Massive C^* -algebras, Winter 2021, I. Farah, Lecture 13

Today we continue the proof that OCA_T implies implies that all automorphisms of the Calkin algebra are inner. More precisely, we will prove Theorem 17.8.2 (this is arguably the most elegant non-ZFC part of the proof of Theorem 17.8.5, that OCA_T implies all automorphisms of Q(H) are inner).

OCA_T Whenever X is a separable metrizable space and $[X]^2 = L_0 \sqcup L_1$ is an open colouring, one of the following alternatives applies.

- 1 There exists an uncountable L_0 -homogeneous $Y \subseteq X$.
- 2 There are L_1 -homogeneous sets X_n , for $n \in \mathbb{N}$, such that $\bigcup_n X_n = X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの⊘

$$\pm = i S_2 \qquad (N, \leq \star)$$

Our next objective is to prove the following.

Prop \approx 9.5.7 OCA_T implies that every $\mathcal{E} \subseteq \operatorname{Part}_{\mathbb{N}}$ of cardinality \aleph_1 is \leq^* -bounded.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

The proof of this Proposition requires some preparations.

A closer look at $\mathsf{Part}_{\mathbb{N}}$

Recall that $Part_{\mathbb{N}}$ is the set of all partitions E of a cofinite subset of \mathbb{N} into finite intervals:

$$\mathsf{E} = \langle E_j : j \in \mathbb{N} \rangle$$

where $E_j = [f_E(j), f_E(j+1)]$ and $f_E \in \mathbb{N}^{\mathbb{N}}$ is increasing. We topologize $\operatorname{Part}_{\mathbb{N}}$ by indentifying it with a closed subspace of $\mathbb{N}^{\mathbb{N}}$, via $E \mapsto f_E$. $f_E (y = M \operatorname{in} E_j)$ $\operatorname{Part}_{\mathbb{N}} \stackrel{\leq}{=} (N^{\mathbb{N}}) \stackrel{\leq}{:} E \to f_E$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少♀?

A closer look at $\mathsf{Part}_{\mathbb{N}}$

Recall that $Part_{\mathbb{N}}$ is the set of all partitions E of a cofinite subset of \mathbb{N} into finite intervals:

 $\mathsf{E} = \langle E_j : j \in \mathbb{N} \rangle$

where $E_j = [f_{\mathsf{E}}(j), f_{\mathsf{E}}(j+1))$ and $f \in \mathbb{N}^{\mathbb{N}}$ is increasing.

We topologize $Part_{\mathbb{N}}$ by indentifying it with a closed subspace of $\mathbb{N}^{\mathbb{N}}$, via $E \mapsto f_{\mathsf{F}}$.

On Part_N we defined $E \leq^* F$ if $(\forall^{\infty} m)(\exists n) E_n \subseteq F_m$, or equivalently, if

$$(\underbrace{\forall^{\infty}i})(\exists j) \stackrel{(}{=} i) \stackrel{(}{=} E_{i+1} \subseteq F_j \cup F_{j+1}.$$

$$(\underbrace{\forall^{\infty}i})(\exists j) \stackrel{(}{=} i) \stackrel{(}{=} E_j \cup E_{i+1} \subseteq F_j \quad \forall E_{j+1}.$$

$$(\underbrace{\forall^{\infty}i})(\exists j) \stackrel{(}{=} i) \stackrel{(}{=} E_j \cup E_{i+1} \subseteq F_j \quad \forall E_{j+1}.$$

$$(\underbrace{\forall^{\infty}i})(\exists j) \stackrel{(}{=} i) \stackrel{(}{=} E_j \cup E_{i+1} \subseteq F_j \quad \forall E_{j+1}.$$

A closer look at $\mathsf{Part}_{\mathbb{N}}$

Recall that $Part_{\mathbb{N}}$ is the set of all partitions E of a cofinite subset of \mathbb{N} into finite intervals:

$$\mathsf{E} = \langle E_j : j \in \mathbb{N} \rangle$$

where $E_j = [f_{\mathsf{E}}(j), f_{\mathsf{E}}(j+1))$ and $f \in \mathbb{N}^{\mathbb{N}}$ is increasing.

We topologize $Part_{\mathbb{N}}$ by indentifying it with a closed subspace of $\mathbb{N}^{\mathbb{N}}$, via $E \mapsto f_{\mathsf{F}}$.

On $Part_{\mathbb{N}}$ we defined $E \leq^* F$ if $(\forall^{\infty} m)(\exists n)E_n \subseteq F_m$, or equivalently, if

$$(\forall^{\infty} i)(\exists j)E_i \cup E_{i+1} \subseteq F_j \cup F_{j+1}.$$

For $m \ge 0$, on $\operatorname{Part}_{\mathbb{N}}$ define $\underline{\mathsf{E}} \le {}^m \overline{\mathsf{F}}$ if $\mathcal{L} / \mathfrak{o}_{j} \mathscr{L} / \mathfrak{o}_{j} \mathcal{L} / \mathfrak{o}_{j} \mathscr{L} / \mathfrak{$

 $(\forall i \geq m)(\exists j)E_i \cup E_{i+1} \subseteq F_j \cup F_{j+1}$

and write \leq for \leq^{0} .

F2

Lenne If EEPort, and E SPort, and {FEE| E < F is unlounded in (Portn, st), the JMEN Such that E= { FEE | E= MF) is unbounded in (Port N SK). Pf Otherwise fix Gu EParta which is an ulter bound to Eng (tr m). 6, - 6, $\left(\begin{array}{c} \chi \\ \Sigma \end{array} \right) = \left[\begin{array}{c} \Sigma \\ \Sigma \end{array} \right]$ GEParta L. such that Leb Gun StG HM. Then D Cn Upler bound for 6 503

Here is an equivalent definition of the topology on $Part_{\mathbb{N}}$.

Lemma For
$$e = \langle E_0, \dots, E_{n-1} \rangle$$
, the set

$$\underbrace{\langle E_0, \dots, E_{n-1} \rangle}_{\substack{\ell \text{ (orth)}}} \text{ for all } j < n \} = \{F | F_j = E_j \text{ for all } j < n \}$$

is the open ball of diameter 1/(n+2) centered at any $F \in [e]$. The sets of the form [e] form a basis for the topology on $Part_{\mathbb{N}}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Here is an equivalent definition of the topology on $Part_{\mathbb{N}}$.

Lemma For $\mathbf{e} = \langle E_0, \ldots, E_{n-1} \rangle$, the set

$$[e] := \{F | F_j = E_j \text{ for all } j < n\}$$

is the open ball of diameter 1/(n+2) centered at any $F \in [e]$. The sets of the form [e] form a basis for the topology on $Part_{\mathbb{N}}$.

Def Some $\mathcal{E} \subseteq \operatorname{Part}_{\mathbb{N}}$ is everywhere unbounded if for every e, [e] $\cap \mathcal{E} \neq \emptyset$ if and only if [e] $\cap \mathcal{E}$ is \leq^* -unbounded.

Lemma If $\mathcal{E} \subseteq Part_{\mathbb{N}}$ is \leq^* -unbounded, then it has an everywhere unbounded subset.

$$ff \quad let \quad f = \langle e \mid [e] \land E \quad is \quad Nof \leq -helddd,$$

cer c = c (/[e]).Cloim E' 1 evorquitore untid. $\frac{1}{F} = F \times f, \quad [f] \wedge E' \neq p'.$ Note E= U(FejnE) is a ctul, eeF Union of Graded Cots, here horndod so [f]ne = E E vulounded Kbounded unlounded (the Poset is directed) دآ دا

Lemma $\approx 9.7.9$ If \mathcal{E} is everywhere unbounded and $[e] \cap \mathcal{E} \neq \emptyset$, then there is $f = \langle F_0, \dots, F_{k-1} \rangle$ which extends e and is such that for every \underline{m} there is $E \in [f] \cap \mathcal{E}$ for which $\max(E_k) > m$.

gffrsup{mox Eh EE[f]ne} <00 Hence, 46 os drove, the sale $f'_{e} = \frac{f'_{e}}{s(e)} \qquad \begin{cases} f'_{e} + \frac{f'_{e}}{extend} + \frac{f'_{e}}{extend} \\ ley_{e} + \frac{f'_{e}}{extend} + \frac{f'_{e}}{extend} + \frac{f'_{e}}{extend} + \frac{f'_{e}}{extend} \\ ley_{e} + \frac{f'_{e}}{extend} + \frac{f'_{$ g(frsup{mox Eh E E[f]nE} e h If otherway fix minimal arch M.

M=min Fe, for Many then l a olari, and thou f extending e, F=<...,Fe? ί) $MCXF_{t} = 4$ Offine EE[e] A E, Vecuriouely E extends e, if F; hey Leen definid, let Eje,=XmcxE,+YXmcxY+1 E \$ * F, F F E [e] Then

Lemma $\approx 9.7.9$ If \mathcal{E} is everywhere unbounded and $[e] \cap \mathcal{E} \neq \emptyset$, then there is $f = \langle F_0, \ldots, F_{k-1} \rangle$ which extends e and is such that for every *m* there is $E \in [f] \cap \mathcal{E}$ for which $\max(E_k) > m$.

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < < </p>

We say that \underline{f} as in Lemma is *infinitely branching for* \mathcal{E} .

Prop ≈9.5.7 OCA_T implies that every $\mathcal{E} \subseteq Part_{\mathbb{N}}$ of cardinality \aleph_1 is \leq^* -bounded.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Prop ≈9.5.7 OCA_T implies that every $\mathcal{E} \subseteq \text{Part}_{\mathbb{N}}$ of cardinality \aleph_1 is \leq^* -bounded.

Proof: Assume the contrary. Since every countable subset of $Part_{\mathbb{N}}$ is bounded, there is an unbounded $X = \{E(\alpha) | \alpha < \aleph_1\}$ such that $\alpha < \beta$ implies $E(\alpha) \leq^* E(\beta)$ and which is \leq^* -unbounded in $Part_{\mathbb{N}}$.

$$Y = \left\langle F(d) | \mathcal{L} < K_{i} \right\rangle$$
Find $E(d), F(d) \leq * E(d), H \leq \mathcal{L}$

$$d\mathcal{L} \qquad E(d) \leq * E(d), H \leq \mathcal{L}$$

Prop $\approx 9.5.7$ OCA_T implies that every $\mathcal{E} \subseteq \text{Part}_{\mathbb{N}}$ of cardinality \aleph_1 is \leq^* -bounded.

Proof: Assume the contrary. Since every countable subset of $Part_{\mathbb{N}}$ is bounded, there is an unbounded $X = \{E(\alpha) | \alpha < \aleph_1\}$ such that $\alpha < \beta$ implies $E(\alpha) \leq^* E(\beta)$ and which is \leq^* -unbounded in $Part_{\mathbb{N}}$. Consider $[X]^2 = L_0 \cup L_1$ defined by ESF (=> #i J/ EiuEit, SF, UF, h $L_0 := \{ \{ \mathsf{E}, \mathsf{F}\} \mid \mathsf{E} \not\leq \mathsf{F} \text{ and } \mathsf{F} \not\leq \mathsf{E} \}$ JI # E. UEin \$ F. UEin 3

Prop ≈9.5.7 OCA_T implies that every $\mathcal{E} \subseteq \text{Part}_{\mathbb{N}}$ of cardinality \aleph_1 is \leq^* -bounded.

Proof: Assume the contrary. Since every countable subset of $\operatorname{Part}_{\mathbb{N}}$ is bounded, there is an unbounded $X = \{\mathsf{E}(\alpha) | \alpha < \aleph_1\}$ such that $\alpha < \beta$ implies $\mathsf{E}(\alpha) \leq^* \mathsf{E}(\beta)$ and which is \leq^* -unbounded in $\operatorname{Part}_{\mathbb{N}}$. Consider $[X]^2 = L_0 \cup L_1$ defined by

$$L_0 := \{ \{\mathsf{E},\mathsf{F}\} | \, \mathsf{E} \not\leq \mathsf{F} \text{ and } \mathsf{F} \not\leq \mathsf{E} \}$$

Claim. L_0 is open.

$$L_0 := \{ \{ \mathsf{E}, \mathsf{F} \} | \, \mathsf{E} \not\leq \mathsf{F} \text{ and } \mathsf{F} \not\leq \mathsf{E} \}$$

Claim. Part_N cannot be covered by countably many L_1 -homogeneous sets.

$$\{E, F\} \in L, \quad if \quad E \leq F \quad 0 \quad F \leq E$$

$$\{E(\alpha), E(0) \leq L, \quad if \quad E(\alpha) \leq E(\beta)$$

$$(\alpha < \beta)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 のへぐ

$$L_0 := \{ \{ \mathsf{E}, \mathsf{F} \} | \, \mathsf{E} \not\leq \mathsf{F} \text{ and } \mathsf{F} \not\leq \mathsf{E} \}$$

Claim. Part_{\mathbb{N}} cannot be covered by countably many L_1 -homogeneous sets.

Proof: $\mathsf{Part}_{\mathbb{N}}$ is identified with a closed subspace of the Polish space $\mathbb{N}^{\mathbb{N}}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

$$L_0 := \{ \{ E, F \} \mid E \not\leq F \text{ and } F \not\leq E \} \}$$

Claim. Part_N cannot be covered by countably many L_1 -homogeneous sets.

Proof: $Part_{\mathbb{N}}$ is identified with a closed subspace of the Polish space $\mathbb{N}^{\mathbb{N}}$. Every L_1 -homogeneous set is nowhere dense.

• Fix f

$$L_{0} := \{\{E, F\} | E \not\leq F \text{ and } F \not\leq E\}$$
Claim. Part_N cannot be covered by countably many L_{1} -homogeneous sets.
Proof: Part_N is identified with a closed subspace of the Polish space N^N. Every L_{1} -homogeneous set is nowhere dense. Thus the Baire Category Theorem implies Claim.
$$(frim X ccurrent h, courted h, courted h, chan operator h, courted h, chan operator h$$

5900

 $\sum_{i} \prod_{j}$ It Every L, -how Sit is bounded (Coming up hext).

$$L_0 := \{\{E, F\} | E \leq F \text{ and } F \leq E\}$$

$$A \subseteq \mathcal{I}_{\mathcal{I}}$$
By the last Claim and OCAT, X has an uncountable L_0 -homogeneous subset.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$L_0 := \{ \{\mathsf{E},\mathsf{F}\} | \, \mathsf{E} \not\leq \mathsf{F} \text{ and } \mathsf{F} \not\leq \mathsf{E} \}$$

By the last Claim and OCA_T, X has an uncountable L_0 -homogeneous subset. By the choice of X, every uncountable subset of X is \leq^* -unbounded; so we have an unbounded, L_0 -homogeneous set.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Claim. Every L_0 -homogeneous subset of X is bounded.

$$L_0 := \{ \{\mathsf{E},\mathsf{F}\} | \, \mathsf{E} \not\leq \mathsf{F} \text{ and } \mathsf{F} \not\leq \mathsf{E} \}$$

By the last Claim and OCA_T, X has an uncountable L_0 -homogeneous subset. By the choice of X, every uncountable subset of X is \leq^* -unbounded; so we have an unbounded, L_0 -homogeneous set.

Claim. Every L_0 -homogeneous subset of X is bounded.

Proof: Suppose $Y \subseteq X$ is unbounded, and let $Z \subseteq Y$ be everywhere unbounded. Fix a countable dense $Z_0 \subseteq Z$.

J= [Ell] EE [F S E (a) () Unhanded, Fix J'SF, eversuhere unhounded. $\frac{1}{E} + \frac{1}{E} + \frac{1}$ Find e such Flot e is the branching to F', and max English G EZON[e] Fix Fill HE[e]NF, with the next interval (after e) lo, enough & Fled Hiutling

\$ G: UG; +, +;.

$$L_0 := \{ \{\mathsf{E},\mathsf{F}\} | \mathsf{E} \not\leq \mathsf{F} \text{ and } \mathsf{F} \not\leq \mathsf{E} \}$$

By the last Claim and OCA_T, X has an uncountable L_0 -homogeneous subset. By the choice of X, every uncountable subset of X is \leq^* -unbounded; so we have an unbounded, L_0 -homogeneous set.

Claim. Every L_0 -homogeneous subset of X is bounded.

Proof: Suppose $Y \subseteq X$ is unbounded, and let $Z \subseteq Y$ be everywhere unbounded. Fix a countable dense $Z_0 \subseteq Z$. Since Z is well-ordered by \leq^* , we can fix $F \in Z$ such that $E \leq^* F$ for all $E \in Z_0$. We will need this:

Corollary

 OCA_T implies that for every uncountable $\mathcal{E}\subseteq\mathsf{Part}_\mathbb{N}$ there exists $F\in\mathsf{Part}_\mathbb{N}$ such that

$$\{\underline{\mathsf{E}\in\mathcal{E}}|\,\underline{\mathsf{E}\leq\mathsf{F}}\}$$

is uncountable. $l = \lambda_{l}$ Lehno, 0 SKF Σ 5 e ζ ES/E • • • • • • • • 3 э.

Als, find $e = \langle E_{3}, \dots, E_{m-r} \rangle$ s that $K \in E \in [E extend e] = (C_{1})$ IL F = < F; ; ; FN7 fir ; 1251 MCK Ema, Min Let $F' = \langle \bigcup F_i, F_j, F_{j+i}, \cdots \rangle$ The $E \leq F'$, $4E \in S''$.

We will need this:

Corollary

 OCA_T implies that for every uncountable $\mathcal{E}\subseteq\mathsf{Part}_\mathbb{N}$ there exists $F\in\mathsf{Part}_\mathbb{N}$ such that

$$\{\mathsf{E}\in\mathcal{E}\,|\,\mathsf{E}\leq\mathsf{F}\}$$

is uncountable.

The following result (or the question) we'll not need, but it would be hard not to mention them.

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

We will need this:

Corollary

 OCA_T implies that for every uncountable $\mathcal{E}\subseteq\mathsf{Part}_\mathbb{N}$ there exists $F\in\mathsf{Part}_\mathbb{N}$ such that

$$\{\mathsf{E}\in\mathcal{E}\,|\,\mathsf{E}\leq\mathsf{F}\}$$

is uncountable.

The following result (or the question) we'll not need, but it would be hard not to mention them.

Thm OCA_T implies that the smallest cardinality of an \leq^* -unbounded subset of Part_N is \aleph_2 .

Question Does OCA_T imply that $2^{\aleph_0} = \aleph_2$?

Coherent families of unitaries

We will need the notation from the proof that CH implies Q(H) has an outer automorphism.

