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A few facts on ultrapowers that follow from what was covered in
class (U, V are nonprincipal ultrafilters on N).

1. If Ais a separable C*-algebra, A < C, C is countably
saturated, and x(C) = Ny, then C = Ay

2. The set {Th(A)|A is a separable C*-algebra} is a
weak*-closed subset of the space of characters on the algebra
of all sentences over (). (Hint: to$ + Lowenheim—Skolem.)

3. CH implies that [, _;, An =11,y Bn if and only if
lim,_zs Th(Ap) = lim,_y Th(B,).

4. If x(C) =Ny and C is countably saturated, then C is the
union of an increasing chain of separable elementary
submodels C, such that C = (C,)y for all a. (Notably, in
some cases it is possible to choose C,’'s so that they are
nonisomorphic. This follows from the fact that there is no
universal separable C*-algebra (Junge—Pisier).)



Automorphisms of the Calkin algebra Q(H)

——
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If a € B(H) we'll write a for 7w(a) (this slide only). &4 75\ /ﬁ

Thm (Brown—Douglas—Fillmore, 1970's) If a and b are norma/

operators in B(H), the following are equivalent. "
1. There is ® € Aut(Q(H)), ®(3) = b. )= _
g Therem®e Al 9@ =0 CHE) =l
z%' There is a unitary t in Q(H), uau™ = b. R —
3. sp(a) = sp b).
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Prop ~C.6.5 [If a is Fredholm and w(a) = w(b), then b is
Fredholm and T

dim ker(a) — dim ker(a*) = dim ker(b) — dim ker(b*)
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The Fredholm index of a Fredholm operator a is

index(a) := dim ker(a) — dim ker(a*).
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An operator a is Fredholm if a is invertible in Q(H).

Prop ~C.6.5 [If a is Fredholm and w(a) = w(b), then b is
Fredholm and

dim ker(a) — dim ker(a*) = dim ker(b) — dim ker(b*)

The Fredholm index of a Fredholm operator a is
index(a) := dimker(a) — dim ker(a").
Fact. index(a*) = —index(a), index(ab) = index(ba).

Thus GL(Q(H)) — Z @ iM is a group homomorphism,
and index(uav) = index(a) for all & € U(Q(H)) and Fredholm a.




An operator a € B(H) is essentially normal if aa* = a*a.
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Fact
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An operator a € B(H) is essentially normal if aa* = a*a.
If &, is an orthonormal basis for H, the unilateral shift s is defined
by s&, = &,41 for all n.

Fact
s*s = 1B(H)r but ss* # 1B(H)r but{ S5k — S*S\l: 1Q(H)-
Fact

The unilateral shift is essentially normal, but not normal.
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A model-theoretic approach to the BDF question?
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A model-theoretic approach to the BDF question?

Question (Brown—Douglas—Fillmore) Is there ® € Aut(Q(H)) such
that ®(s) = s*? (l.e., is there a K-theory reversing automorphism

of Q(H)?)

Does Q(H) have outer automorphisms?

Question

L. Is typeg()(s/0) = typeg()(s*/0)?
2. If a is Fredholm, can one recover index(a) from typeg(H)(a)?

Remark

1. A negative answer to (1) would imply that ®(s) # ®(s*) for
all & € Aut(Q(H))

2. Since Q(H) is not countably saturated, and even not
countably homgge\neo_m?é'ﬁbe’rg), a positive answer to

(2) would be inconclusive.



A short intermission

If a is Fredholm, one can recover |index(a)| from typeg(H)(a).

Exercise. For every u € U(Q(H)) either u = exp(ia) for some
_Q < a < 27, or there is m € N such that v has an n-th root iff n|m

for all n > 2.




A short intermission

If a is Fredholm, one can recover |index(a)| from typeg(H)(a).

Exercise. For every u € U(Q(H)) either u = exp(ia) for some

0 < a < 2m, or there is m € N such that v has an n-th root iff njm
for all n > 2.

For every supernatural number x (i.e., a formal product

x =11, prime pkP) 0 < k(p) < 00) there exists u € U(Q(H)u)
such that u has an n-th root if and only if n|x, for all n > 2.

—_—
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A deep and beautiful theorem of W.H. Woodin suggests that if
there is an outer automorphism of Q(H) in some model of ZFC
then there is an outer automorphism of Q(H) in every model of
ZFC that satisfies CH. (Similarly for a K-theory reversing
automorphism of Q(H).)

Thm (Phillips—Weaver, 2008) CH implies that Q(H) has 2™ outer
automorphisms.

The proof resembles the construction of 28t automorphisms of A,
using CH, with two differences:
1. Every partial isomorphism occurring in the construction is
implemented by a unitary.
2. At the limit stages an intricate KK-theoretic (homotopy)
argument is used to find an implementing unitary.

Exercise. Fix n > 2. All unital copies of M,(C) in Q(H) are
unitarily equivalent. There are n homotopy classes of such unital
copies.

I'll present an (arguably) simpler proof of the Phillips—Weaver

TheaAaram



A warm-up: o-directed posets
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Lemma 8.5.6 If a directed poset P is partitioned into finitely many
pieces, then at least one of them is cofinal.
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bounded above. (Caveat: This is strictly weaker than ‘every
countable subset has a supremum’.)



A warm-up: o-directed posets

Lemma 8.5.6 If a directed poset P is partitioned into finitely many
pieces, then at least one of them is cofinal.

Def A partial ordering is o-directed if every countable subset is
bounded above. (Caveat: This is strictly weaker than ‘every
countable subset has a supremum’.)

Lemma 9.5.2 If a o-directed poset is partitioned into countably
many pieces, then at least one of them is cofinal.



Stratifying OQ(H); the poset Party (§9.7) N N
)
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Let Party denote the set of all partitions E of a\cofinat subset of N
—

into finite intervals:

E=(E:jeN)
where E; = [n(j),n(j + 1)) and n(0) < n(1) < n(2) < ... arein N.
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Let Party denote the set of all partitions E of a cofinal subset of N
into finite intervals:

E=(E:jeN)
where E; = [n(j),n(j + 1)) and n(0) < n(1) < n(2) < ... arein N.

Def 9.7.2 On Party define

E <*F if (V*°m)(3n)E, C Fp,, and

E<* F if (V°n)(dm)E, C Fp,.
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Stratifying O(H); the poset Party (§9.7)

Let Party denote the set of all partitions E of a cofinal subset of N
into finite intervals:

E=(E:jeN)
where E; = [n(j),n(j + 1)) and n(0) < n(1) < n(2) < ... arein N.

Def9.7.2 On Party define
f(voom)(an)En C , and
<&* F if (V©°n)(dm)E, C F,,.

E<*Fif (VOOI')(EU)E,' UJEii1 C FJ U Fj_|_1.

Lemma (~/9.7.1) The poset (Party, <*) is o-directed.
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Stratifying O(H); the poset Party (§9.7)

Let Party denote the set of all partitions E of a cofinal subset of N
into finite intervals:

E=(E:jeN)
where E; = [n(j),n(j + 1)) and n(0) < n(1) < n(2) < ... arein N.
Def 9.7.2 On Party define
E <*F if (v*°m)(3n)E, C F,,, and
E<* F if (V°n)(3m)E, C Fp,.
E<*Fif (VOOI')(EU)E,' UJEii1 C FJ U Fj-l—l-

Lemma (/9.7.1) The poset (Party, <*) is o-directed.
The orders <* and <* agree on Party.
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Let Party denote the set of all partitions E of a cofinal subset of N
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Def 9.7.5 Consider H with an orthonornal basi’ For
E € Party and X C N /et N

E . i
Px -— projspﬁ{fi:iEUneX En}s

and let

DIE] :={a € B(H) : (Vm)(Vn)((alm|&n) # O implies EIJ){m n} C )}
AlE] = {30 AP Q) € b} (= w*{px XCN}>
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Von Neumann Algebras D[E] (§9.7.1).

Def 9.7.5 Consider H with an orthonornal basis (&,). For
E € Party and X C N /et

E . I
Px -= PrOJspan{¢;:ieU,ex En}’

and let
DIE] := {a € B(H) : (ym)(¥n)((abm|€n) # O implies (3)){m, n} € E)},
A[E] = {3, AbEy (M) € £} (= WH{pE : X C }).

Lemma DIE]| is a von Neumann (i.e.,ﬂOT—closed, self-adjoint)

subalgebra of B(H), and Al[E]| is its centre.
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Def 9.7.5 Consider H with an orthonornal basis (&,). For
E € Party and X C N /et

E . I
Px -= PrOJspan{¢;:ieU,ex En}’

and let
DIE] = {a € B(H) : (Ym)(¥n)((amlén) # O implies (3j){m, n} C E))},
AE] = {3, AnpEy [(Mn) € £} (= W*{pE : X T N)).

Lemma DIE]| is a von Neumann (i.e., WOT-closed, self-adjoint)

subalgebra of B(H), and Al[E]| is its centre.
Proof: DIE| = [],, Mn)(C), with k(n) := |E,|, and
A[E] = [1,, Cl (). — @
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Von Neumann Algebras D[E] (§9.7.1).

Def 9.7.5 Consider H with an orthonornal basis (&,). For
E € Party and X C N /et

E . I
Px -= PrOJspan{¢;:ieU,ex En}’

and let
DIE] :={a € B(H) : (vm)(Vn)((am|En) # O implies (3j){m, n} C E;)},
ALE] = {5, MpEy (M) € £} (= WH{pE - X T N)).

Lemma DIE]| is a von Neumann (i.e., WOT-closed, self-adjoint)

subalgebra of B(H), and Al[E]| is its centre.

Proof: DIE| = [],, Mn)(C), with k(n) := |E,|, and
AlE] = [1, Clkn).

Fact

The unilateral shift s is not in D[E]/(K(H) N DIE]) for any
E € Party. - ‘







For E € Party define two coarser partitions, ESV® and E°%4, by
(with E_;1 :=0)

even ,_
En . E2n U E2n+1,

ﬂdd = Exp_1 U Eap.

el

n(3)
n(4)-

n(5)-

n(6);

n(7);
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For E € Party define two coarser partitions, E°V*" and podd by
(Wlth E_ = @)

E;" = Epn U Epy,
Er?dd = E2n_1 U Egn.

o fan
n(3){ '4-+--F---

n(4)-

- - 9- A
T
|

n(5)- S O
n(6): i

n(7)- e i———

Lemma 9.7.6 Let H be a Hilbert space with an orthonormal basis
En, forn € N For a sequence a,,, for n € N in B(H) there are

E € Party, a € D[E®*"] and al € D[E°IY] such that an — ¥ —al
IS compactmﬁ_‘“
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