Massive C^{*}-algebras, Winter 2021, I. Farah, Lecture 17

We are still proving that OCA_T implies all automorphisms of Q(H)are inner (believe it or not!). $\begin{array}{cccc} & & & & \\ & & & & \\ & & & \\ & & & &$ (2) O(AT =) (E,UE) Con be "UNiformited" by a single Unitary.

Today: Audzzin DE

Last time: Meager Subsets of Product Spaces. Suppose D_n , for $n \in \mathbb{N}$, are finite sets. Then for $X \subseteq \mathbb{N}$

$$\mathsf{D}_{\mathsf{X}} := \prod_{n \in \mathsf{X}} \mathsf{D}_n$$

is compact with respect to $d(a, b) = 1/(\min\{n : a_n \neq b_n\} + 1)$. The basic open subsets of $D_{\mathbb{N}}$ have the form $[I, r] := \{a : a \upharpoonright I = r\}$ for some $I \Subset \mathbb{N}$ and $r \in D_I$. Note Dy : a - a AX We'll think of Dx cs c schspar, of Dy: Assume OEDN Identity aEDX with a. wit Last time: Meager Subsets of Product Spaces. Suppose D_n , for $n \in \mathbb{N}$, are finite sets. Then for $X \subseteq \mathbb{N}$

$$\mathsf{D}_{\mathsf{X}} := \prod_{n \in \mathsf{X}} \mathsf{D}_n$$

is compact with respect to $d(a, b) = 1/(\min\{n : a_n \neq b_n\} + 1)$. The basic open subsets of $D_{\mathbb{N}}$ have the form $[I, r] := \{a : a \upharpoonright I = r\}$ for some $I \Subset \mathbb{N}$ and $r \in D_I$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Lemma

Thm 9.9.1 Some $\mathcal{A} \subseteq D_{\mathbb{N}}$ is relatively comeager in $D_{\mathbb{N}}$ if and only if there are disjoint $I(n) \Subset \mathbb{N}$, for $n \in \mathbb{N}$, and $s(n) \in D_{I(n)}$ such that $\bigcap_{m} \bigcup_{n \ge m} [I(n), s(n)] \subseteq \mathcal{A}$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

We will need a classical result from descriptive set theory:

ihrag. Sta

Thm (Jankov, von Neumann), B.2.13 If X and Y are Polish spaces then every analytic $A \subseteq X \times Y$ can be <u>uniformized</u> by a *C*-measurable function.

ot a bord subset of a

E

the gross of f E A (Z(Z') - meosvachle) Each OAudytic set, arc Bairo-measurable (i.e., etvol to En olon sob and meajor). D C-Measurdele =1 Baire-Macaude Eact If X, Y are Pollil. F: X-7 Y is Baive - Mecsvalel, JGEX, dense 65 flG then Continos, i/

Coro 9.9.2 If Y is a second countable space and $f_n: D_{\mathbb{N}} \to Y$, for $n \in \mathbb{N}$, are Baire-measurable, then there are infinite $X \subseteq \mathbb{N}$ and $b \in D_{\mathbb{N}\setminus X}$ such that the function $g_n \colon D_X \to Y$ defined by $g_n(a) := f_n(a + b)$ is continuous for all $n \in \mathbb{N}$. $(a+4)(u) = \begin{cases} a(u), & u \in X \\ b(u), & u \notin X \end{cases}$ J Jeuse 68, AS such that fild is

(h) S(4)so that AZAU [I(M, S(M)], M NZM [I(M, S(M)], Go to a sulles ence, & that $X := N \setminus (J I(h))$ 6 EPN1x = "Z"s(n) Let Then by -> Y: a -> fr (a+b) is cth, the case a+b EA.

Back to proving that OCA_T implies every $\Phi \in Aut(\mathcal{Q}(H))$ is inner.

$$H = \bigoplus_{i=1}^{\infty} SICn \left\{ \frac{s_i}{i} \right\} i \in E_n \left\{ \left(l_2 - S_V L_n \right) \right\}$$

Back to proving that OCA_T implies every $\Phi \in Aut(\mathcal{Q}(H))$ is inner. Fix a separable Hilbert space H with an orthonormal basis (ξ_n) , $\Phi \in Aut(\mathcal{Q}(H))$, and a lifting Φ_* such that $\Phi_*(p)$ is a projection if p is a projection and $\|\Phi_*(a)\| \leq \|a\|$ for all a.

Def 17.4.1 If $E \in Part_{\mathbb{N}}$ and $X \subseteq \mathbb{N}$ then let $p_X^E := \operatorname{proj}_{\overline{\operatorname{span}}\{\xi_i : i \in \bigcup_{n \in X} E_n\}}$ and $q_X^E := \Phi_*(p_X^E)$. Also let

 $\mathcal{D}_{\mathsf{X}}[\mathsf{E}] := p_{\mathsf{X}}^{\mathsf{E}} \mathcal{D}[\mathsf{E}] p_{\mathsf{X}}^{\mathsf{E}}.$

Def 17.4.2 Let $A(n) := \mathcal{D}_{\{n\}}[E]$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

Def 17.4.2 Let $A(n) := \mathcal{D}_{\{n\}}[E]$. Then $A(n) \cong M_m(\mathbb{C})$ with $m = |E_n|$. Let D(n) be a finite, 2^{-n} -dense, subset of the unit ball of A(n) such that $\{0,1\} \subseteq D(n)$ and $D(n) \cap U(A(n))$ is 2^{-n} -dense in U(A(n)).

Def 17.4.2 Let $A(n) := \mathcal{D}_{\{n\}}[E]$. Then $A(n) \cong M_m(\mathbb{C})$ with $m = |E_n|$. Let D(n) be a finite, 2^{-n} -dense, subset of the unit ball of A(n) such that $\{0,1\} \subseteq D(n)$ and $D(n) \cap U(A(n))$ is 2^{-n} -dense in U(A(n)). Fix an infinite $X \subseteq \mathbb{N}$ and let $D[E] := \prod_n D(n)$ and $D_X[E] := \prod_{m \in X} D(m)$. $V_X[E] \subseteq O[E]$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少♀?

Def 17.4.2 Let $A(n) := \mathcal{D}_{\{n\}}[E]$. Then $A(n) \cong M_m(\mathbb{C})$ with $m = |E_n|$. Let D(n) be a finite, 2^{-n} -dense, subset of the unit ball of A(n) such that $\{0,1\} \subseteq D(n)$ and $D(n) \cap U(A(n))$ is 2^{-n} -dense in U(A(n)). Fix an infinite $X \subseteq \mathbb{N}$ and let $D[E] := \prod_n D(n)$ and $D_X[E] := \prod_{m \in X} D(m)$. Then D[E] is a discretization of $\mathcal{D}[E]$ and $D_X[E]$ is a discretization of $\mathcal{D}_X[E]$. For $a \in D$ let $supp(a) := \{n : a(n) \neq 0\}$ and identify $D_X[E]$ with $\{a \in D[E] : supp(a) \subseteq X\}$. \mathcal{D} is a function of $\mathcal{D}[E]$.

Dx is Px[E]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ◇ ◇ ◇

Recoll: WAT on A(H), is crot, La etrizolale. a sulspace $DEEJ \leq B(H), is$ apres with WOT! $(if for for or a for e for the W of Lemma 17.4.3 The relation <math>\approx_{\varepsilon}^{\mathcal{K}}$ on $\mathcal{B}(H)_{\leq 1}$ defined by $x \approx_{\varepsilon}^{\mathcal{K}} y$ if $\|\pi(x-y)\| \leq \varepsilon$ is Borel in the weak operator topology for $\varepsilon \geq 0$. PE Fix (Vn) anvox. Unit of K(H) consisting of Morection. $\| T(x) \| = \lim_{n \to \infty} \| (|(1 - r_n) x \|)$ ILen = inf 11 (1-Va) X/ Fach SX (X//21) i WOT-OPPY

 $|x| ||x|| \leq v$ is that - closed. $\|\pi(x-y)\| < \varepsilon \leq \exists M \|((1-V_m)(x-y)\| < \varepsilon$ $\|T(X-Y)\| \leq \epsilon \leq 45$ $\|T(X-Y)\| \leq \epsilon \leq 45$

Lemma 17.4.3 (The relation $\approx_{\varepsilon}^{\mathcal{K}}$ on $\mathcal{B}(H)_{\leq 1}$ defined by $x \approx_{\varepsilon}^{\mathcal{K}} y$ if $\|\pi(x-y)\| \leq \varepsilon$ is Borel in the weak operator topology for $\varepsilon \geq 0$. Def 17.4.4 A function $\Theta: D_{X}[E] \to \mathcal{B}(H)_{\leq 1}$ is an ε -approximation of Φ on D_{X} if $\Theta(a) \approx_{\varepsilon}^{\mathcal{K}} \Phi_{*}(a)$ for all $a \in D_{X}$. ($\varepsilon \gg 0$) $\mathcal{O} - \alpha \bigwedge \mathcal{O} \times \mathcal{O}$ ($\varepsilon \gg 0$)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > < ○ < ○

 $(DEE) \rightarrow (B(H/_{\leq}))$

Lemma 17.4.5 If $E \in Part_{\mathbb{N}}$ and an endomorphism of $\mathcal{Q}(H)$ has a *C*-measurable ε -approximation on D[E] for every $\varepsilon > 0$, then it has a continuous lifting on $D_{Y}[E]$ for some infinite $Y \subseteq \mathbb{N}$.

If let fu be a C-measurable 1 - allrox on D(E), u>1. infilestilles a = A = Daa Fill X S N

belvix sich that $g_n(a) = f_n(a+b)$, for $a \in D_X$ ctus, Hu, i) Let $\mathcal{L}:=\mathcal{L}_{x}^{E}\left(=\phi_{x}\left(P_{x}^{E}\right)\right)$ $\widetilde{\mathcal{J}}_{\alpha}(\alpha) := \mathcal{L}_{X}^{E} \mathcal{J}_{\alpha}(\alpha) \mathcal{L}_{X}^{E}$ Then Qui - allox. of \$ 0. ĺ, η_X . $(\phi(a) = \sum_{x}^{E} \phi(a+b) \hat{S}_{x}^{E}$ $(\dot{a} = P_{\chi}^{E}(\dot{a} + \dot{b})P_{\chi}^{E})$ ct. Cnd $A = \left\{ \left(\begin{array}{c} Q, C \\ \end{array} \right) \in \left[\begin{array}{c} C \\ \end{array} \right] \times \left[C \\ \end{array} \right] \times \left[\begin{array}{c} C \\ \end{array} \bigg] \times \left[\begin{array}{c} C \\ \end{array} \bigg] \times \left[\begin{array}{c} C \\ \end{array} \right] \times \left[\begin{array}{c} C \\ \end{array} \bigg] \times \left[\begin{array}{c} C \\ \end{array}] \times \left[C \\ \end{array}] \times \left[\begin{array}{c} C \\ \end{array}] \times \left[C \\ \end{array}] \times \left[\begin{array}{c} C \\ \end{array}] \times \left[C \\ \end{array}] \times \left[C \\$ Lef ber S. Theu: 1 A is Borol. 2 #aelx, $(a(\phi_{*}(a)) \in A$

 $(3) \ \forall C \in \mathbb{P}(H_{\leq 1}, (G, C) \in A)$ =) $C - \phi_{\star}(c) \in K(H)$ By J-VN, find h: Dx -> B(H)=, C-mecsvadele and (C, L(O)) EA Haelly, Firl YSX, JENY s flot a -> h(a+d), a EDy is ctus. Then TLON $a \rightarrow \mathcal{E}_{y}^{E}h(a+d)\mathcal{E}_{y}^{E}$ c ctus lifting of p Ù 04 14

$(\Xi \text{ is the capital } \xi.)$

Def 17.4.6 A function $\Xi: D \to \mathcal{B}(H)_{\leq 1}$ is of a product type if there are orthogonal projections $r_n \in \mathcal{B}(H)$ and $\Xi_n: D(n) \to r_n(\mathcal{B}(H)_{\leq 1})r_n$ for $n \in \mathbb{N}$ such that (with the SOT-convergent series) $\Xi(a) = \sum_n \Xi_n(a_n)$ for all $a \in D$.

$$\begin{split} D &\cong \bigcap_{n} O(n) \\ D(n) &= \sum_{n} Y_{n} B(H)_{\varepsilon} Y_{n} \\ D(n) &= \sum_{n} \bigcap_{n} Y_{n} B(H)_{\varepsilon} Y_{n} CB(H)_{\varepsilon} \\ D &= \bigcap_{n} D(n) = \sum_{n} \bigcap_{n} Y_{n} B(H)_{\varepsilon} Y_{n} CB(H)_{\varepsilon} \end{split}$$

$(\Xi \text{ is the capital } \xi.)$

Def 17.4.6 A function $\Xi: D \to \mathcal{B}(H)_{\leq 1}$ is of a product type if there are orthogonal projections $r_n \in \mathcal{B}(H)$ and $\Xi_n: D(n) \to r_n(\mathcal{B}(H)_{\leq 1})r_n$ for $n \in \mathbb{N}$ such that (with the SOT-convergent series) $\Xi(a) = \sum_n \Xi_n(a_n)$ for all $a \in D$.

Lemma 17.4.7 Suppose $E \in Part_{\mathbb{N}}$ and that D[E] and D'[E] are two discretizations of $\mathcal{D}[E]$.

1. There exists a continuous function of product type $\Theta: D[E] \rightarrow D'[E]$ such that $x - \Theta(x) \in \mathcal{K}(H)$ for all x.

2. If Example Φ is an endomorphism of Q(H), then Φ has a continuous lifting on some discretization of $\mathcal{D}[E]$ if and only if it has a continuous lifting on every discretization of $\mathcal{D}[E]$.

U D = D(u) D' = DD'(u)Let $\overline{\Theta}_{n}: \overline{P}(u) \rightarrow \overline{P}(u)$ so that $\|\overline{\Theta}_{n}(x) - x\| \leq 2^{-u}$ Then $D((X_n)) = \sum_{u} D_u(X_n)$ $X - \Theta(X) \in K(H), HXFD$) O os in 1 U <u>ctus</u> composition u ctus.

The proof of the following lemma uses the method of stabilizers (Shelah, Just, Veličković, F.).

Lemma 17.4.8 If Φ has a continuous lifting Θ on D[E] for some $E \in Part_{\mathbb{N}}$, then it has a lifting of product type on $D_X[E]$ for some infinite $X \subseteq \mathbb{N}$.

The proof of the following lemma uses the method of stabilizers (Shelah, Just, Veličkoviś, F.).

Lemma 17.4.8 If Φ has a continuous lifting Θ on D[E] for some $E \in Part_{\mathbb{N}}$, then it has a lifting of product type on $D_X[E]$ for some infinite $X \subseteq \mathbb{N}$.

Proof: Recursively find an increasing sequence $(n(j))_j$, $s(j) \in D_{(n(j),n(j+1))}$ (with n(0) := 0), and an increasing sequence of finite-rank projections $(r_j)_j$ so that for all j, all a and b in $D_{[0,n(j)]}$, and all c and d in $D_{[n(j+1),\infty)}$:

The proof of the following lemma uses the method of stabilizers (Shelah, Just, Veličkoviś, F.).

Lemma 17.4.8 If Φ has a continuous lifting Θ on D[E] for some $E \in Part_{\mathbb{N}}$, then it has a lifting of product type on $D_X[E]$ for some infinite $X \subseteq \mathbb{N}$.

Proof: Recursively find an increasing sequence $(n(j))_j$, $s(j) \in D_{(n(j),n(j+1))}$ (with n(0) := 0), and an increasing sequence of finite-rank projections $(r_j)_j$ so that for all j, all a and b in $D_{[0,n(j)]}$, and all c and d in $D_{[n(j+1),\infty)}$:

- 1. $\|(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))(1-r_j)\| \leq 2^{-j}$,
- 2. $\|(1-r_j)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\| \leq 2^{-j}$,

The proof of the following lemma uses the method of stabilizers (Shelah, Just, Veličkoviś, F.).

Lemma 17.4.8 If Φ has a continuous lifting Θ on D[E] for some $E \in Part_{\mathbb{N}}$, then it has a lifting of product type on $D_X[E]$ for some infinite $X \subseteq \mathbb{N}$.

Proof: Recursively find an increasing sequence $(n(j))_i$, $s(j) \in D_{(n(j),n(j+1))}$ (with n(0) := 0), and an increasing sequence of finite-rank projections $(r_i)_i$ so that for all j, all a and b in $D_{[0,n(j)]}$, and all c and d in $D_{[n(j+1),\infty)}$: $(\Theta(a+s(j)+c) - \Theta(b+s(j)+c))(1-r_j) \| \leq 2^{-j}$ $\|(1-r_j)(\Theta(a+s(j)+c)-\Theta(b+s(j)+c))\| \not\leq 2^{-j},$ 3. $\|(\Theta(a+s(j)+c)-\Theta(a+s(j)+d))r_j\| \leq 2^{-j}$, $\|r_j(\Theta(a+s(j)+\mathbf{c})-\Theta(a+s(j)+\mathbf{d}))\| \leq 2^{-j}.$ ロト (局) (言) (言) (言) のへで

u(i), i = k, s(i), i = k, i = k, S. (u (kr.) $V_{\mu} \in V_{\mu}^{\prime\prime} \leq$ a, 4 € (0+5) \$ h + (4+5) X = (u(i))/iENDx 70 -> O(ar Ese))