
Massive C⇤
-algebras, Winter 2021, I. Farah, Lecture 13

Today we continue the proof that OCAT implies implies that all
automorphisms of the Calkin algebra are inner. More precisely, we
will prove Theorem 17.8.2 (this is arguably the most elegant
non-ZFC part of the proof of Theorem 17.8.5, that OCAT implies
all automorphisms of Q(H) are inner).
Recall:

OCAT Whenever X is a separable metrizable space and
[X]2 = L0 t L1 is an open colouring, one of the following
alternatives applies.

1 There exists an uncountable L0-homogeneous Y ✓ X.
2 There are L1-homogeneous sets Xn, for n 2 N, such thatS

n Xn = X.
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Our next objective is to prove the following.

Prop ⇡9.5.7 OCAT implies that every E ✓ PartN of cardinality @1

is ⇤
-bounded.

The proof of this Proposition requires some preparations.
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A closer look at PartN
Recall that PartN is the set of all partitions E of a cofinite subset
of N into finite intervals:

E = hEj : j 2 Ni

where Ej = [fE(j), fE(j + 1)) and f 2 NN is increasing.
We topologize PartN by indentifying it with a closed subspace of
NN, via E 7! fE.

On PartN we defined E ⇤ F if (81m)(9n)En ✓ Fm, or
equivalently, if

(81i)(9j)Ei [ Ei+1 ✓ Fj [ Fj+1.

For m � 0, on PartN define E m F if

(8i � m)(9j)Ei [ Ei+1 ✓ Fj [ Fj+1

and write  for 0.
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Here is an equivalent definition of the topology on PartN.

Lemma For e = hE0, . . . ,En�1i, the set

[e] := {F |Fj = Ej for all j < n}

is the open ball of diameter 1/(n+ 2) centered at any F 2 [e]. The
sets of the form [e] form a basis for the topology on PartN.

Def Some E ✓ PartN is everywhere unbounded if for every e,
[e] \ E 6= ; if and only if [e] \ E is ⇤

-unbounded.

Lemma If E ✓ PartN is ⇤
-unbounded, then it has an everywhere

unbounded subset.
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Lemma ⇡9.7.9 If E is everywhere unbounded and [e] \ E 6= ;,
then there is f = hF0, . . . ,Fk�1i which extends e and is such that

for every m there is E 2 [f] \ E for which max(Ek) > m.

We say that f as in Lemma is infinitely branching for E .
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Lemma ⇡9.7.9 If E is everywhere unbounded and [e] \ E 6= ;,
then there is f = hF0, . . . ,Fk�1i which extends e and is such that

for every m there is E 2 [f] \ E for which max(Ek) > m.

We say that f as in Lemma is infinitely branching for E .



We can now start the proof of

Prop ⇡9.5.7 OCAT implies that every E ✓ PartN of cardinality @1

is ⇤
-bounded.

Proof: Assume the contrary. Since every countable subset of PartN
is bounded, there is an unbounded X = {E(↵)|↵ < @1} such that
↵ < � implies E(↵) ⇤ E(�) and which is ⇤-unbounded in PartN.
Consider [X ]2 = L0 [ L1 defined by

L0 := {{E,F}|E 6 F and F 6 E}

Claim. L0 is open.
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(Proof of Prop 9.5.7, continued.)

L0 := {{E,F}|E 6 F and F 6 E}

Claim. PartN cannot be covered by countably many

L1-homogeneous sets.

Proof: PartN is identified with a closed subspace of the Polish
space NN. Every L1-homogeneous set is nowhere dense. Thus the
Baire Category Theorem implies Claim.
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(Proof of Prop 9.5.7, continued.)

L0 := {{E,F}|E 6 F and F 6 E}

Claim. PartN cannot be covered by countably many

L1-homogeneous sets.

Proof: PartN is identified with a closed subspace of the Polish
space NN. Every L1-homogeneous set is nowhere dense. Thus the
Baire Category Theorem implies Claim.

xxxx

doin X can.tl Covered

4 att l 4 a L Longo as

St



Sets

1 Even 4 han sat is

bountet coming up heet



(Proof of Prop 9.5.7, continued.)

L0 := {{E,F}|E 6 F and F 6 E}

By the last Claim and OCAT, X has an uncountable
L0-homogeneous subset.

By the choice of X , every uncountable
subset of X is ⇤-unbounded; so we have an unbounded,
L0-homogeneous set.

Claim. Every L0-homogeneous subset of X is bounded.

Proof: Suppose Y ✓ X is unbounded, and let Z ✓ Y be
everywhere unbounded. Fix a countable dense Z0 ✓ Z .
Since Z is well-ordered by ⇤, we can fix F 2 Z such that E ⇤ F
for all E 2 Z0.
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We will need this:

Corollary

OCAT implies that for every uncountable E ✓ PartN there exists

F 2 PartN such that

{E 2 E|E  F}

is uncountable.

The following result (or the question) we’ll not need, but it would
be hard not to mention them.

Thm OCAT implies that the smallest cardinality of an

⇤
-unbounded subset of PartN is @2.

Question Does OCAT imply that 2@0 = @2?
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Coherent families of unitaries

We will need the notation from the proof that CH implies Q(H)
has an outer automorphism.


