Massive C*-algebras, Winter 2021, |. Farah, Lecture 17

We are still proving that OCAT implies all automorphisms of Q(H)
are inner (believe it or not!).
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Last time: Meager Subsets of Product Spaces.
Suppose D, for n € N, are finite sets. Then for X C N

Dy ;:HD,,

neX

is compact with respect to d(a, b) = 1/(min{n: a, # b,} + 1).
The basic open subsets of Dy have the form
[I,r]:={a:a[l=r} forsome ! €N and r e Dy.
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Last time: Meager Subsets of Product Spaces.
Suppose Dy, for n € N, are finite sets. Then for X C N

Dy ;:HD,,

neX

is compact with respect to d(a, b) = 1/(min{n: a, # b,} + 1).
The basic open subsets of Dy have the form
[I,r]:={a:a[l=r} forsome ! €N and r e Dy.
Lemma

1. INnJ =0 implies[I,r]N[J,s] = [l U J, rs| where

(rs)(i) =r(i) ifi €l and (rs)(i) = s(i) ifi € J.
2. 1N J =0 implies [I,r]N[J,s] # 0.
3. [I,r] 2[J,s] ifand only if | C JandsN | =r.



Thm 9.9.1 Some A C Dy is relatively comeager in Dy if and only
if there are disjoint I(n) €N, for n € N, and s(n) € Dy, such

that My Upz ml!/ (1), s(n)] € A.



We will need a classical result from descriptive set theory:

Thm (Jankov, von Neumann), B.2.13 [f X and Y are Polish spaces

then every analytic A C X X Y can be uniformized by a
C-measurable’function.
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Coro 9.9.2 IfY is a second countable space an@DN — Y, for
n € N, are Baire-measurable, then there are infinite X C N and

b € Dn\x such that the function g,: Dx — Y defined by
gn(a) := fo(a + b) is continuous for all n € N.
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Back to proving that OCAt implies every ® € Aut(Q(H)) is inner.
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Back to proving that OCAt implies every ® € Aut(Q(H)) is inner.
Fix a separable Hilbert space H with an orthonormal basis (£,),

¢ € Aut(Q(H)), and a lifting @, such that ®.(p) is a projection if
p is a projection and [[®.(a)|| < ||a]| for all a.

Def 17.4.1 IfE € Party and X C N then let
px = Projspw{g,-:ieunex En} and d.(py)- Also let
—

Dy[E] = PEDIE]6E:

=




Def 17.4.2 Let A(n) := Dy, [E].



,4(&//

Def 17.4.2 Let A(n) := Dy, [E]. Then A(n) = Mp(C) with

m = |E,|. Let D(n) be a finite, 2~"-dense, subset of the unit ball
of A(n) such that {0,1} C D(n) and D(n) N U(A(n)) is 2~ "-dense
in U(A(n)).




Def 17.4.2 Let A(n) := Dy, [E]. Then A(n) = Mp(C) with

m = |E,|. Let D(n) be a finite, 2~ "-dense, subset of the unit ball
of A(n) such that {0,1} C D(n) and D(n) NU(A(n)) is 2~ "-dense
in U(A(n)).

Fix an infinite X C N and let D[E] := ][, D(n) and

Dx[E] := ] ],,ex D(m).



Def 17.4.2 Let A(n) := Dy, [E]. Then A(n) = Mp(C) with

m = |E,|. Let D(n) be a finite, 2~ "-dense, subset of the unit ball
of A(n) such that {0,1} C D(n) and D(n) NU(A(n)) is 2~ "-dense
in U(A(n)).

Fix an infinite X C N and let D[E] := ][, D(n) and

Dx[E] := ] ],,ex D(m).

Then DIE] is a discretization of D[E| and Dx[E]| is a discretization
of Dx[E|. For a € D let supp(a) := {n: a(n) # 0} and identify
Dx[E] with {a € D[E] : supp(a) C X}.
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Lemma 17. 4 3 The relation NK on B(H)<1 defined by x ~X y if

9

|m(x — y)|| < e is Borel in the weak operator topology for e > 0.
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Lemma 17.4.3  The relation =& on B(H)<1 defined by x =X y if
|m(x = y)|| < ¢ is Borel in the weak operator topology for e > 0.

1
Def 17.4.4 A function ©: Dx|E] — B(H)<1 is an e-approximation

of ® on Dx if ©(a) . (a) for all a € Dx. (2 oy
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Lemma 17.4.5 IfE € Party and an endomorphism of Q(H) has a
C-measurable e-approximation oni)_f_] for every € > 0, then it has

a continuous lifting on Dy[E| for some infinite Y C N.
..
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(= is the capital £.)

Def 17.4.6 A function =: D — B(H)<1 is of a product type if
there are orthogonal projections r, € B(H) and

=n: D(n) = ra(B(H)<1)rn for n € N such that (with the
SOT-convergent series) =(a) = > =np(an) for all a € D.
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(= is the capital £.)

Def 17.4.6 A function =: D — B(H)<1 is of a product type if
there are orthogonal projections r, € B(H) and

=n: D(n) = ra(B(H)<1)rn for n € N such that (with the
SOT-convergent series) =(a) = > =np(an) for all a € D.

Lemma 17.4.7 Suppose E € Party and that D[E] and D'[E] are

two discretizations of DIE].
-

1. There exists a continuous function of product type
© _JE] — D’[E] such that x — ©(x) € IC(H) for all x.

—_—

=and O is an endomorphlsm of Q(H) then ® has
a continuous lifting on some discretization of D[E] if and only
if it has a continuous lifting on every discretization of D|E].
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The key lemma

The proof of the following lemma uses the method of stabilizers (Shelah,
Just, Velitkovié, F.).

Lemma 17.4.8 If ® has a continuous lifting © on D[E| for some

E € Party, then it has a lifting of product type on Dx|E] for some
infinite X C N.



The key lemma

The proof of the following lemma uses the method of stabilizers (Shelah,
Just, Veli¢kovis, F.).

Lemma 17.4.8 If ® has a continuous lifting © on D[E| for some
E € Party, then it has a lifting of product type on Dx|E] for some
infinite X C N. = WO < ull) < u@)<-.

Proof: Recursively find an increasing sequence (n(j));,

5(j) € D(a(j),n(j+1)) (with n(0) :=0), and an increasing sequence
of finite-rank projections @ so that for all j, all a and b in
Dpo,njyj» and all ¢ and d in Dpp(js1)ec): ~
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The key lemma

The proof of the following lemma uses the method of stabilizers (Shelah,
Just, Veli¢kovis, F.).

Lemma 17.4.8 If ® has a continuous lifting © on D[E| for some

E € Party, then it has a lifting of product type on Dx|E] for some
infinite X C N.

Proof: Recursively find an increasing sequence (n(j));,

s(j) € D(n(j),n(j+1)) (with n(0) :=0), and an increasing sequence
of finite-rank projections (rj); so that for all j, all a and b in

D[o n(j)» @and all ¢ and d in Dipj41),00):

L (0@ s(j) + <) — O(b-+ s(j) +©)) 1—0H {29,
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The key lemma

The proof of the following lemma uses the method of stabilizers (Shelah,
Just, Veli¢kovis, F.).

Lemma 17.4.8 If ® has a continuous lifting © on D[E| for some

E € Party, then it has a lifting of product type on Dx|E] for some
infinite X C N.

Proof: Recursively find an increasing sequence (n(j));,

s(j) € D(n(j),n(j+1)) (with n(0) :=0), and an increasing sequence
of finite-rank projections (rj); so that for all j, all a and b in
Dio,n(j);» @nd all ¢ and d in Dyy(j41),00):

(©(a+s(j)+c)—O(b+s(j)+c)) 1—rJ\|

%"(1 ~5)(O(a+5(1) + €)= O(b+s(1) + c))

(©(a+ s(j) +¢€) — ©(a+s(j) +d) sl g—f,
r(©(a+s(j) +¢) — O(a+s(j) +d))| <27
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