh||. The weak
topology induced by these seminorms is called the A-strict
topology, or just the strict topology if A is clear from the context.



Strict topology

Def 13.1.1 Suppose A < M. To every h € A we associate two
seminorms on M, A\p(b) := ||hb|| and pu(b) := ||bh||. The weak
topology induced by these seminorms is called the A-strict
topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion M(A) of A in the strict topology

Is equipped with a unital C*-algebra structure such that A is an
essential ideal in M(A).
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Strict topology

Def 13.1.1 Suppose A < M. To every h € A we associate two
seminorms on M, A\p(b) := ||hb|| and pu(b) := ||bh||. The weak
topology induced by these seminorms is called the A-strict
topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion M(A) of A in the strict topology
Is equipped with a unital C*-algebra structure such that A is an

essential ideal in M(A).

Proof: In addition to taking the completion as before, we need to
define the norm on M(A). Fix an approximate unit £ for A.
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Strict topology [w()(/

(ag)
Def 13.1.1 Suppose A < M. To every hm\
seminorms on M, A\p(b) := ||hb|| and pu(b) := ||bh||. The weak

topology induced by these seminorms is called the A-strict
topology, or just the strict topology if A is clear from the context.

Is equipped with a unital C*-algebra structure such that A is an
essential ideal in M(A).

T
Lemma 13.1.5 The completion M(A) of A in the strict topology \

Proof: In addition to taking the completion as before, we need to
define the norm on M(A). Fix an approximate unit £ for A.

Claim IfF is a Cauchy filter on A, then sup.c¢ limy_r Ae(x) < 0.
(l.e., F is bounded.)
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@ ZL Strict topology
A A=~ M #

Def 13.1.1 Suppose A < M. To every h € A we associate two
seminorms on M, A\p(b) := ||hb|| and pu(b) := ||bh||. The weak
topology induced by these seminorms is called the A-strict
topology, or just the strict topology if A is clear from the context.

Temma 13.1.5 The completion M(A) of A in the strict topology
Is equipped with a unital C*-algebra structure such that A is an
essential ideal in M(A).

Proof: In addition to taking the completion as before, we need to
define the norm on M(A). Fix an approximate unit £ for A.

Claim IfF is a Cauchy filter on A, then sup.c¢ limy_r Ae(x) < 0.
(l.e., F is bounded.)

If F is bounded, let ||F|| := sup.ce Ae(TF).
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(Continuing the sketch of the proof.) One can prove that this is a
norm on A, that A is a Banach algebra, and that the C*-equality

holds. This is the sort of a proof that should not be presented in

public; I'll post the details.
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(Continuing the sketch of the proof.) One can prove that this is a
norm on A, that A is a Banach algebra, and that the C*-equality

holds. This is the sort of a proof that should not be presented in

public; I'll post the details.

Def 13.1.6 M(A) is the multiplier algebra of A.



Example 13.2.4

1. If X is a locally compact Hausdorff space then
M(Co(X)) = C(BX).

2. M(K(H)) = B(H).

3. If B,, for n € N, are unital C*-algebras, then

M(@n B”) = Hn B”'



Coronas

Def 13.3.1 The corona of a nonunital C*-algebra A is the quotient
Q(A) := M(A)/A.



Coronas

Def 13.3.1 The corona of a nonunital C*-algebra A is the quotient
Q(A) := M(A)/A.

Example

1.
2.

. If J C N is infinite, the corona of B

Q(K(H)) = B(H)/K(H) is the Calkin algebra.

If X is a locally compact Hausdorff space, then N

Q(Go(X)) = C(6X)/Go(X) = C(BX\ X).

If X =N (W|th discrete topology) then Cy(N) = ¢,
C(BM) = /o, and C(BN\ N) = loo/co.

neg Mn(C) is isomorphic

to [[ ey Ma(C)/ D ,,c; Mn(C).
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Coronas

Def 13.3.1 The corona of a nonunital C*-algebra A is the quotient
Q(A) := M(A)/A.

Example

1. Q(K(H)) = B(H)/K(H) is the Calkin algebra.

2. If X is a locally compact Hausdorff space, then
Q(Co(X)) = C(BX)/Co(X) = C(BX\ X).

3. If X =N (with discrete topology) then Cp(N) = ¢y,
C(BM) = l, and C(BN\ N) = /. /co.

4. If ] € N is infinite, the corona of &, .; M,(C) is isomorphic

to [[ ey Ma(C)/ D ey Ma(C).

Exercise. How many nonisomorphic algebras as in (4) can you
find?



The Calkin algebra, B(H)/IC(H)

alkin algebra is associated with the separable,

infinite-dimensional H.

Lemma
B(H) has exactly one nontrivial ideal, IC(H).



The Calkin algebra, B(H)/IC(H)

‘The' Calkin algebra is associated with the separable,
infinite-dimensional H.

Lemma
B(H) has exactly one nontrivial ideal, IC(H).
Q(H) is simple.



The Calkin algebra, B(H)/IC(H)

@alkin algebra is associated with the separable,
infurite-dimensional H.

Lemma
B(H) has exactly one nontrivial ideal, IC(H).
Q(H) is simple.

Exercise. Suppose that « is an infinite cardinal. Describe all ((}é)
(two-sided, norm-closed, proper, nontrivial) ideals of B(H)= A<
(Hint: If K = N,,, the n-th infinite cardinal, then there are n+1

such ideals. Counting starts at 0, i.e., Ng is the smallest infinite
cardinal.)
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Lemma 12.1.3 B(H) is isomorphic to a C*-subalgebra of Q(H).
Therefore every separable C*-algebra is isomorphic to a

C*-subalgebra of Q(H).
subalgebra of Q(H) C/%/)

Hi@iﬁ I/r@fu(bd/
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Lemma 12.1.3 B(H) is isomorphic to a C*-subalgebra of Q(H).
Therefore every separable C*-algebra is isomorphic to a
C*-subalgebra of Q(H).

Lemma /(o embeds into B(H).



Lemma 12.1.3 B(H) is isomorphic to a C*-subalgebra of Q(H).
Therefore every separable C*-algebra is isomorphic to a
C*-subalgebra of Q(H).

Lemma /(o embeds into B(H).

{~/co embeds into Q(H).
=2



Lemma 12.1.3 B(H) is isomorphic to a C*-subalgebra of Q(H).
Therefore every separable C*-algebra is isomorphic to a
C*-subalgebra of Q(H).

Lemma /(o embeds into B(H).
{~/co embeds into Q(H).

A bit of rambling:
B(H): quantization of each one o




Lemma 12.1.3 B(H) is isomorphic to a C*-subalgebra of Q(H).
Therefore every separable C*-algebra is isomorphic to a
C*-subalgebra of Q(H).

Lemma /(o embeds into B(H).
{~/co embeds into Q(H).

A bit of rambling:

B(H): quantization of each one of ¢, P(N), and ON.
Q(H): quantization of each one of ¢, /cy, P(N)/Fin, and SN\ N.




Lemma
There is a family X,, r € R,\ﬁinfinite subsets of N such that

X, N Xs is finite for all r # s. ({(H\///
re o\ e f @ -
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Lemma
There is a family X,, r € R, of infinite subsets of N such that

X, N Xs is finite for all r # s.
——————

Lemma
There is a family of ¢ := 2% orthogonal projections Q U/ Co. )
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The density character x(X) of a topological space X is the
minimal cardinality of a dense subset.

Example

X(X) < N if and only if X is separable.
x(B(H)) = ¢ (¢ := 2%, the cardinality of C.)



The density character x(X) of a topological space X is the
minimal cardinality of a dense subset.

Example

X(X) < N if and only if X is separable.
x(B(H)) = ¢ (¢ := 2%, the cardinality of C.)

Prop 12.1.4 The Calkin algebra Q(H) has density character c. It
has a representation on a Hilbert space K if and only if the density
character of K is at least c.



Projections in coronas

Def Proj(A) is the poset of projections in A.
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Projections in coronas

Def Proj(A) is the poset of projections in A.

Fact. Proj(A) C A.. p < q iff pg = p.
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Projections in coronas

Def Proj(A) is the poset of projections in A.
Fact. Proj(A) C A.. p < q iff pg = p.

Fact. If a € B(H), then p is a projection if and only if there is a
closed subspace K of H such that p is the orthogonal projection
to K.

Fact. Proj(B(H)) is  lattice. r A ¢ (7 Vg




Projections in coronas

Def Proj(A) is the poset of projections in A.
Fact. Proj(A) C A.. p < q iff pg = p.

Fact. If a € B(H), then p is a projection if and only if there is a

closed subspace K of H such that p is the orthogonal projection
to K.

Fact. Proj(B(H)) is a lattice.

Prop (Weaver) The poset Proj(Q(H)) is not a lattice.

(For a proof see Proposition 13.3.3.)

—_



Lemma 12.2.5 Assume p,, for n € N, is a decreasing sequence of
projections in Q(H). Then there is a nonzero projection p in Q(H)
such that p < p, for all n. Therefore there exists a transfinite,
uncountable, decreasing ‘sequence’ of projections in Q(H).
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Coronas of o-unital C*-algebras
—2 D
D4 3l 71/
DR
St ) — p (A

Def 1.6.7 (second part) A C*-algebra is o-unital if it has a
countable approximate unit.

Separable = o-unital, but not vice versa.

—



Coronas of o-unital C*-algebras

Def 1.6.7 (second part) A C*-algebra is o-unital if it has a
countable approximate unit.

Separable = o-unital, but not vice versa.

Exercise.Every C*-algebra is isomorphic to a subalgebra of a
o-unital C*-algebra.

=< 2" e,
E. 1/\//—



Some unrelated (7) facts

Example (= () (H/ /gob/a

Suppose that C = M(A)/A is the corona of a o-unital, non-unital,
C*-algebra A. Then the following holds.

1. If A and B are separable C*-subalgebras of C and A L B (i.e,
ab = 0= ab* = a*b = a*b* for all aEAand b e B) then there
exists ¢ € C such that ac = aand cb = 0 forall a € A and b € B.




Some unrelated (7) facts

Example A >K(H/

Suppose that C = M(A)/A is the corona of a o-unital, non-unital,
C*-algebra A. Then the following holds.

1. If A and B are separable C*-subalgebras of C and A L B (i.e.,
ab= 0= ab* = a*b = a*b* for all a € A and b € B) then there
exists ¢ € C such that ac =aand cb=0forallac Aand b € B.

2. For all a,, b,, for n € N, in C+ satisfying a, < ap11 < b,11 < b, for
all n there exists a positive ¢ € C such that 3 < ¢ < b, for all n.
S

<a < §L/§éo
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Some unrelated (7) facts

Example

Suppose that C = M(A)/A is the corona of a o-unital, non-unital,
C*-algebra A. Then the following holds.

1. If A and B are separable C*-subalgebras of C and A L B (i.e.,
ab= 0= ab* = a*b = a*b* for all a € A and b € B) then there
exists ¢ € C such that ac=aand cb=0for all a€ A and b € B.

2. For all a,, b, for n € N, in C, satisfying a, < a,11 < bpr1 < b, for
all n there exists a positive ¢ € C such that a, < ¢ < b, for all n.

V& For every sequence ap, n € N, in Cy 7 such that apa,1 = apyq for all n there exists a € C 1 such that

apa = a for all n. S
L =< <~ Gy <S4




Some unrelated (7) facts

Example

Suppose that C = M(A)/A is the corona of a o-unital, non-unital,
C*-algebra A. Then the following holds.

1. If A and B are separable C*-subalgebras of C and A L B (i.e.,
ab= 0= ab* = a*b = a*b* for all a € A and b € B) then there
exists ¢ € C such that ac =aand cb=0forallac Aand b € B.

2. For all a,, b, for n € N, in C, satisfying a, < a,11 < bpr1 < b, for
all n there exists a positive ¢ € C such that a, < ¢ < b, for all n.

3. For every sequence ap, n € N, in C; 7 such that apa,1 = apyq for all n there exists a € C 1 such that
apa = a for all n.

4. Ifa € Cy and 0 € sp(a) then a= N C # {0}.
O
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Some unrelated (7) facts

Example
Suppose that C = M(A)/A is the corona of a o-unital, non-unital,
C*-algebra A. Then the following holds.

1. If A and B are separable C*-subalgebras of C and A L B (i.e.,
ab= 0= ab* = a*b = a*b* for all a € A and b € B) then there
exists ¢ € C such that ac =aand cb =0 for all a€ Aand b € B.
For all a,, b,, for n € N, in Cy satisfying a, < ap11 < byy1 < b, for
all n there exists a positive ¢ € C such that a, < ¢ < b, for all n.

3. For every sequence ap, n € N, in C; 7 such that apa,1 = apyq for all n there exists a € C 1 such that
apa = a for all n.

4. Ifa € Cy and 0 € sp(a) then a= N C # {0}.

@ Suppose ap, by, for n € N, are in C4 and ay < apy1 < bpg1 < by for all n. Furthermore suppose
D < Cis separable and lim, |[[an, d]|| = O for every d € D. Then there exists €} D’ N Cy such that
ap < c < b, forall n. m —m —

_— k)—l g D
-

Def (commutator) [a, b] := ab — ba.

(relative commutant) If D < C, then e

D'N C :={c € Cl|[c,d] = 0}.




A unified framework for the facts from the previous slide
Taking the syntax seriously will pay off. .. just bear with me.



A unified framework for the facts from the previous slide

Taking the syntax seriously will pay off. .. just bear with me. C C
Def 15.1.1 A degree-1 condition over a C*-algebra C is an

ession of the form
expressi r Y //@@//
\@oxa1 + ax)e a3z Hal| = r (1)

e E—— 7
/

with the coefficients in C and r € R..
The condition |P(x)|| = r is satisfied in C by b if ||P(b)| = r.
—




A unified framework for the facts from the previous slide
Taking the syntax seriously will pay off. .. just bear with me.

Def 15.1.1 A degree-1 condition over a C*-algebra C is an
expression of the form

|agxa1 + axx x a3+ al| = r (1)

with the coefficients in C and r € R..
The condition ||P(x)|| = r is satisfied in C by b if ||P(b)|| = r.

Def 15.1.2 A degree-1 type over C is a set of degree-1 conditions
over C. A type t(x) is realized in C if there exists b in the unit ball
of C such that every condition in t(x) is satisfied by b.

"




A unified framework for the facts from the previous slide
Taking the syntax seriously will pay off. .. just bear with me.

Def 15.1.1 A degree-1 condition over a C*-algebra C is an
expression of the form

|apxa; + axx x a3+ al| =r (1)

with the coefficients in C and r € R..
The condition ||P(x)|| = r is satisfied in C by b if ||P(b)|| = r.

Def 15.1.2 A degree-1 type over C is a set of degree-1 conditions
over C. A type t(x) is realized in C if there exists b in the unit ball
of C such that every condition in t(x) is satisfied by b. A type t(x)
is approximately realized in C (or satisfiable) if for every finite
subset tg(x) of t(x) and every € > 0 there exists b in the unit ball
of C such that for every condition |P(X)|| = r in to(X) we have
||P(b)|| — r| < €. Such b is a partial realization of t(x).

(All this can be defined for types in n variables for n < Ng.)



Each of these examples asserts that a certain type is
realized

1. If A and B are separable C*-subalgebras of C and A L B (i.e.,
ab= 0= ab* = a*b = a*b* for all a € A and b € B) then there
exists ¢ € C such that ac =aand cb=0 for alla€ Aand b € B.

————— —— pe—

a €4y A, A4
L« ° © e
“ e b, e

d.cy



Each of these examples asserts that a certain type is
realized

1. If A and B are separable C*-subalgebras of C and A L B (i.e.,
ab= 0= ab* = a*b = a*b* for all a € A and b € B) then there
exists ¢ € C such that ac =aand cb=0for allac€ Aand b € B.

(\ 2. For all a,, b, for n € N, in C, satisfying a, < a,11 < bpi1 < b, for

all n there exists a positive ¢ € C such that a, < ¢ < b, for all n.
-
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Each of these examples asserts that a certain type is
realized

1. If A and B are separable C*-subalgebras of C and A L B (i.e.,
ab= 0= ab* = a*b = a*b* for all a € A and b € B) then there
exists ¢ € C such that ac =aand cb=0for allac€ Aand b € B.

2. For all a,, b, for n € N, in C, satisfying a, < a,11 < bpi1 < b, for
all n there exists a positive ¢ € C such that a, < ¢ < b, for all n.

3. For every sequence a,, n € N, in C, ; such that a,any1 = apy1 for

all n there exists a € C, 1 such that a,a = a for all n.
ﬁ —
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Each of these examples asserts that a certain type is
realized

1. If A and B are separable C*-subalgebras of C and A L B (i.e.,
ab= 0= ab* = a*b = a*b* for all a € A and b € B) then there
exists ¢ € C such that ac=aand cb=0for alla€ A and b € B.

2. For all a,, b, for n € N, in C, satisfying a, < a,11 < bpi1 < b, for
all n there exists a positive ¢ € C such that a, < ¢ < b, for all n.

3. For every sequence a,, n € N, in C, ; such that a,any1 = apy1 for
all n there exists a € C, ; such that a,a = a for all n.

4. If a€ C, and 0 € sp(a) then a+ N C # {0}.
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Each of these examples asserts that a certain type is
realized

1. If A and B are separable C*-subalgebras of C and A L B (i.e.,
ab= 0= ab* = a*b = a*b* for all a € A and b € B) then there
exists ¢ € C such that ac=aand cb=0for alla€ A and b € B.

2. For all a,, b, for n € N, in C, satisfying a, < a,11 < bpi1 < b, for
all n there exists a positive ¢ € C such that a, < ¢ < b, for all n.

3. For every sequence a,, n € N, in C, ; such that a,any1 = apy1 for
all n there exists a € C, ; such that a,a = a for all n.

4. If a€ C, and 0 € sp(a) then a+ N C # {0}.

5. Suppose a,, b,, for n € N, arein C; and a, < a,11 < b,11 < b, for
all n. Furthermore suppose D < C is separable and
lim, ||[an, d]|| = O for every d € D. Then there exists c € D' N C.
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