A few facts on ultrapowers that follow from what was covered in class (\mathcal{U} , \mathcal{V} are nonprincipal ultrafilters on \mathbb{N}).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

1. If A is a separable C*-algebra, $A \prec C$, C is countably saturated, and $\chi(C) = \aleph_1$, then $C \cong A_U$

A few facts on ultrapowers that follow from what was covered in class (\mathcal{U} , \mathcal{V} are nonprincipal ultrafilters on \mathbb{N}).

- 1. If A is a separable C*-algebra, $A \prec C$, C is countably saturated, and $\chi(C) = \aleph_1$, then $C \cong A_U$
- The set {Th(A)|A is a separable C*-algebra} is a weak*-closed subset of the space of characters on the algebra of all sentences over Ø. (Hint: Łoś + Löwenheim–Skolem.)

 $\lim_{m \to 1} TG(A_u) = TG$

A few facts on ultrapowers that follow from what was covered in class (\mathcal{U} , \mathcal{V} are nonprincipal ultrafilters on \mathbb{N}).

- 1. If A is a separable C*-algebra, $A \prec C$, C is countably saturated, and $\chi(C) = \aleph_1$, then $C \cong A_U$
- The set {Th(A)|A is a separable C*-algebra} is a weak*-closed subset of the space of characters on the algebra of all sentences over Ø. (Hint: Łoś + Löwenheim–Skolem.)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

3. CH implies that $\prod_{n \to U} A_n \cong \prod_{n \to V} B_n$ if and only if $\lim_{n \to U} \operatorname{Th}(A_n) = \lim_{n \to V} \operatorname{Th}(B_n)$.

A few facts on ultrapowers that follow from what was covered in class (\mathcal{U} , \mathcal{V} are nonprincipal ultrafilters on \mathbb{N}).

- 1. If A is a separable C*-algebra, $A \prec C$, C is countably $\mathcal{M} \longrightarrow$ saturated, and $\chi(C) = \aleph_1$, then $C \cong A_{\mathcal{U}}$
- The set {Th(A)|A is a separable C*-algebra} is a ______
 weak*-closed subset of the space of characters on the algebra of all sentences over Ø. (Hint: Łoś + Löwenheim–Skolem.)
- 3. CH implies that $\prod_{n \to U} A_n \cong \prod_{n \to V} B_n$ if and only if $\lim_{n \to U} \operatorname{Th}(A_n) = \lim_{n \to V} \operatorname{Th}(B_n)$.
- 4. If χ(C) = ℵ₁ and C is countably saturated, then C is the union of an increasing chain of separable elementary submodels C_α such that C ≅ (C_α)_U for all α. (Notably, in some cases it is possible to choose C_α's so that they are nonisomorphic. This follows from the fact that there is no universal separable C*-algebra (Junge-Pisier).)

Automorphisms of the Calkin algebra Q(H)

an =q ×

 $C^{*}(\tilde{G}) \cong C(sp(\tilde{o}))$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

If $a \in \mathcal{B}(H)$ we'll write \dot{a} for $\pi(a)$ (this slide only).

Thm (Brown–Douglas–Fillmore, 1970's) If a and b are normal operators in $\mathcal{B}(H)$, the following are equivalent.

1. There is
$$\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$$
, $\Phi(\dot{a}) = \dot{b}$.
2. There is a unitary \dot{u} in $\mathcal{Q}(H)$, $\dot{u}\dot{a}\dot{u}^* = \dot{b}$.
3. $\operatorname{sp}(\dot{a}) = \operatorname{sp}(\dot{b})$.

Fredholm operators (see the references given in §C.6)

An operator *a* is *Fredholm* if *a* is invertible in Q(H).

Athinsou's Itala

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Fredholm operators (see the references given in §C.6)

An operator *a* is *Fredholm* if *a* is invertible in $\mathcal{Q}(H)$.

Prop \approx C.6.5 If a is Fredholm and $\pi(a) = \pi(b)$, then b is Fredholm and

$$\dim \ker(a) - \dim \ker(a^*) = \dim \ker(b) - \dim \ker(b^*)$$

The Fredholm index of a Fredholm operator a is

$$index(a) := \dim ker(a) - \dim ker(a^*)$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ の�?

Fredholm operators (see the references given in §C.6)

An operator *a* is *Fredholm* if \dot{a} is invertible in $\mathcal{Q}(H)$.

Prop \approx **C**.6.5 If a is Fredholm and $\pi(a) = \pi(b)$, then b is Fredholm and

$$\dim \ker(a) - \dim \ker(a^*) = \dim \ker(b) - \dim \ker(b^*)$$

The Fredholm index of a Fredholm operator a is

$$\mathsf{index}(a) := \mathsf{dim} \ker(a) - \mathsf{dim} \ker(a^*).$$

Fact. index(a^*) = - index(a), index(ab) = index(ba). Thus $GL(Q(H)) \rightarrow \mathbb{Z}$ $\stackrel{\frown}{a} \rightarrow index(a)$ is a group homomorphism, and index(uau) = index(\dot{a}) for all $\dot{u} \in U(Q(H))$ and Fredholm a. An operator $a \in \mathcal{B}(H)$ is essentially normal if $\dot{a}\dot{a}^* = \dot{a}^*\dot{a}$.

An operator $a \in \mathcal{B}(H)$ is essentially normal if $\dot{a}\dot{a}^* = \dot{a}^*\dot{a}$. If ξ_n is an orthonormal basis for H, the unilateral shift s is defined by $s\xi_n = \xi_{n+1}$ for all n.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

An operator $a \in \mathcal{B}(H)$ is essentially normal if $\dot{a}\dot{a}^* = \dot{a}^*\dot{a}$. If ξ_n is an orthonormal basis for H, the unilateral shift s is defined by $s\xi_n = \xi_{n+1}$ for all n.

Fact

$$s^*s = 1_{\mathcal{B}(H)}, but \underline{ss}^* \neq 1_{\mathcal{B}(H)}, but \underline{ss}^* = \underline{s}^* \underline{s} = 1_{\mathcal{Q}(H)}.$$

 $(\mathcal{A} \in \mathcal{X}(S) = \mathcal{O} - \mathcal{O} = \mathcal{O})$

An operator $a \in \mathcal{B}(H)$ is essentially normal if $\dot{a}\dot{a}^* = \dot{a}^*\dot{a}$. If ξ_n is an orthonormal basis for H, the unilateral shift s is defined by $s\xi_n = \xi_{n+1}$ for all n.

Fact $s^*s = 1_{\mathcal{B}(H)}$, but $ss^* \neq 1_{\mathcal{B}(H)}$, but $\dot{ss}^* = \dot{s}^*\dot{s} = 1_{\mathcal{Q}(H)}$.

Fact

The unilateral shift is essentially normal, but not normal.

A model-theoretic approach to the BDF question?

Question (Brown–Douglas–Fillmore) Is there $\Phi \in Aut(Q(H))$ such that $\Phi(\dot{s}) = \dot{s}^*$? (I.e., is there a K-theory reversing automorphism of Q(H)?)

risin* + s* 51(54)

 $|K, (Q(H|| = \mathcal{H}))$

A model-theoretic approach to the BDF question?

Question (Brown–Douglas–Fillmore) Is there $\Phi \in Aut(Q(H))$ such that $\Phi(\dot{s}) = \dot{s}^*$? (I.e., is there a K-theory reversing automorphism of $\mathcal{Q}(H)$?)

Does Q(H) have outer automorphisms?

Question

1. Is type_{$$Q(H)$$} $(\dot{s}/\emptyset) = type_{Q(H)}(\dot{s}^*/\emptyset)$?

2. If a is Fredholm, can one recover index(a) from $type_{Q}(H)(a)$?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ● ●

A model-theoretic approach to the BDF question?

Question (Brown–Douglas–Fillmore) Is there $\Phi \in Aut(Q(H))$ such that $\Phi(\dot{s}) = \dot{s}^*$? (I.e., is there a K-theory reversing automorphism of Q(H)?) Does Q(H) have outer automorphisms?

Question

- 1. Is $\operatorname{type}_{\mathcal{Q}(H)}(\dot{s}/\emptyset) = \operatorname{type}_{\mathcal{Q}(H)}(\dot{s}^*/\emptyset)$?
- 2. If a is Fredholm, can one recover index(a) from $type_{Q}(H)(\dot{a})$?

Remark

- 1. A negative answer to (1) would imply that $\Phi(\dot{s}) \neq \Phi(\dot{s}^*)$ for all $\Phi \in Aut(\mathcal{Q}(H))$
- Since Q(H) is not countably saturated, and even not countably homogeneous (F.-Hirshberg), a positive answer to (2) would be inconclusive.

A short intermission

If a is Fredholm, one can recover |index(a)| from $type_{Q}(H)(\dot{a})$. Exercise. For every $u \in U(Q(H))$ either u = exp(ia) for some $0 \le a \le 2\pi$, or there is $m \in \mathbb{N}$ such that u has an n-th root iff n|m for all $n \ge 2$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

A short intermission

If a is Fredholm, one can recover |index(a)| from $type_{Q}(H)(\dot{a})$. Exercise. For every $u \in \mathcal{U}(Q(H))$ either $u = \exp(ia)$ for some $0 \le a \le 2\pi$, or there is $m \in \mathbb{N}$ such that u has an n-th root iff n|m for all $n \ge 2$. For every supernatural number x (i.e., a formal product $x = \prod_{p \text{ prime}} p^{k(p)}, 0 \le k(p) \le \infty$) there exists $u \in \mathcal{U}(Q(H)_{U})$ such that u has an n-th root if and only if n|x, for all $n \ge 2$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Thm (Phillips–Weaver, 2008) CH implies that Q(H) has 2^{\aleph_1} outer automorphisms.

The proof resembles the construction of 2^{\aleph_1} automorphisms of $A_{\mathcal{U}}$ using CH, with two differences:

Thm (Phillips–Weaver, 2008) CH implies that Q(H) has 2^{\aleph_1} outer automorphisms.

The proof resembles the construction of 2^{\aleph_1} automorphisms of A_U using CH, with two differences:

1. Every partial isomorphism occurring in the construction is implemented by a unitary.

Thm (Phillips–Weaver, 2008) CH implies that Q(H) has 2^{\aleph_1} outer automorphisms.

The proof resembles the construction of 2^{\aleph_1} automorphisms of A_U using CH, with two differences:

- 1. Every partial isomorphism occurring in the construction is implemented by a unitary.
- 2. At the limit stages an intricate KK-theoretic (homotopy) argument is used to find an implementing unitary.

Thm (Phillips–Weaver, 2008) CH implies that Q(H) has 2^{\aleph_1} outer automorphisms.

The proof resembles the construction of 2^{\aleph_1} automorphisms of A_U using CH, with two differences:

- 1. Every partial isomorphism occurring in the construction is implemented by a unitary.
- 2. At the limit stages an intricate KK-theoretic (homotopy) argument is used to find an implementing unitary.

Exercise. Fix $n \ge 2$. All unital copies of $M_n(\mathbb{C})$ in $\mathcal{Q}(H)$ are unitarily equivalent. There are *n* homotopy classes of such unital copies.

Thm (Phillips–Weaver, 2008) CH implies that Q(H) has 2^{\aleph_1} outer automorphisms.

The proof resembles the construction of 2^{\aleph_1} automorphisms of A_U using CH, with two differences:

- 1. Every partial isomorphism occurring in the construction is implemented by a unitary.
- 2. At the limit stages an intricate KK-theoretic (homotopy) argument is used to find an implementing unitary.

Exercise. Fix $n \ge 2$. All unital copies of $M_n(\mathbb{C})$ in $\mathcal{Q}(H)$ are unitarily equivalent. There are *n* homotopy classes of such unital copies.

I'll present an (arguably) simpler proof of the Phillips–Weaver

A warm-up: σ -directed posets

Lemma 8.5.6 If a directed poset \mathbb{P} is partitioned into finitely many pieces, then at least one of them is cofinal. $\underbrace{ \begin{cases} - d \in Vec} \ d e \\ \end{bmatrix}}$

Def A partial ordering is σ -directed if every countable subset is bounded above. (Caveat: This is strictly weaker than 'every countable subset has a supremum'.)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

A warm-up: σ -directed posets

Lemma 8.5.6 If a directed poset \mathbb{P} is partitioned into finitely many pieces, then at least one of them is cofinal.

Def A partial ordering is σ -directed if every countable subset is bounded above. (Caveat: This is strictly weaker than 'every countable subset has a supremum'.)

Lemma 9.5.2 If a σ -directed poset is partitioned into countably many pieces, then at least one of them is cofinal.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Stratifying $\mathcal{Q}(H)$; the poset $\operatorname{Part}_{\mathbb{N}}$ (§9.7) \mathcal{N}

Let $Part_{\mathbb{N}}$ denote the set of all partitions E of a cofinat subset of \mathbb{N} into finite intervals:

$$\mathsf{E} = \langle E_j : j \in \mathbb{N} \rangle$$

where $E_j = [n(j), n(j+1))$ and n(0) < n(1) < n(2) < ... are in \mathbb{N} .

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

Let $\mathsf{Part}_{\mathbb{N}}$ denote the set of all partitions E of a cofinal subset of \mathbb{N} into finite intervals:

$$\mathsf{E} = \langle E_j : j \in \mathbb{N} \rangle$$

where $E_j = [n(j), n(j+1))$ and n(0) < n(1) < n(2) < ... are in \mathbb{N} . Def 9.7.2 On $\operatorname{Part}_{\mathbb{N}}$ define $E \leq^* F$ if $(\forall^{\infty} m)(\exists n)E_n \subseteq F_m$, and $E \ll^* F$ if $(\forall^{\infty} n)(\exists m)E_n \subseteq F_m$. $E \ll^* F$ if $(\forall^{\infty} i)(\exists j)E_i \cup E_{i+1} \subseteq F_j \cup F_{j+1}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $Part_{\mathbb{N}}$ denote the set of all partitions E of a cofinal subset of \mathbb{N} into finite intervals:

$$\mathsf{E} = \langle E_j : j \in \mathbb{N} \rangle$$

where $E_i = [n(j), n(j+1))$ and n(0) < n(1) < n(2) < ... are in N.

Def 9.7.2 On
$$\operatorname{Part}_{\mathbb{N}}$$
 define
 $\mathsf{E} \leq^* \mathsf{F}$ if $(\forall^{\infty} m)(\exists n) E_n \subseteq F_m$, and
 $\mathsf{E} \ll^* \mathsf{F}$ if $(\forall^{\infty} n)(\exists m) E_n \subseteq F_m$.
 $\mathsf{E} \ll^* \mathsf{F}$ if $(\forall^{\infty} i)(\exists j) E_i \cup E_{i+1} \subseteq F_j \cup F_{j+1}$

Lemma ($\approx 9.7.1$) The poset (Part_N, \leq^*) is σ -directed. E Fix E(N), LEN

Lef F = F(0) ADDADADED E DOG

Ecolu I E(o)Elle E(1) E (21 F. S. Flick Choose $F_1 \ge E(o/k, F_1 \ge E(i))$ for Gre Le, l Fo, .. Fu have been darch If (MCXF; +1 = MinF; $H_{z;H_{z}} = E(l)_{L_{z}}$

Let $Part_{\mathbb{N}}$ denote the set of all partitions E of a cofinal subset of \mathbb{N} into finite intervals:

$$\mathsf{E} = \langle E_j : j \in \mathbb{N} \rangle$$

where $E_j = [n(j), n(j+1))$ and n(0) < n(1) < n(2) < ... are in \mathbb{N} . Def 9.7.2 On $\operatorname{Part}_{\mathbb{N}}$ define $E \leq * F$ if $(\forall^{\infty} m)(\exists n)E_n \subseteq F_m$, and $E \ll * F$ if $(\forall^{\infty} n)(\exists m)E_n \subseteq F_m$. $E \ll * F$ if $(\forall^{\infty} i)(\exists j)E_i \cup E_{i+1} \subseteq F_j \cup F_{j+1}$.

Lemma (\approx 9.7.1) The poset (Part_N, \leq^*) is σ -directed. The orders \leq^* and \ll^* agree on Part_N.

SUMAR ESTE

Fix MV JU Eu SEM' $E_{u} = E_{u+i} = \begin{bmatrix} \Psi & \Psi \\ \Psi & \Psi \\$ If Hey Ent & Fint, actualy, Euro 2 Funt, م ک Eu & Funti, HL So $E \leq *F = E < *F$ ASSULL E << * F, i.e. $(\mathcal{F}^{\infty})(\mathcal{F})/\mathcal{F}_{i}/\mathcal{F}_{i\tau} \subseteq \mathcal{F}_{i}/\mathcal{F}_{i\tau}$ i lage chory Fix E: Eiti

Fix F_4 , m_{i4} , $F_4 \ge m_{i5}$, F_1 TF5 Assung En & Fy, Hy

 $E_i \qquad E_i \qquad E_i$ F. Fox Min i, E: NFa + ø Then $E_i \neq F_g$ $E_{i_{T}} \neq F_{u}$ E; UE; & Fu UFur, \$ Fun UFG E: UE: \$ F; UE: 5. ₩,

Let $Part_{\mathbb{N}}$ denote the set of all partitions E of a cofinal subset of \mathbb{N} into finite intervals:

$$\mathsf{E} = \langle E_j : j \in \mathbb{N} \rangle$$

where $E_j = [n(j), n(j+1))$ and n(0) < n(1) < n(2) < ... are in \mathbb{N} . Def 9.7.2 On $\operatorname{Part}_{\mathbb{N}}$ define $E \leq^* F$ if $(\forall^{\infty} m)(\exists n)E_n \subseteq F_m$, and $E \ll^* F$ if $(\forall^{\infty} n)(\exists m)E_n \subseteq F_m$. $E \ll^* F$ if $(\forall^{\infty} i)(\exists j)E_i \cup E_{i+1} \subseteq F_j \cup F_{j+1}$.

Lemma (\approx 9.7.1) The poset (Part_N, \leq^*) is σ -directed. The orders \leq^* and \ll^* agree on Part_N. The poset (Part_N, \ll^*) is not directed (so forget it).

Let $Part_{\mathbb{N}}$ denote the set of all partitions E of a cofinal subset of \mathbb{N} into finite intervals:

$$\mathsf{E} = \langle E_j : j \in \mathbb{N} \rangle$$

where $E_j = [n(j), n(j+1))$ and n(0) < n(1) < n(2) < ... are in \mathbb{N} .

Def 9.7.2 On $\operatorname{Part}_{\mathbb{N}}$ define $\mathsf{E} \leq^* \mathsf{F}$ if $(\forall^{\infty} m)(\exists n) E_n \subseteq F_m$, and $\mathsf{E} \ll^* \mathsf{F}$ if $(\forall^{\infty} n)(\exists m) E_n \subseteq F_m$. $\mathsf{E} \ll^* \mathsf{F}$ if $(\forall^{\infty} i)(\exists j) E_i \cup E_{i+1} \subseteq F_j \cup F_{j+1}$.

Lemma (\approx 9.7.1) The poset (Part_N, \leq^*) is σ -directed. The orders \leq^* and \ll^* agree on Part_N. The poset (Part_N, \ll^*) is not directed (so forget it).

Von Neumann Algebras $\mathcal{D}[E]$ (§9.7.1).

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 > < ⊙ < ⊙

 $\begin{array}{l} \text{Von Neumann Algebras } \mathcal{D}[\mathsf{E}] \ (\S9.7.1).\\ \text{Def 9.7.5 } \textit{Consider H with an orthonornal basis} \ (\xi_n). \textit{For}\\ \mathsf{E} \in \mathsf{Part}_{\mathbb{N}} \textit{ and } \mathsf{X} \subseteq \mathbb{N} \textit{ let}\\ \hline p_{\mathsf{X}}^{\mathsf{E}} := \mathsf{proj}_{\overline{\mathrm{span}}\{\xi_i: i \in \bigcup_{n \in \mathsf{X}} E_n\}}, \end{array}$

and let

 $\mathcal{D}[\mathsf{E}] := \{ a \in \mathcal{B}(H) : (\forall m)(\forall n)((a\xi_m | \xi_n) \neq 0 \text{ implies } (\exists j)\{m, n\} \subseteq E_j) \},\$ $\mathcal{A}[\mathsf{E}] := \{ \sum_{n} \lambda_n p_{\{n\}}^{\mathsf{E}} | (\lambda_n) \in \ell_{\infty} \} \quad (= \mathrm{W}^* \{ p_{\mathsf{X}}^{\mathsf{E}} : \mathsf{X} \subseteq \mathbb{N} \}).$ Fo E Er

Von Neumann Algebras $\mathcal{D}[E]$ (§9.7.1). Def 9.7.5 Consider H with an orthonornal basis (ξ_n) . For $E \in Part_{\mathbb{N}}$ and $X \subseteq \mathbb{N}$ let

$$p_{\mathsf{X}}^{\mathsf{E}} := \operatorname{proj}_{\overline{\operatorname{span}}\{\xi_i : i \in \bigcup_{n \in \mathsf{X}} E_n\}},$$

and let

 $\mathcal{D}[\mathsf{E}] := \{ a \in \mathcal{B}(H) : (\forall m)(\forall n)((a\xi_m | \xi_n) \neq 0 \text{ implies } (\exists j)\{m, n\} \subseteq E_j) \}, \\ \mathcal{A}[\mathsf{E}] := \{ \sum_n \lambda_n p_{\{n\}}^{\mathsf{E}} | (\lambda_n) \in \ell_{\infty} \} \qquad (= \mathrm{W}^* \{ p_{\mathsf{X}}^{\mathsf{E}} : \mathsf{X} \subseteq \mathbb{N} \}). \\ \text{Lemma} \quad \mathcal{D}[\mathsf{E}] \text{ is a von Neumann } (i.e., \mathcal{VOT-closed, self-adjoint}) \\ \text{subalgebra of } \mathcal{B}(H), \text{ and } \mathcal{A}[\mathsf{E}] \text{ is its centre.} \end{cases}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Von Neumann Algebras $\mathcal{D}[E]$ (§9.7.1). Def 9.7.5 Consider H with an orthonornal basis (ξ_n) . For $E \in Part_{\mathbb{N}}$ and $X \subseteq \mathbb{N}$ let

$$p_{\mathsf{X}}^{\mathsf{E}} := \operatorname{proj}_{\overline{\operatorname{span}}\{\xi_i : i \in \bigcup_{n \in \mathsf{X}} E_n\}},$$

and let

 $\mathcal{D}[\mathsf{E}] := \{ a \in \mathcal{B}(H) : (\forall m)(\forall n)((a\xi_m | \xi_n) \neq 0 \text{ implies } (\exists j)\{m, n\} \subseteq E_j) \},\$ $\mathcal{A}[\mathsf{E}] := \{ \sum_{n} \lambda_n p_{\{n\}}^{\mathsf{E}} | (\lambda_n) \in \ell_{\infty} \} \qquad (= \mathrm{W}^* \{ p_{\mathsf{X}}^{\mathsf{E}} : \mathsf{X} \subseteq \mathbb{N} \}).$ Lemma $\mathcal{D}[E]$ is a von Neumann (i.e., WOT-closed, self-adjoint) subalgebra of $\mathcal{B}(H)$, and $\mathcal{A}[\mathsf{E}]$ is its centre. Proof: $\mathcal{D}[\mathsf{E}] \cong \prod_n M_{k(n)}(\mathbb{C})$, with $k(n) := |E_n|$, and $\mathcal{A}[\mathsf{E}] = \prod_{n} \mathbb{C}1_{k(n)}$

Von Neumann Algebras $\mathcal{D}[E]$ (§9.7.1). Def 9.7.5 Consider H with an orthonornal basis (ξ_n) . For $E \in Part_{\mathbb{N}}$ and $X \subseteq \mathbb{N}$ let

$$p_{\mathsf{X}}^{\mathsf{E}} := \operatorname{proj}_{\overline{\operatorname{span}}\{\xi_i : i \in \bigcup_{n \in \mathsf{X}} E_n\}},$$

and let

 $\mathcal{D}[\mathsf{E}] := \{ a \in \mathcal{B}(H) : (\forall m)(\forall n)((a\xi_m | \xi_n) \neq 0 \text{ implies } (\exists j)\{m, n\} \subseteq E_j) \},\$ $\mathcal{A}[\mathsf{E}] := \{ \sum_{n} \lambda_{n} p_{\{n\}}^{\mathsf{E}} | (\lambda_{n}) \in \ell_{\infty} \} \qquad (= \mathrm{W}^{*} \{ p_{\mathsf{X}}^{\mathsf{E}} : \mathsf{X} \subseteq \mathbb{N} \}).$ Lemma $\mathcal{D}[\mathsf{E}]$ is a von Neumann (i.e., WOT-closed, self-adjoint) subalgebra of $\mathcal{B}(H)$, and $\mathcal{A}[E]$ is its centre. Proof: $\mathcal{D}[\mathsf{E}] \cong \prod_n M_{k(n)}(\mathbb{C})$, with $k(n) := |E_n|$, and $\mathcal{A}[\mathsf{E}] = \prod_{n} \mathbb{C} \mathbb{1}_{k(n)}.$ Fact The unilateral shift \dot{s} is not in $\mathcal{D}[\mathsf{E}]/(\mathcal{K}(H) \cap \mathcal{D}[\mathsf{E}])$ for any

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

 $\mathsf{E} \in \mathsf{Part}_{\mathbb{N}}$.

Fix E $\forall u \| P_{3uvs}^X \le P_{3us}^X \| = i$ $\sum_{i \in A \in D(E)}^{i \in A}$ Here $\begin{aligned}
 (|\hat{a} - \hat{s}|| = 1) \\
 (P_X - \hat{s}|| = 1) \\$

For $E \in Part_{\mathbb{N}}$ define two coarser partitions, E^{even} and E^{odd} , by (with $E_{-1} := \emptyset$)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● のへで

For $E \in Part_{\mathbb{N}}$ define two coarser partitions, E^{even} and E^{odd} , by (with $E_{-1} := \emptyset$)

$$E_n^{\text{even}} := E_{2n} \cup E_{2n+1},$$
$$E_n^{\text{odd}} := E_{2n-1} \cup E_{2n}.$$

Lemma 9.7.6 Let *H* be a Hilbert space with an orthonormal basis ξ_n , for $n \in \mathbb{N}$. For a sequence a_n , for $n \in \mathbb{N}$ in $\mathcal{B}(H)$ there are $E \in \operatorname{Part}_{\mathbb{N}}$, $a_n^0 \in \mathcal{D}[E^{\operatorname{even}}]$ and $a_n^1 \in \mathcal{D}[E^{\operatorname{odd}}]$ such that $a_n - a_n^0 - a_n^1$ is compact for each *n*.

Sar

FX QEB(H/. Will find M(0) < 4(1/ < ... F:x N(0) =/, N(1/=2 $(E_{j}= [u(i), u(j+i)])$ ap= is cict REQ is cret. Find N(2/ So Flot $(r_R = Proj STOG (S; li < ks))$ (Ku/ is an allow unit for K(H/.) Find W(21 So that $||V_{u(2)}| \subseteq P_{2oS}^{E} - e_{2o(1)}^{E} || < 2^{-2}$ $\| V_{u(2)} \|_{l_{2}}^{E} a - \|_{l_{2}}^{E} a \| \leq 2^{-2}$ (next time)

