
Massive C⇤
-algebras, Winter 2021, I. Farah, Lecture 7

Today we’ll prove a version of Keisler’ 1960s result that in some

model of ZFC all ultrapowers of a fixed separable C⇤
-algebra

associated with nonprincipal ultrafilters on N are isomorphic, unless

ZFC is inconsistent. The last part of the previous sentence can be

safely ignored for the purposes of this course.

(We are covering parts of Chapter 16, §16.6 and §16.7 in particular.)

1. We’d like to extend the back-and-forth method to the

uncountable.

2. Cantor’s theorem fails for uncountable dense linear

orderings—there are both trivial and nontrivial

counterexamples.

The plan for today’s lecture:

1. Explore an obstruction for extending a partial isomorphism.

2. Introduce @1 and the Continuum Hypothesis.

3. Use model theory (with a pinch of set theory) to analyze what an

isomorphism between nonseparable C⇤
-algebras looks like.

 



Let’s see what obstructions one can encounter when trying to

extend partial isomorphisms.

Example (J. McCarthy) There are separable C⇤
-subalgebras

A  B  Q(H) and a
⇤
-isomorphism

1
� : A ! Q(H) that does not

have an extension to a
⇤
-isomorphism of B into Q(H).

Proof: If u is a unitary, then C⇤
(u) ⇠= C (sp(u)), and sp(u) is a

closed subset of T = {z 2 C||z | = 1}.

1I’ll follow the operator-algebraic convention: An isomorphism is not
necessarily onto.
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@1

Lemma Any two uncountable well-orderings with the property

that each proper initial segment is countable are isomorphic.

Proof: Zorn’s lemma.

We’ll write @1 to denote the unique uncountable well-ordering all

of whose proper initial segments are countable (this is @1 as an

ordinal; its elements are (identified with) countable ordinals).

Thus the set of all countable ordinals therefore comes with a

well-ordering of type @1.
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The Continuum Hypothesis

Def Sets X and Y have the same cardinality (|X | = |Y |) if there
is a bijection f : X ! Y .

We’ll write @1 to denote the least uncountable cardinal (this is @1

as a cardinal).

Write c := |R|.

Example E ach of the following sets has cardinality c: R, C P(N),
C ([0, 1]), C (X ) (X cpct metrizable), `2(N), `1(N), L1(Lebesgue),

B(`2(N)), Q(`2(N)), Borel(R), for any separable (C⇤
-algebra) A: A,

M(A) A, M(A)/A (if A is non-unital), FA,. . .

CH will stand for either of the following:

1. For every X ✓ R, if X is uncountable then |X | = c.

2. Every set of cardinality c has a well-ordering such that every proper

initial segment is countable (i.e., a well-ordering of type @1).

These two assertions are equivalent, but (1) ) (2) requires (some form

of the) Axiom of Choice.
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The density character � of a topological space is the least

cardinality of a dense subset.

�(A) = @0 , A is separable.

Lemma If A is separable and infinite-dimensional, then A
U
has

density character c. (U stands for a nonprincipal ultrafilter on N.)

Proof: Let {0, 1}<N
denote the (countable) set of finite binary sequences.

We will now proceed to see what an isomorphism between algebras

of density character @1 has to look like.
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Approximate intertwining is of no use with nonseparable structures.

Lemma If x↵, for ↵ < @1, is a Cauchy net in a metric space then

it is eventually constant, and therefore convergent.

Therefore, if �↵ : A ! B, for ↵ < @1, is a point-norm convergent

net of
⇤
-homomorphisms, then (�↵(a))↵ is eventually constant for

every a 2 A.
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A model theory refresher

Recall that FA is the algebra of formulas over A. If A  C and b̄ is

in C
n
, then typeC (b̄/A) is the functional ' 7! 'C

(b̄) on

FA = {'(x̄) 2 FA|x̄ is of the same sort as b̄}.

Def If B  C, we say that B is an elementary submodel of C ,

and write B � C, if 'B
(b̄) = 'C

(b̄) for all ' 2 FB . (Equiv., for all

' 2 FA, for a fixed A  B.)

In other words, if B  C then B � C if typeC (b̄/;) = typeB(b̄/;)
for all b̄ in B .

Exercise. If A � B and u is a unitary in A, then u has a square

root in A if and only if it has a square root in B .

Exercise. (Requires familiarity with the Cuntz–Pedersen nullset.) If

A � C then every tracial state of A has an extension to a tracial

state of C .
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Some � : A ! B is an elementary embedding if

 A
(ā) =  B

(�(ā))

for every formula  and every ā of the appropriate sort.

(Equivalently, � is an elementary embedding if it is injective and

�[A] � B .)

A formula with no free variables is a sentence. The theory of A is

Th(A) = {' 2 F;, |' is a sentence and 'A
= 0}.

We can identify it as the functional on the algebra of all sentences,

i.e., with the type of the empty sequence over the empty set.

We say that A ⌘ B (A is elementarily equivalent to B) if

Th(A) = Th(B).

Exercise. For all A and B , A ⌘ B if and only if for every type t

over ;, t is approximately finitely satisfiable in A if and only if it is

approximately finitely satisfiable in B .
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A C⇤
-algebra is UHF if it is unital and an inductive limit of full

matrix algebras, Mn(C).
A C⇤

-algebra is AF if it is an inductive limit of finite-dimensional

C⇤
-algebras.

Exercise. If A and B are (separable) UHF algebras, then A ⇠= B if

and only if A ⌘ B .

Fact

There are unital, separable, AF algebras A and B such that A ⌘ B

and A 6⇠= B.

The proof of this fact is purely existential; no concrete example of

a pair of such algebras is known. (Analogous remark applies to the

Kirchberg algebras.)
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Lemma (Downward Löwenheim–Skolem Theorem) If C is a

nonseparable C⇤
-algebra and X ✓ C is countable, then there is a

separable A � C such that X ✓ A.

The proof relies on the following:

Thm D.1.3 (The Tarski–Vaught test) If B  A then B � A if and

only if for every formula '(x , z̄) and every b̄ in B of the

appropriate sort,

inf
x2A,kxk1

'A
(x , b̄) � inf

x2B,kxk1
'A

(x , b̄).

Lemma If C is a C⇤
-algebra of density character @1, then

C =
S

↵<@1
C↵ for a continuous @1-chain of separable elementary

submodels C↵, for ↵ < @1.

(Continuous means that C� = lim↵<� C↵ for every limit ordinal �.)

Exercise. If A has density character @1 and it is the union of a continuous

chain (A↵)↵<@1 of separable substructures, then C0
:= {A↵|A↵ � A} is a

continuous chain of separable substructures and A =
S
C0
.

I
A Machado method
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What an isomorphism has to look like

Lemma Suppose that A and B have density character @1 and �

is an isomorphism from A onto B. Then A and B can be

represented as increasing unions of countable chains of separable

elementary substructures, A =
S

↵ A↵, B =
S

↵ B↵, so that

�[A↵] = B↵ for all ↵.
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