Massive C*-algebras, Winter 2021, I. Farah, Lecture 7

Today we'll prove a version of Keisler' 1960s result that in some model of ZFC all ultrapowers of a fixed separable C*-algebra associated with nonprincipal ultrafilters on \mathbb{N} are isomorphic, unless ZFC is inconsistent. The last part of the previous sentence can be safely ignored for the purposes of this course.
(We are covering parts of Chapter $16, \S 16.6$ and $\S 16.7$ in particular.)

1. We'd like to extend the back-and-forth method to the uncountable.
2. Cantor's theorem fails for uncountable dense linear orderings-there are both trivial and nontrivial counterexamples.
The plan for today's lecture:
3. Explore an obstruction for extending a partial isomorphism.
4. Introduce \aleph_{1} and the Continuum Hypothesis.
5. Use model theory (with a pinch of set theory) to analyze what an isomorphism between nonseparable C^{*}-algebras looks like.

Let's see what obstructions one can encounter when trying to extend partial isomorphisms.

Example (J. McCarthy) There are separable C*-subalgebras $A \leq B \leq \mathcal{Q}(H)$ and a^{*}-isomorphism ${ }^{1} \Phi: A \rightarrow \mathcal{Q}(H)$ that does not have an extension to a^{*}-isomorphism of B into $\mathcal{Q}(H)$.

${ }^{1}$ I'll follow the operator-algebraic convention: An isomorphism is not necessarily onto.

Let's see what obstructions one can encounter when trying to extend partial isomorphisms.

Example (J. McCarthy) There are separable C*-subalgebras $A \leq B \leq \mathcal{Q}(H)$ and a^{*}-isomorphism ${ }^{1} \Phi: A \rightarrow \mathcal{Q}(H)$ that does not have an extension to a^{*}-isomorphism of B into $\mathcal{Q}(H)$.
Proof: If u is a unitary, then $\mathrm{C}^{*}(u) \cong C(\operatorname{sp}(u))$, and $\operatorname{sp}(u)$ is a closed subset of $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$.

$$
u^{x} L=u u^{D}=1
$$

$$
\begin{aligned}
& S p(R)=\mathbb{T} \\
& A=C^{*}(H)
\end{aligned}
$$

$$
z \bar{z}=1
$$

${ }^{1}$ I'll follow the operator-algebraic convention: An isomorphism is not necessarily onto.
$\frac{\exists u \in Q((\pi), \text { unitw, }}{\forall v \in Q(t) \quad v^{2} t u}$
Take u,

$$
\begin{aligned}
& A=C^{*}\left(u^{2}\right) \cong c^{*}(u) \\
& \phi\left(u^{2}\right)=u \\
& B=C^{*}(u)
\end{aligned}
$$

$$
\phi(u)
$$

$$
\begin{aligned}
\operatorname{sp}\left(u^{2}\right) & =\left\{t^{2} \mid t \in \operatorname{Se}(n)\right\} \\
& =\pi
\end{aligned}
$$

$$
Z(Q(H)) \rightarrow(Z, t)
$$

\aleph_{1}

Lemma Any two uncountable well-orderings with the property that each proper initial segment is countable are isomorphic.

\aleph_{1}

Lemma Any two uncountable well-orderings with the property that each proper initial segment is countable are isomorphic.

Proof: Zorn's lemma.

Lemma Any two uncountable well-orderings with the property that each proper initial segment is countable are isomorphic.

Proof: Zorn's lemma.
We'll write \aleph_{1} to denote the unique uncountable well-ordering all of whose proper initial segments are countable (this is \aleph_{1} as an ordinal; its elements are (identified with) countable ordinals). Thus the set of all countable ordinals therefore comes with a well-ordering of type \aleph_{1}.

The Continuum Hypothesis

Def Sets X and Y have the same cardinality $(|X|=|Y|)$ if there is a bijection $f: X \rightarrow Y$.
We'll write \aleph_{1} to denote the least uncountable cardinal (this is \aleph_{1} as a cardinal).
Write $\mathfrak{c}:=|\mathbb{R}|$.

The Continuum Hypothesis

Def Sets X and Y have the same cardinality $(|X|=|Y|)$ if there is a bijection $f: X \rightarrow Y$.

We'll write \aleph_{1} to denote the least uncountable cardinal (this is \aleph_{1} as a cardinal).
Write $\mathfrak{c}:=|\mathbb{R}|$.
Example E ach of the following sets has cardinality $\mathfrak{c}: \mathbb{R}, \mathbb{C} \mathcal{P}(\mathbb{N})$, $C([0,1]), C(X)(X$ cpct metrizable $), \ell_{2}(\mathbb{N}), \ell_{\infty}(\mathbb{N}), L_{\infty}($ Lebesgue $)$, $\mathcal{B}\left(\ell_{2}(\mathbb{N})\right), \mathcal{Q}\left(\ell_{2}(\mathbb{N})\right)$, Borel (\mathbb{R}), for any separable (C^{*}-algebra) A: A, $\mathcal{M}(A), \mathcal{M}(A) / A$ (if A is non-unital), \mathfrak{F}_{A}, \ldots

The Continuum Hypothesis

Def Sets X and Y have the same cardinality $(|X|=|Y|)$ if there is a bijection $f: X \rightarrow Y$.
We'll write \aleph_{1} to denote the least uncountable cardinal (this is \aleph_{1} as a cardinal).
Write $\mathfrak{c}:=|\mathbb{R}|$.
Example E ach of the following sets has cardinality $\mathfrak{c}: \mathbb{R}, \mathbb{C} \mathcal{P}(\mathbb{N})$, $C([0,1]), C(X)(X$ cpct metrizable $), \ell_{2}(\mathbb{N}), \ell_{\infty}(\mathbb{N}), L_{\infty}($ Lebesgue $)$, $\mathcal{B}\left(\ell_{2}(\mathbb{N})\right), \mathcal{Q}\left(\ell_{2}(\mathbb{N})\right), \operatorname{Borel}(\mathbb{R})$, for any separable (C^{*}-algebra) $A: A$, $\mathcal{M}(A) A, \mathcal{M}(A) / A$ (if A is non-unital), \mathfrak{F}_{A}, \ldots

CH will stand for either of the following:

1. For every $X \subseteq \mathbb{R}$, if X is uncountable then $|X|=\mathfrak{c}$.
2. Every set of cardinality \mathfrak{c} has a well-ordering such that every proper initial segment is countable (i.e., a well-ordering of type \aleph_{1}).

The Continuum Hypothesis

Def Sets X and Y have the same cardinality $(|X|=|Y|)$ if there is a bijection $f: X \rightarrow Y$.

We'll write \aleph_{1} to denote the least uncountable cardinal (this is \aleph_{1} as a cardinal).
Write $\mathfrak{c}:=|\mathbb{R}|$.
Example E ach of the following sets has cardinality $\mathfrak{c}: \mathbb{R}, \mathbb{C} \mathcal{P}(\mathbb{N})$, $C([0,1]), C(X)(X$ cpct metrizable $), \ell_{2}(\mathbb{N}), \ell_{\infty}(\mathbb{N}), L_{\infty}($ Lebesgue $)$, $\mathcal{B}\left(\ell_{2}(\mathbb{N})\right), \mathcal{Q}\left(\ell_{2}(\mathbb{N})\right)$, Borel($\left.\mathbb{R}\right)$, for any separable (C^{*}-algebra) $A: A$, $\mathcal{M}(A) A, \mathcal{M}(A) / A$ (if A is non-unital), \mathfrak{F}_{A}, \ldots

CH will stand for either of the following:

1. For every $X \subseteq \mathbb{R}$, if X is uncountable then $|X|=\mathfrak{c}$.
2. Every set of cardinality \mathfrak{c} has a well-ordering such that every proper initial segment is countable (i.e., a well-ordering of type \aleph_{1}).

These two assertions are equivalent, but (1) $\Rightarrow(2)$ requires (some form of the) Axiom of Choice.

The density character χ of a topological space is the least cardinality of a dense subset.
$\chi(A)=\aleph_{0} \Leftrightarrow A$ is separable.
Lemma If A is separable and infinite-dimensional, then $A^{\mathcal{U}}$ has density character \mathfrak{c}. (\mathcal{U} stands for a nonprincipal ultrafilter on \mathbb{N}.)

The density character χ of a topological space is the least cardinality of a dense subset.
$\chi(A)=\aleph_{0} \Leftrightarrow A$ is separable.
Lemma If A is separable and infinite-dimensional, then $A^{\mathcal{U}}$ has density character \mathfrak{c}. $(\mathcal{U}$ stands for a nonprincipal ultrafilter on \mathbb{N}.)

Proof: Let $\{0,1\}<\mathbb{N}$ denote the (countable) set of finite binary sequences.

$$
\begin{aligned}
& \begin{array}{c}
\left.130,1 s^{<N}\right)=S_{0} \mid<2,0,1,00,01, \\
A_{1} \text { is not totally hdd, ide., }
\end{array} \\
& \exists \varepsilon>0 \text { and } D \subseteq A, \quad|D|=S_{0} \\
& \|d-c\|>\varepsilon, \quad \forall d, c \text { in } D \text { (distinct'). }
\end{aligned}
$$

Envmerote D as $d_{s}, s \in\left\{0_{1}()^{\circ N}\right.$
For $f \in\{0,1\}^{N}, \quad f i n \in\{0,1\}^{\infty}, k 4$.
Let $a_{f}=\left(d_{f i n}\right)_{n=0}^{\infty} \in l_{\infty}(A)$
If $f \neq 8$ then

$$
\xi_{u}\left|\left\|d_{\text {fiu }}-d_{\text {diu }}\right\|<\frac{\varepsilon}{2}\right| \notin U
$$

$a_{f / u}-a_{g} / u \|>\varepsilon / 2$
aflw $f \in\left\{0, \int^{N}\right.$ is c sulset of A^{u} of cond. $C .\left(2^{80}\right)$ So $\quad X\left(A^{n}\right) \geq C$
$\frac{\left|A^{u}\right| \underset{(!)}{\leq}\left|l_{\infty}(A)\right|=C}{x\left(A^{u}\right)=\left|A^{M}\right|=C}$

The density character χ of a topological space is the least cardinality of a dense subset.
$\chi(A)=\aleph_{0} \Leftrightarrow A$ is separable.
Lemma If A is separable and infinite-dimensional, then $A^{\mathcal{U}}$ pas density character \mathfrak{c}. (\mathcal{U} stands for a nonprincipal ultrafilter on \mathbb{N}.)
Proof: Let $\{0,1\}^{<\mathbb{N}}$ denote the (countable) set of finite binary sequences.
We will now proceed to see what an isomorphism between algebras of density character \aleph_{1} has to look like.

Elliott

Approximate intertwining is of no use with nonseparable structures.
Lemma If x_{α}, for $\alpha<\aleph_{1}$, is a Cauchy net in a metric space then it is eventually constant, and therefore convergent.

$$
\begin{aligned}
\exists \alpha_{n}<\gamma_{1}^{\prime}, & \forall s>\alpha_{n} \quad\left\|x_{s}-x_{\alpha_{n}}\right\|<\frac{1}{n} \\
\alpha=\operatorname{sug}_{n} \alpha_{n} & <S_{n} \\
& \forall s>\alpha \quad\left\|x_{s}-x_{\alpha}\right\|=0
\end{aligned}
$$

Approximate intertwining is of no use with nonseparable structures.
Lemma If x_{α}, for $\alpha<\aleph_{1}$, is a Cauchy net in a metric space then it is eventually constant, and therefore convergent.
Therefore, if $\Phi_{\alpha}: A \rightarrow B$, for $\alpha<\aleph_{1}$, is a point-norm convergent net of ${ }^{*}$-homomorphisms, then $\left(\Phi_{\alpha}(a)\right)_{\alpha}$ is eventually constant for every $a \in A$.

A model theory refresher

Recall that \mathfrak{F}_{A} is the algebra of formulas over A. If $A \leq C$ and \bar{b} is in \underline{C}^{n}, then $\operatorname{type}_{C}(\bar{b} / A)$ is the functional $\varphi \mapsto \varphi^{C}(\bar{b})$ on

$$
\mathfrak{F}_{A}=\left\{\varphi(\bar{x}) \in \mathfrak{F}_{A} \mid \bar{x} \text { is of the same sort as } \bar{b}\right\} .
$$

Def If $B \leq C$, we say that B is an elementary submodel of C, and write $B \preceq C$, if $\varphi^{B}(\bar{b})=\varphi^{C}(\bar{b})$ for all $\varphi \in \mathfrak{F}_{B}$. (Equiv., for all $\varphi \in \mathfrak{F}_{A}$, for a fixed $\overline{A \leq B}$.)
In other words, if $B \leq C$ then $B \preceq C$ if $\operatorname{type}_{C}(\bar{b} / \emptyset)=\operatorname{type}_{B}(\bar{b} / \emptyset)$ for all \bar{b} in B.

A model theory refresher

Recall that \mathfrak{F}_{A} is the algebra of formulas over A. If $A \leq C$ and \bar{b} is in C^{n}, then $\operatorname{type}_{C}(\bar{b} / A)$ is the functional $\varphi \mapsto \varphi^{C}(\bar{b})$ on

$$
\mathfrak{F}_{A}=\left\{\varphi(\bar{x}) \in \mathfrak{F}_{A} \mid \bar{x} \text { is of the same sort as } \bar{b}\right\} .
$$

Def If $B \leq C$, we say that B is an elementary submodel of C, and write $B \preceq C$, if $\varphi^{B}(\bar{b})=\varphi^{C}(\bar{b})$ for all $\varphi \in \mathfrak{F}_{B}$. (Equiv., for all $\varphi \in \mathfrak{F}_{A}$, for a fixed $A \leq B$.)
In other words, if $B \leq C$ then $B \preceq C$ if $\operatorname{type}_{C}(\bar{b} / \emptyset)=\operatorname{type}_{B}(\bar{b} / \emptyset)$ for all \bar{b} in B.

Exercise. If $A \preceq B$ and u is a unitary in A, then u has a square root in A if and only if it has a square root in B.

Exercise. (Requires familiarity with the Cuntz-Pedersen nullset.) If $A \prec C$ then every tracial state of A has an extension to a tracial state of C.

Some $\Phi: A \rightarrow B$ is an elementary embedding if

$$
\psi^{A}(\bar{a})=\psi^{B}(\Phi(\bar{a}))
$$

for every formula ψ and every \bar{a} of the appropriate sort.
(Equivalently, Φ is an elementary embedding if it is infective and $\Phi[A] \preceq B$.)
elicu. eccl.)

Some $\Phi: A \rightarrow B$ is an elementary embedding if

$$
\psi^{A}(\bar{a})=\psi^{B}(\Phi(\bar{a}))
$$

for every formula ψ and every \bar{a} of the appropriate sort.
(Equivalently, Φ is an elementary embedding if it is injective and $\Phi[A] \preceq B$.)
A formula with no free variables is a sentence. The theory of A is

$$
\operatorname{Th}(A)=\left\{\varphi \in \mathfrak{F}_{\emptyset}, \mid \varphi \text { is a sentence and } \varphi^{A}=0\right\}
$$

We can identify it as the functional on the algebra of all sentences, ie., with the type of the empty sequence over the empty set.
We say that $\bar{A} \equiv B(A$ is elementarily equivalent to $B)$ if $\operatorname{Th}(A)=\operatorname{Th}(B)$.

Some $\Phi: A \rightarrow B$ is an elementary embedding if

$$
\psi^{A}(\bar{a})=\psi^{B}(\Phi(\bar{a}))
$$

for every formula ψ and every \bar{a} of the appropriate sort.
(Equivalently, Φ is an elementary embedding if it is injective and $\Phi[A] \preceq B$.)
A formula with no free variables is a sentence. The theory of A is

$$
\operatorname{Th}(A)=\left\{\varphi \in \mathfrak{F}_{\emptyset}, \mid \varphi \text { is a sentence and } \varphi^{A}=0\right\} .
$$

We can identify it as the functional on the algebra of all sentences, i.e., with the type of the empty sequence over the empty set.

We say that $A \equiv B$ (A is elementarily equivalent to B) if $\mathrm{Th}(A)=\operatorname{Th}(B)$.
Exercise. For all A and $B, A \equiv B$ if and only if for every type $\mathrm{t}(\bar{X})$ over \emptyset, t is approximately finitely satisfiable in A if and only if it is approximately finitely satisfiable in B.

A C ${ }^{*}$-algebra is UHF if it is unital and an inductive limit of full matrix algebras, $M_{n}(\mathbb{C})$.
A C* -algebra is AF if it is an inductive limit of finite-dimensional C^{*}-algebras.

A C ${ }^{*}$-algebra is UHF if it is unital and an inductive limit of full matrix algebras, $M_{n}(\mathbb{C})$.
A C*-algebra is AF if it is an inductive limit of finite-dimensional C^{*}-algebras.
Exercise. If A and B are (separable) UHF algebras, then $A \cong B$ if and only if $A \equiv B$.

A C*-algebra is UHF if it is unital and an inductive limit of full matrix algebras, $M_{n}(\mathbb{C})$.
A C*-algebra is AF if it is an inductive limit of finite-dimensional C^{*}-algebras.
Exercise. If A and B are (separable) UHF algebras, then $A \cong B$ if and only if $A \equiv B$.

Fact
There are unital, separable, AF algebras A and B such that $A \equiv B$ and $A \not \equiv B$.

A C*-algebra is UHF if it is unital and an inductive limit of full matrix algebras, $M_{n}(\mathbb{C})$.
A C*-algebra is AF if it is an inductive limit of finite-dimensional C^{*}-algebras.

Exercise. If A and B are (separable) UHF algebras, then $A \cong B$ if and only if $A \equiv B$.

Fact
There are unital, separable, $A F$ algebras A and B such that $A \equiv B$ and $A \not \equiv B$.
The proof of this fact is purely existential; no concrete example of a pair of such algebras is known. (Analogous remark applies to the Kirchberg algebras.)

Lemma (Downward Löwenheim-Skolem Theorem) If C is a nonseparable C^{*}-algebra and $X \subseteq C$ is countable, then there is a separable $A \prec C$ such that $X \subseteq A$.

Lemma (Downward Löwenheim-Skolem Theorem) If C is a nonseparable C^{*}-algebra and $X \subseteq C$ is countable, then there is a separable $A \prec C$ such that $X \subseteq A$.
The proof relies on the following:
Chm D.1.3 (The Tarski-Vaught test) If $B \leq A$ then $B \preceq A$ if and only if for every formula $\varphi(x, \bar{z})$ and every \bar{b} in B of the appropriate sort,

$$
\begin{aligned}
& \left|\sigma_{\sigma}\right|=C \\
& \left(\bar{x}_{n}\right) \quad y \in x \\
& \varphi_{n}\left(\bar{x}_{n}, z\right) \\
& \|\varphi\|=\sup _{A, \bar{a}}^{\|}\left\|\varphi^{A}(\bar{a})\right\| \\
& F_{\infty} \text { is } 11-11-5 i n \\
& \frac{\delta: \mathbb{R}^{4} \rightarrow \mathbb{R}}{\sup (g) \underline{c / c t}} \\
& \text { Stone-he denstrac), } \\
& w(0, g \text { is a nolshou, }
\end{aligned}
$$

Lemma (Downward Löwenheim-Skolem Theorem) If C is a nonseparable C^{*}-algebra and $X \subseteq C$ is countable, then there is a separable $A \prec C$ such that $X \subseteq A$.
The proof relies on the following:
Thm D.1.3 (The Tarski-Vaught test) If $B \leq A$ then $B \preceq A$ if and only if for every formula $\varphi(x, \bar{z})$ and every \bar{b} in B of the appropriate sort,

$$
\inf _{x \in A,\|x\| \leq 1} \varphi^{A}(x, \bar{b}) \geq \inf _{x \in B,\|x\| \leq 1} \varphi^{A}(x, \bar{b})
$$

Lemma If C is a C^{*}-algebra of density character \aleph_{1}, then $C=\bigcup_{\alpha<\aleph_{1}} C_{\alpha}$ for a continuous \aleph_{1}-chain of separable elementary submodels C_{α}, for $\alpha<\aleph_{1}$.

$$
C_{3}=\overline{\bigcup_{\alpha} C_{B}}
$$

(Continuous means that $C_{\beta}=\lim _{\alpha<\beta} C_{\alpha}$ for every limit ordinal β.)

Lemma (Downward Löwenheim-Skolem Theorem) If C is a nonseparable C^{*}-algebra and $X \subseteq C$ is countable, then there is a separable $A \prec C$ such that $X \subseteq A$.
The proof relies on the following:
Thm D.1.3 (The Tarski-Vaught test) If $B \leq A$ then $B \preceq A$ if and only if for every formula $\varphi(x, \bar{z})$ and every \bar{b} in B of the appropriate sort,

$$
\inf _{x \in A,\|x\| \leq 1} \varphi^{A}(x, \bar{b}) \geq \inf _{x \in B,\|x\| \leq 1} \varphi^{A}(x, \bar{b})
$$

Lemma If C is a C^{*}-algebra of density character \aleph_{1}, then
$C=\bigcup_{\alpha<\aleph_{1}} C_{\alpha}$ for a continuous \aleph_{1}-chain of separable elementapy submodels C_{α}, for $\alpha<\aleph_{1}$.
(Continuous means that $C_{\beta}=\lim _{\alpha<\beta} C_{\alpha}$ for every limit ordinal β.)
Exercise. If A has density character \aleph_{1} and it is the union of a continuous chain $\left(A_{\alpha}\right)_{\alpha<\aleph_{1}}$ of separable substructures, then $\mathcal{C}^{\prime}:=\left\{A_{\alpha} \mid A_{\alpha} \prec A\right\}$ is a continuous chain of separable substructures and $A=\bigcup C^{\prime}$.

What an isomorphism has to look like

Lemma Suppose that A and B have density character \aleph_{1} and Φ is an isomorphism from A onto B. Then A and B can be represented as increasing unions of countable chains of separable elementary substructures, $A=\bigcup_{\alpha} A_{\alpha}, B=\bigcup_{\alpha} B_{\alpha}$, so that $\Phi\left[A_{\alpha}\right]=B_{\alpha}$ for all α.

$$
P G \quad L_{e f} \quad A=A_{\alpha}^{\circ} \quad A_{\alpha}=W S_{\alpha}^{\circ}
$$

(serin. elem., caus chair.)

72607
Fix $s<0$,
$\downarrow r 1]<12$

$$
\begin{aligned}
& \phi^{-1}\left[B_{\alpha(0)}\right] \subseteq A_{\alpha(1)} \quad(\alpha(1)>\alpha(0)) \\
& \phi\left[A_{\alpha(1)}\right] \subseteq B_{\alpha(2)} \\
& \text { Find } \alpha(n), u \in N \geqslant \\
& B_{\alpha(2 k-2)} \subseteq \phi\left[A_{\alpha(2 k+1)}\right] \subseteq S_{\alpha(2 k)} \\
& \forall k \geqslant 1 \\
& \bigcup_{k} B_{\alpha}(2 h)=U \phi\left[A_{\alpha}(2 k+1)\right] \\
& =B_{\text {sun } \alpha(k)}=\phi\left[A_{\text {sur } \alpha(k)}\right] \\
& \text { This prosesthat } \\
& \left.\left\langle\gamma<\gamma_{1}^{\prime},\right| \phi\left[A_{r}\right]=B_{\gamma}\right\} \\
& \text { i) unhounded in } l_{1} \\
& \text { It is olso clood Cuader svas of } \\
& \text { CHle sulot, }
\end{aligned}
$$

