Massive C*-algebras, Winter 2021, I. Farah, Lecture 9

A few facts on ultrapowers that follow from what was covered in class (\mathcal{U}, \mathcal{V} are nonprincipal ultrafilters on \mathbb{N}).

1. If A is a separable C^{*}-algebra, $A \prec C, C$ is countably
saturated, and $\chi(C)=\aleph_{1}$, then $C \cong A_{\mathcal{U}}$

Massive C*-algebras, Winter 2021, I. Farah, Lecture 9

A few facts on ultrapowers that follow from what was covered in class (\mathcal{U}, \mathcal{V} are nonprincipal ultrafilters on \mathbb{N}).

1. If A is a separable C^{*}-algebra, $A \prec C, C$ is countably saturated, and $\chi(C)=\aleph_{1}$, then $C \cong A_{\mathcal{U}}$
2. The set $\left\{\operatorname{Th}(A) \mid A\right.$ is a separable C^{*}-algebra $\}$ is a weak*-closed subset of the space of characters on the algebra of all sentences over \emptyset. (Hint: Łoś + Löwenheim-Skolem.)

Massive C*-algebras, Winter 2021, I. Farah, Lecture 9

A few facts on ultrapowers that follow from what was covered in class (\mathcal{U}, \mathcal{V} are nonprincipal ultrafilters on \mathbb{N}).

1. If A is a separable C^{*}-algebra, $A \prec C, C$ is countably saturated, and $\chi(C)=\aleph_{1}$, then $C \cong A_{\mathcal{U}}$
2. The set $\left\{\operatorname{Th}(A) \mid A\right.$ is a separable C^{*}-algebra $\}$ is a weak*-closed subset of the space of characters on the algebra of all sentences over \emptyset. (Hint: Łoś + Löwenheim-Skolem.)
 $\lim _{n \rightarrow \mathcal{U}} \operatorname{Th}\left(A_{n}\right)=\lim _{n \rightarrow \mathcal{V}} \operatorname{Th}\left(B_{n}\right)$.

Massive C*-algebras, Winter 2021, I. Farah, Lecture 9

A few facts on ultrapowers that follow from what was covered in class (\mathcal{U}, \mathcal{V} are nonprincipal ultrafilters on \mathbb{N}).

1. If A is a separable C^{*}-algebra, $A \prec C, C$ is countably saturated, and $\chi(C)=\aleph_{1}$, then $C \cong A_{\mathcal{U}}$
2. The set $\left\{\operatorname{Th}(A) \mid A\right.$ is a separable C^{*}-algebra $\}$ is a weak*-closed subset of the space of characters on the algebra of all sentences over \emptyset. (Hint: Łoś + Löwenheim-Skolem.)
3. CH implies that $\prod_{n \rightarrow \mathcal{U}} A_{n} \cong \prod_{n \rightarrow \mathcal{V}} B_{n}$ if and only if $\lim _{n \rightarrow \mathcal{U}} \operatorname{Th}\left(A_{n}\right)=\lim _{n \rightarrow \mathcal{V}} \operatorname{Th}\left(B_{n}\right)$.
4. If $\chi(C)=\aleph_{1}$ and C is countably saturated, then C is the union of an increasing chain of separable elementary submodels C_{α} such that $C \cong\left(C_{\alpha}\right)$ U for all α. (Notably, in
 some cases it is possible to choose C_{α} 's so that they are nonisomorphic. This follows from the fact that there is no universal separable C^{*}-algebra (Junge-Pisier).)

Automorphisms of the Calkin algebra $\mathcal{Q}(H)$

$$
\pi: B(H) \rightarrow Q(H) \quad B(H) / M(H)
$$

If $a \in \mathcal{B}(H)$ we'll write ad for $\pi(a)$ (this slide only).
Thm (Brown-Douglas-Fillmore, 1970's) If a and b are normal operators in $\mathcal{B}(H)$, the following are equivalent.

1. There is $\Phi \in \operatorname{Aut}(\mathcal{Q}(H)), \Phi(\dot{a})=\dot{b}$.
2. There is a unitary $\underline{\underline{u}}$ in $\mathcal{Q}(H)$, $\underline{u}_{\dot{a} \dot{u}}{ }^{*}=\dot{b}$.
. $\operatorname{sp}(\dot{a})=\operatorname{sp}(\dot{b})$.

Fredholm operators (see the references given in §C.6)

An operator a is Fredholm if \dot{a} is invertible in $\mathcal{Q}(H)$.

Fredholm operators (see the references given in §C.6)

An operator a is Fredholm if à is invertible in $\mathcal{Q}(H)$.
Prop \approx C.6.5 If a is Fredholm and $\pi(a)=\pi(b)$, then b is Fredholm and

$$
\operatorname{dim} \operatorname{ker}(a)-\operatorname{dim} \operatorname{ker}\left(a^{*}\right)=\operatorname{dim} \operatorname{ker}(b)-\operatorname{dim} \operatorname{ker}\left(b^{*}\right)
$$

The Fredholm index of a Fredholm operator a is

$$
\text { index }(a):=\operatorname{dim} \operatorname{ker}(a)-\operatorname{dim} \operatorname{ker}\left(a^{*}\right) .
$$

Fredholm operators (see the references given in §C.6)

An operator a is Fredholm if \dot{a} is invertible in $\mathcal{Q}(H)$.
Prop \approx C.6.5 If a is Fredholm and $\pi(a)=\pi(b)$, then b is
Fredholm and

$$
\operatorname{dim} \operatorname{ker}(a)-\operatorname{dim} \operatorname{ker}\left(a^{*}\right)=\operatorname{dim} \operatorname{ker}(b)-\operatorname{dim} \operatorname{ker}\left(b^{*}\right)
$$

The Fredholm index of a Fredholm operator a is

$$
\operatorname{index}(a):=\operatorname{dim} \operatorname{ker}(a)-\operatorname{dim} \operatorname{ker}\left(a^{*}\right) .
$$

Fact. $\quad \operatorname{index}\left(a^{*}\right)=-\operatorname{index}(a)$, index $(a b)=\operatorname{index}(b a)$.
Thus $\mathrm{GL}(\mathcal{Q}(H)) \rightarrow \mathbb{Z}$ a index (a) is a group homomorphism, and index (uaū) $=\operatorname{index}(\dot{a})$ for all $\dot{u} \in \mathcal{U}(\mathcal{Q}(H))$ and Fredholm a.

An operator $a \in \mathcal{B}(H)$ is essentially normal if $\dot{a} \dot{a}^{*}=\dot{a}^{*} \dot{a}$.

An operator $a \in \mathcal{B}(H)$ is essentially normal if $\dot{a} \dot{a}^{*}=\dot{a}^{*} \dot{a}$. If ξ_{n} is an orthonormal basis for H, the unilateral shift s is defined by $s \xi_{n}=\xi_{n+1}$ for all n.

An operator $a \in \mathcal{B}(H)$ is essentially normal if $\dot{a} \dot{a}^{*}=\dot{a}^{*} \dot{a}$. If ξ_{n} is an orthonormal basis for H, the unilateral shift s is defined by $s \xi_{n}=\xi_{n+1}$ for all n.
$u \in \mathbb{N}$
Fact
$s^{*} s=1_{\mathcal{B}(H)}$, but $\underline{s s^{*}} \neq 1_{\mathcal{B}(H)}$, but $\dot{\dot{s} \dot{s} *}=\dot{s}^{*} \dot{s}=1_{\mathcal{Q}(H)}$.

$$
\text { index(S) }=0-1=-1
$$

An operator $a \in \mathcal{B}(H)$ is essentially normal if $\dot{a} \dot{a}^{*}=\dot{a}^{*} \dot{a}$.
If ξ_{n} is an orthonormal basis for H, the unilateral shift s is defined by $s \xi_{n}=\xi_{n+1}$ for all n.

Fact
$s^{*} s=1_{\mathcal{B}(H)}$, but $s s^{*} \neq 1_{\mathcal{B}(H)}$, but $\overline{\dot{s} \dot{s} *=\dot{s}^{*} \dot{s}=1_{\mathcal{Q}(H)} .}$
Fact
The unilateral shift is essentially normal, but not normal.

A model-theoretic approach to the BDF question?
Question (Brown-Douglas-Fillmore) Is there $\Phi \in \operatorname{Aut}(\mathcal{Q}(H)$) such that $\Phi(\dot{s})=\dot{s}^{*}$? (I.e., is there a K-theory reversing automorphism of $\mathcal{Q}(H)$?)

$$
u \dot{s} \dot{u}^{*} \neq \dot{s}^{*}
$$

$$
K_{0}(Q)(H)=0
$$

$$
K_{1}(Q)(H) \|=\mathbb{Z}
$$

$$
Q
$$

A model-theoretic approach to the BDF question?

Question (Brown-Douglas-Fillmore) Is there $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$ such that $\Phi(\dot{s})=\dot{s}^{*}$? (I.e., is there a K-theory reversing automorphism of $\mathcal{Q}(H)$?)
Does $\mathcal{Q}(H)$ have outer automorphisms?
Question

1. Is type ${ }_{\mathcal{Q}(H)}(\dot{s} / \emptyset)=\operatorname{type}_{\mathcal{Q}(H)}\left(\dot{s}^{*} / \emptyset\right)$?
2. If a is Fredholm, can one recover index (a) from type $\mathcal{Q}_{(H)(\dot{a}) \text { ? }}$

$$
\text { sine } 4 \text { ? }
$$

A model-theoretic approach to the BDF question?

Question (Brown-Douglas-Fillmore) Is there $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$ such that $\Phi(\dot{s})=\dot{s}^{*}$? (I.e., is there a K-theory reversing automorphism of $\mathcal{Q}(H)$?)
Does $\mathcal{Q}(H)$ have outer automorphisms?

Question

1. Is type $\mathcal{Q}(H)(\dot{s} / \emptyset)=\operatorname{type}_{\mathcal{Q}(H)}\left(\dot{s}^{*} / \emptyset\right)$?
2. If a is Fredholm, can one recover index (a) from $\operatorname{type}_{\mathcal{Q}}(H)(\dot{a})$?

Remark

1. A negative answer to (1) would imply that $\Phi(\dot{s}) \neq \Phi\left(\dot{s}^{*}\right)$ for all $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$
2. Since $\mathcal{Q}(H)$ is not countably saturated, and even not countably homogeneous (F.-Hirshberg), a positive answer to (2) would be inconclusive.

A short intermission

If a is Fredholm, one can recover |index $(a) \mid$ from type $\mathcal{Q}_{\mathcal{Q}}(H)(\dot{a})$. Exercise. For every $u \in \mathcal{U}(\mathcal{Q}(H))$ either $u=\exp (i a)$ for some $0 \leq a \leq 2 \pi$, or there is $m \in \mathbb{N}$ such that u has an n-th root iff $n \mid m$ for all $n \geq 2$.

A short intermission

If a is Fredholm, one can recover |index $(a) \mid$ from type $\mathcal{Q}_{\mathcal{Q}}(H)(\dot{a})$.
Exercise. For every $u \in \mathcal{U}(\mathcal{Q}(H))$ either $u=\exp (i a)$ for some $0 \leq a \leq 2 \pi$, or there is $m \in \mathbb{N}$ such that u has an n-th root iff $n \mid m$ for all $n \geq 2$.
For every supernatural number x (i.e., a formal product $\left.x=\prod_{p \text { prime }} p^{k(p)}, 0 \leq k(p) \leq \infty\right)$ there exists $u \in \mathcal{U}(\mathcal{Q}(H) \mathcal{U})$ such that u has an n-th root if and only if $n \mid x$, for all $n \geq 2$.

A deep and beautiful theorem of W.H. Woodin suggests that if there is an outer automorphism of $\mathcal{Q}(H)$ in some model of ZFC then there is an outer automorphism of $\mathcal{Q}(H)$ in every model of ZFC that satisfies CH. (Similarly for a K-theory reversing automorphism of $\mathcal{Q}(H)$.)

A deep and beautiful theorem of W.H. Woodin suggests that if there is an outer automorphism of $\mathcal{Q}(H)$ in some model of ZFC then there is an outer automorphism of $\mathcal{Q}(H)$ in every model of ZFC that satisfies CH. (Similarly for a K-theory reversing automorphism of $\mathcal{Q}(H)$.)
Chm (Phillips-Weaver, 2008) CH implies that $\mathcal{Q}(H)$ has $2^{\aleph_{1}}$ outer automorphisms.
The proof resembles the construction of $2^{\aleph_{1}}$ automorphisms of $A_{\mathcal{U}}$ using CH , with two differences:

A deep and beautiful theorem of W.H. Woodin suggests that if there is an outer automorphism of $\mathcal{Q}(H)$ in some model of ZFC then there is an outer automorphism of $\mathcal{Q}(H)$ in every model of ZFC that satisfies CH. (Similarly for a K-theory reversing automorphism of $\mathcal{Q}(H)$.)
Thm (Phillips-Weaver, 2008) CH implies that $\mathcal{Q}(H)$ has $2^{\aleph_{1}}$ outer automorphisms.
The proof resembles the construction of $2^{\aleph_{1}}$ automorphisms of $A_{\mathcal{U}}$ using CH , with two differences:

1. Every partial isomorphism occurring in the construction is implemented by a unitary.

A deep and beautiful theorem of W.H. Woodin suggests that if there is an outer automorphism of $\mathcal{Q}(H)$ in some model of ZFC then there is an outer automorphism of $\mathcal{Q}(H)$ in every model of ZFC that satisfies CH. (Similarly for a K-theory reversing automorphism of $\mathcal{Q}(H)$.)
Thm (Phillips-Weaver, 2008) CH implies that $\mathcal{Q}(H)$ has $2^{\aleph_{1}}$ outer automorphisms.
The proof resembles the construction of $2^{\aleph_{1}}$ automorphisms of $A_{\mathcal{U}}$ using CH , with two differences:

1. Every partial isomorphism occurring in the construction is implemented by a unitary.
2. At the limit stages an intricate KK-theoretic (homotopy) argument is used to find an implementing unitary.

A deep and beautiful theorem of W.H. Woodin suggests that if there is an outer automorphism of $\mathcal{Q}(H)$ in some model of ZFC then there is an outer automorphism of $\mathcal{Q}(H)$ in every model of ZFC that satisfies CH. (Similarly for a K-theory reversing automorphism of $\mathcal{Q}(H)$.)
Thm (Phillips-Weaver, 2008) CH implies that $\mathcal{Q}(H)$ has $2^{\aleph_{1}}$ outer automorphisms.
The proof resembles the construction of $2^{\aleph_{1}}$ automorphisms of $A_{\mathcal{U}}$ using CH , with two differences:

1. Every partial isomorphism occurring in the construction is implemented by a unitary.
2. At the limit stages an intricate KK-theoretic (homotopy) argument is used to find an implementing unitary.
Exercise. Fix $n \geq 2$. All unital copies of $M_{n}(\mathbb{C})$ in $\mathcal{Q}(H)$ are unitarily equivalent. There are n homotopy classes of such unital copies.

A deep and beautiful theorem of W.H. Woodin suggests that if there is an outer automorphism of $\mathcal{Q}(H)$ in some model of ZFC then there is an outer automorphism of $\mathcal{Q}(H)$ in every model of ZFC that satisfies CH. (Similarly for a K-theory reversing automorphism of $\mathcal{Q}(H)$.)
Thm (Phillips-Weaver, 2008) CH implies that $\mathcal{Q}(H)$ has $2^{\aleph_{1}}$ outer automorphisms.
The proof resembles the construction of $2^{\aleph_{1}}$ automorphisms of $A_{\mathcal{U}}$ using CH , with two differences:

1. Every partial isomorphism occurring in the construction is implemented by a unitary.
2. At the limit stages an intricate KK-theoretic (homotopy) argument is used to find an implementing unitary.
Exercise. Fix $n \geq 2$. All unital copies of $M_{n}(\mathbb{C})$ in $\mathcal{Q}(H)$ are unitarily equivalent. There are n homotopy classes of such unital copies.
I'll present an (arguably) simpler proof of the Phillips-Weaver Theorem

A warm-up: σ-directed poses

Lemma 8.5.6 If a directed poses \mathbb{P} is partitioned into finitely many pieces, then at least one of them is cofinal.
pe:

$\forall x \in X ;$

Fix

A warm-up: σ-directed posets

Lemma 8.5.6 If a directed poset \mathbb{P} is partitioned into finitely many pieces, then at least one of them is cofinal.

$$
S_{1} \text {-directed }
$$

Def A partial ordering is σ-directed if every countable subset is bounded above. (Caveat: This is strictly weaker than 'every countable subset has a supremum'.)

A warm-up: σ-directed posets

Lemma 8.5.6 If a directed poset \mathbb{P} is partitioned into finitely many pieces, then at least one of them is cofinal.

Def A partial ordering is σ-directed if every countable subset is bounded above. (Caveat: This is strictly weaker than 'every countable subset has a supremum'.)

Lemma 9.5.2 If a σ-directed poset is partitioned into countably many pieces, then at least one of them is cofinal.

Stratifying $\mathcal{Q}(H)$; the pose $\operatorname{Part}_{\mathbb{N}}(\S 9.7)$

Let Part $_{\mathbb{N}}$ denote the set of all partitions E of a corina subset of \mathbb{N} into finite intervals:

$$
\mathrm{E}=\left\langle E_{j}: j \in \mathbb{N}\right\rangle
$$

where $E_{j}=[n(j), n(j+1))$ and $n(0)<n(1)<n(2)<\ldots$ are in \mathbb{N}.

Stratifying $\mathcal{Q}(H)$; the poses $\operatorname{Part}_{\mathbb{N}}(\S 9.7)$

Let $\operatorname{Part}_{\mathbb{N}}$ denote the set of all partitions E of a cofinal subset of \mathbb{N} into finite intervals:

$$
\mathrm{E}=\left\langle E_{j}: j \in \mathbb{N}\right\rangle
$$

where $E_{j}=[n(j), n(j+1))$ and $n(0)<n(1)<n(2)<\ldots$ are in \mathbb{N}.
Def 9.7.2 On $\mathrm{Part}_{\mathbb{N}}$ define
$\mathrm{E} \leq^{*} \mathrm{~F}$ if $\left(\forall^{\infty} m\right)(\exists n) E_{n} \subseteq F_{m}$, and
$E \ll^{*} F$ if $\left(\forall^{\infty} n\right)(\exists m) E_{n} \subseteq F_{m}$.
$\mathrm{E}<^{*} \mathrm{~F}$ if $\left(\forall^{\infty} i\right)(\exists j) E_{i} \cup E_{i+1} \subseteq F_{j} \cup F_{j+1}$.

Stratifying $\mathcal{Q}(H)$; the poset $\operatorname{Part}_{\mathbb{N}}(\S 9.7)$

Let Part $_{\mathbb{N}}$ denote the set of all partitions E of a cofinal subset of \mathbb{N} into finite intervals:

$$
\mathrm{E}=\left\langle E_{j}: j \in \mathbb{N}\right\rangle
$$

where $E_{j}=[n(j), n(j+1))$ and $n(0)<n(1)<n(2)<\ldots$ are in \mathbb{N}.
Def 97. 2 On $\mathrm{Part}_{\mathbb{N}}$ define $^{\text {a }}$
$E \leq^{*} F f\left(\forall^{\infty} m\right)(\exists n) E_{n} \subseteq \mathscr{F}_{m}$, and
$E \ll^{*} F i f\left(\forall^{\infty} n\right)(\exists m) E_{n} \subset F_{m}$.
$\mathrm{E}<^{*} \mathrm{~F}$ if $\left(\forall^{\infty} i\right)(\exists j) E_{i} \cup E_{i+1} \subseteq F_{j} \cup F_{j+1}$.
Lemma $(\approx 9.7 .1)$ The poser $\left(\operatorname{Part}_{\mathbb{N}}, \leq^{*}\right)$ is σ-directed.

$E(n)$
$u \in \mathbb{N}$
Let

choose F_{1} so that

$$
F_{1} \geq E\left(0 / k, F_{1} \geq E(1)_{l}\right.
$$

for ane k, e
If $F_{0,}, F_{4}$ hare been deice

$$
\begin{aligned}
& \text { (max } F_{j}+1=\min F_{j+1} \\
& \left.\nvdash l s j \not k_{j} F_{j} ? E(l)_{k}\right)
\end{aligned}
$$

Stratifying $\mathcal{Q}(H)$; the poset $\operatorname{Part}_{\mathbb{N}}(\S 9.7)$

Let Part $_{\mathbb{N}}$ denote the set of all partitions E of a cofinal subset of \mathbb{N} into finite intervals:

$$
\mathrm{E}=\left\langle E_{j}: j \in \mathbb{N}\right\rangle
$$

where $E_{j}=[n(j), n(j+1))$ and $n(0)<n(1)<n(2)<\ldots$ are in \mathbb{N}.
Def 9.7.2 On $\mathrm{Part}_{\mathbb{N}}$ define $^{\text {a }}$

- $\mathrm{E} \leq^{*} \mathrm{~F}$ if $\left(\forall^{\infty} m\right)(\exists n) E_{n} \subseteq F_{m}$, and $\mathrm{E}<^{*} \mathrm{~F}$ if $\left(\forall^{\infty} n\right)(\exists m) E_{n} \subseteq F_{m}$.
$\neg \mathrm{E}<^{*} \mathrm{~F}$ if $\left(\forall^{\infty} i\right)(\exists j) E_{i} \cup E_{i+1} \subseteq F_{j} \cup F_{j+1}$.
Lemma $(\approx 9.7 .1)$ The poset $\left(\operatorname{Part}_{\mathbb{N}}, \leq^{*}\right)$ is σ-directed.
The orders \leq^{*} and $<^{*}$ agree on Part $_{\mathbb{N}}$.

$F_{i x} m_{1} v \quad$ Jn $E_{u} \subseteq F_{m}$.

$\begin{aligned} \text { If } E_{u} \cup E_{u+1} & \neq F_{m} U t_{n} \\ \text { then } & E_{u+1} \neq F_{m+1}\end{aligned}$ actudly, Enti $\supseteq F_{n+1}$
so $E_{u} \notin F_{u+1}, \forall h$

$$
\text { So } E \leqslant^{*} F \Rightarrow E<^{*} F \text {. }
$$

Assume $E<^{*} F$, i.e.,

$$
\left.\left(\forall^{\infty}\right)(\exists)\right) E_{i} \cup E_{i+1} \subseteq F_{;} \cup E_{+1}(*
$$

Fix i lown phooch
$\stackrel{E_{i}}{ }$
$F_{i x} F_{u}, \min ^{4} F_{4} \geqslant \min E_{i}$ ASsone $E_{m} \nsubseteq F_{u}, \forall \omega_{4}$

FSX min $i, F_{n} \cap F_{n} \neq \varnothing$
Then $E_{i} \notin F_{u}$

$$
\begin{aligned}
E_{j+1} & \nLeftarrow F_{u} \\
E_{i} \cup E_{i+1} & \nLeftarrow F_{u} \cup F_{u \tau 1} \\
& \notin F_{u \tau} \cup F_{u}
\end{aligned}
$$

s. $E_{i} \cup E_{i+1} \notin F_{;} \cup E_{i=1}$ $\forall i$ 。

Stratifying $\mathcal{Q}(H)$; the poset $\operatorname{Part}_{\mathbb{N}}(\S 9.7)$

Let Part $_{\mathbb{N}}$ denote the set of all partitions E of a cofinal subset of \mathbb{N} into finite intervals:

$$
\mathrm{E}=\left\langle E_{j}: j \in \mathbb{N}\right\rangle
$$

where $E_{j}=[n(j), n(j+1))$ and $n(0)<n(1)<n(2)<\ldots$ are in \mathbb{N}.
Def 9.7.2 On $\mathrm{Part}_{\mathbb{N}}$ define
$\mathrm{E} \leq^{*} \mathrm{~F}$ if $\left(\forall^{\infty} m\right)(\exists n) E_{n} \subseteq F_{m}$, and
$\mathrm{E}<^{*} \mathrm{~F}$ if $\left(\forall^{\infty} n\right)(\exists m) E_{n} \subseteq F_{m}$.
$\mathrm{E}<^{*} \mathrm{~F}$ if $\left(\forall^{\infty} i\right)(\exists j) E_{i} \cup E_{i+1} \subseteq F_{j} \cup F_{j+1}$.
Lemma $(\approx 9.7 .1)$ The poset $\left(\right.$ Part $\left._{\mathbb{N}}, \leq^{*}\right)$ is σ-directed.
The orders \leq^{*} and $<^{*}$ agree on Part $_{\mathbb{N}}$.
The poset (Part $_{\mathbb{N}}, \lll<$) is not directed (so forget it).

Stratifying $\mathcal{Q}(H)$; the poset $\operatorname{Part}_{\mathbb{N}}(\S 9.7)$

Let Part $_{\mathbb{N}}$ denote the set of all partitions E of a cofinal subset of \mathbb{N} into finite intervals:

$$
\mathrm{E}=\left\langle E_{j}: j \in \mathbb{N}\right\rangle
$$

where $E_{j}=[n(j), n(j+1))$ and $n(0)<n(1)<n(2)<\ldots$ are in \mathbb{N}.
Def 9.7.2 On $\mathrm{Part}_{\mathbb{N}}$ define
$\mathrm{E} \leq^{*} \mathrm{~F}$ if $\left(\forall^{\infty} m\right)(\exists n) E_{n} \subseteq F_{m}$, and
$\mathrm{E}<^{*} \mathrm{~F}$ if $\left(\forall^{\infty} n\right)(\exists m) E_{n} \subseteq F_{m}$.
$\mathrm{E}<^{*} \mathrm{~F}$ if $\left(\forall^{\infty} i\right)(\exists j) E_{i} \cup E_{i+1} \subseteq F_{j} \cup F_{j+1}$.
Lemma ($\approx 9.7 .1$) The poset $\left(\operatorname{Part}_{\mathbb{N}}, \leq^{*}\right)$ is σ-directed.
The orders \leq^{*} and $<^{*}$ agree on Part $_{\mathbb{N}}$.
The poset (Part $_{\mathbb{N}}, \lll<$) is not directed (so forget it).

Von Neumann Algebras $\mathcal{D}[E]$ (§9.7.1).

Von Neumann Algebras $\mathcal{D}[E]$ (§9.7.1).
Def 9.7.5 Consider H with an orthonornal basis (ξ_{n}). For $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$ and $\mathrm{X} \subseteq \mathbb{N}$ let
and let

Von Neumann Algebras $\mathcal{D}[\mathrm{E}]$ (§9.7.1).

Def 9.7.5 Consider H with an orthonornal basis $\left(\xi_{n}\right)$. For $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and $\mathrm{X} \subseteq \mathbb{N}$ let

$$
p_{\mathrm{X}}^{\mathrm{E}}:=\operatorname{proj}_{\overline{\operatorname{span}}}\left\{\xi_{i}: i \in \bigcup_{n \in \mathrm{X}} E_{n}\right\},
$$

and let
$\mathcal{D}[\mathrm{E}]:=\left\{a \in \mathcal{B}(H):(\forall m)(\forall n)\left(\left(a \xi_{m} \mid \xi_{n}\right) \neq 0\right.\right.$ implies $\left.\left.(\exists j)\{m, n\} \subseteq E_{j}\right)\right\}$, $\mathcal{A}[\mathrm{E}]:=\left\{\sum_{n} \lambda_{n} p_{\{n\}}^{\mathrm{E}} \mid\left(\lambda_{n}\right) \in \ell_{\infty}\right\} \quad\left(=\mathrm{W}^{*}\left\{p_{\mathrm{X}}^{\mathrm{E}}: \mathrm{X} \subseteq \mathbb{N}\right\}\right)$.
Lemma $\mathcal{D}[\mathrm{E}]$ is a von Neumann (i.e., WYOT-closed, self-adjoint)
subalgebra of $\mathcal{B}(H)$, and $\mathcal{A}[\mathrm{E}]$ is its centre.

Von Neumann Algebras $\mathcal{D}[\mathrm{E}]$ (§9.7.1).

Def 9.7.5 Consider H with an orthonornal basis $\left(\xi_{n}\right)$. For $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and $\mathrm{X} \subseteq \mathbb{N}$ let

$$
p_{\mathrm{X}}^{\mathrm{E}}:=\operatorname{proj}_{\overline{\operatorname{span}}}\left\{\xi_{i}: i \in \bigcup_{n \in \mathrm{X}} E_{n}\right\},
$$

and let
$\mathcal{D}[\mathrm{E}]:=\left\{a \in \mathcal{B}(H):(\forall m)(\forall n)\left(\left(a \xi_{m} \mid \xi_{n}\right) \neq 0\right.\right.$ implies $\left.\left.(\exists j)\{m, n\} \subseteq E_{j}\right)\right\}$,
$\mathcal{A}[\mathrm{E}]:=\left\{\sum_{n} \lambda_{n} p_{\{n\}}^{\mathrm{E}} \mid\left(\lambda_{n}\right) \in \ell_{\infty}\right\} \quad\left(=\mathrm{W}^{*}\left\{p_{\mathrm{X}}^{\mathrm{E}}: \mathrm{X} \subseteq \mathbb{N}\right\}\right)$.
Lemma $\mathcal{D}[\mathrm{E}]$ is a von Neumann (i.e., WOT-closed, self-adjoint)
subalgebra of $\mathcal{B}(H)$, and $\mathcal{A}[\mathrm{E}]$ is its centre.
Proof: $\mathcal{D}[\mathrm{E}] \cong \prod_{n} M_{k(n)}(\mathbb{C})$, with $k(n):=\left|E_{n}\right|$, and $\mathcal{A}[\mathrm{E}]=\prod_{n} \underline{\mathbb{C}} 1_{k(n)}$.

Von Neumann Algebras $\mathcal{D}[\mathrm{E}]$ (§9.7.1).

Def 9.7.5 Consider H with an orthonornal basis $\left(\xi_{n}\right)$. For $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and $\mathrm{X} \subseteq \mathbb{N}$ let

$$
p_{\mathrm{X}}^{\mathrm{E}}:=\operatorname{proj}_{\overline{\operatorname{span}}}\left\{\xi_{i}: i \in \bigcup_{n \in \mathrm{X}} E_{n}\right\},
$$

and let
$\mathcal{D}[\mathrm{E}]:=\left\{a \in \mathcal{B}(H):(\forall m)(\forall n)\left(\left(a \xi_{m} \mid \xi_{n}\right) \neq 0\right.\right.$ implies $\left.\left.(\exists j)\{m, n\} \subseteq E_{j}\right)\right\}$,
$\mathcal{A}[\mathrm{E}]:=\left\{\sum_{n} \lambda_{n} p_{\{n\}}^{\mathrm{E}} \mid\left(\lambda_{n}\right) \in \ell_{\infty}\right\} \quad\left(=\mathrm{W}^{*}\left\{p_{\mathrm{X}}^{\mathrm{E}}: \mathrm{X} \subseteq \mathbb{N}\right\}\right)$.
Lemma $\mathcal{D}[\mathrm{E}]$ is a von Neumann (i.e., WOT-closed, self-adjoint)
subalgebra of $\mathcal{B}(H)$, and $\mathcal{A}[\mathrm{E}]$ is its centre.
Proof: $\mathcal{D}[\mathrm{E}] \cong \prod_{n} M_{k(n)}(\mathbb{C})$, with $k(n):=\left|E_{n}\right|$, and $\mathcal{A}[\mathrm{E}]=\prod_{n} \mathbb{C} 1_{k(n)}$.
Fact
The unilateral shift \dot{s} is not in $\mathcal{D}[\mathrm{E}] /(\mathcal{K}(H) \cap \mathcal{D}[\mathrm{E}])$ for any $E \in \operatorname{Part}_{\mathbb{N}}$.

For $E \in \operatorname{Part}_{\mathbb{N}}$ define two coarser partitions, $\mathrm{E}^{\text {even }}$ and $\mathrm{E}^{\text {odd }}$, by (with $E_{-1}:=\emptyset$)

For $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ define two coarser partitions, $\mathrm{E}^{\text {even }}$ and $\mathrm{E}^{\text {odd }}$, by (with $E_{-1}:=\emptyset$)

$$
\begin{aligned}
E_{n}^{\text {even }} & :=E_{2 n} \cup E_{2 n+1} \\
E_{n}^{\text {odd }} & :=E_{2 n-1} \cup E_{2 n}
\end{aligned}
$$

Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis ξ_{n}, for $n \in \mathbb{N}$. For a sequence a_{n}, for $n \in \mathbb{N}$ in $\mathcal{B}(H)$ there are $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}, a_{n}^{0} \in \mathcal{D}\left[\mathrm{E}^{\text {even }}\right]$ and $\overline{a_{n}^{1}} \in \mathcal{D}\left[\mathrm{E}^{\text {odd }}\right]$ such that $a_{n}-a_{n}^{0}-a_{n}^{1}$ is compact for each n.

$$
F: x \quad a \in d(H) \text {. }
$$

will find $n(0)<n(1)<\ldots$

$$
\begin{gathered}
F_{i} \times n(0)=1, n(1)=2 \\
\left(E_{j}=[u(i), n(i+1))\right) \\
Q_{\xi \cdot S}^{E} \text { is c/ct } \\
P_{\text {hos }}^{E} a \quad \text { is chct. }
\end{gathered}
$$

Find $n(2)$ so thot

$$
\left(r_{k}=\text { Proi sTou }\{\xi ; 1 ; \& k s)\right.
$$

$\left(r_{k}\right)$ is an chlores unot for $k(H)$.)

$$
\begin{aligned}
& \text { Finl } n(2) \text { so }^{n}+4 o t \\
& \left\|r_{n(2)} a p_{i 0 s}^{E}-a p_{\operatorname{los}}^{E}\right\|<2^{-2} \\
& \left\|r_{n(2)} p_{i 0)}^{E} a-p_{i 01}^{E} a\right\|<2^{-2}
\end{aligned}
$$

Snext tine)

