Massive C*-algebras, Winter 2021, |. Farah, Lecture 7

Today we'll prove a version of Keisler' 1960s result that in some
model of ZFC all ultrapowers of a fixed separable C*-algebra
associated with nonprincipal ultrafilters on N are isomorphic, unless
ZFC is inconsistent. The last part of the previous sentence can be
safely ignored for the purposes of this course.

(We are covering parts of Chapter 16, §16.6 and §16.7 in particular.)

1. We'd like to extend the back-and-forth method to the
uncountable.

2. Cantor's theorem fails for uncountable dense linear
orderings—there are both trivial and nontrivial
counterexamples.

The plan for today'’s lecture:

1. Explore an obstruction for extending a partial isomorphism.
2. Introduce ¥; and the Continuum Hypothesis.

3. Use model theory (with a pinch of set theory) to analyze what an
isomorphism between nonseparable C*-algebras looks like.



Let's see what obstructions one can encounter when trying to
extend partial isomorphisms.

Example (J. McCarthy) There are separable C*-subalgebras
A < B < Q(H) and a *-isomorphism* ®: A — Q(H) that does not
have an extension to a *-isomorphism of B into Q(H).

LI'll follow the operator-algebraic convention: An isomorphism is not
necessarily onto.



Let's see what obstructions one can encounter when trying to
extend partial isomorphisms.

Example (J. McCarthy) There are separable C*-subalgebras
A < B < Q(H) and a *-isomorphism* ®: A — Q(H) that does not
have an extension to a *-isomorphism of B into Q(H).

Proof: If u is a unitary, then C*(u) = C(sp(v)), and sp(u) is a
closed subset of T = {z € C||z| = 1}.
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LI'll follow the operator-algebraic convention: An isomorphism is not
necessarily onto.






Lemma Any two uncountable well-orderings with the property
that each proper initial segment is countable are isomorphic.



Lemma Any two uncountable well-orderings with the property
that each proper initial segment is countable are isomorphic.

Proof: Zorn's lemma.



Lemma Any two uncountable well-orderings with the property
that each proper initial segment is countable are isomorphic.

Proof: Zorn's lemma.

We'll write N1 to denote the unique uncountable well-ordering all
of whose proper initial segments are countable (this is X; as an
ordinal; its elements are (identified with) countable ordinals).
Thus the set of all countable ordinals therefore comes with a

well-ordering of type N;.




The Continuum Hypothesis

Def Sets X and Y have the same cardinality (|X| = |Y|) if there
is a bijection f: X — Y.

We'll write X to denote the least uncountable cardinal (this is N;
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as a cardinal).
Write ¢ := |R|. A C




The Continuum Hypothesis

Def Sets X and Y have the same cardinality (|X| = |Y|) if there
is a bijection f: X — Y.

We'll write X to denote the least uncountable cardinal (this is N;

as a cardinal).

Write ¢ := |R|.
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S~ =




The Continuum Hypothesis

Def Sets X and Y have the same cardinality (|X| = |Y|) if there
is a bijection f: X — Y.

We'll write X to denote the least uncountable cardinal (this is N;
as a cardinal).

Write ¢ := |R|.

Example E ach of the following sets has cardinality ¢: R, C P(N),
C([0,1]), C(X) (X cpct metrizable), {3(N), ¢~ (N), Lo (Lebesgue),
B(¢>(N)), Q(¢2(N)), Borel(R), for any separable (C*-algebra) A: A,
M(A) A, M(A)/A (if A is non-unital), Fa,. ..

CH will stand for either of the following:

1. For every X C R, if X is uncountable then |X| = ¢.

2. Every set of cardinality ¢ has a well-ordering such that every proper
initial segment is countable (i.e., a well-ordering of type N1).
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The Continuum Hypothesis

Def Sets X and Y have the same cardinality (|X| = |Y|) if there
is a bijection f: X — Y.

We'll write X to denote the least uncountable cardinal (this is N;
as a cardinal).

Write ¢ := |R|.

Example E ach of the following sets has cardinality ¢: R, C P(N),
C([0,1]), C(X) (X cpct metrizable), {3(N), ¢~ (N), Lo (Lebesgue),
B(¢>(N)), Q(¢2(N)), Borel(R), for any separable (C*-algebra) A: A,
M(A) A, M(A)/A (if A is non-unital), Fa,. ..

CH will stand for either of the following: é (//Z/

@or every X C R, if X is uncountable then |X| =¢.

@very set of cardinality ¢ has a well-ordering such that every proper
nitial segment is countable (i.e., a well-ordering of type Ny).

These two assertions are equivalent, but (1) = (2) requires (some form
of the) Axiom of Choice.



The density character x of a topological space is the least
cardinality of a dense subset.
X(A) = Xg < A is separable.

Lemma If A is separable and infinite-dimensional, then AU has
density character ¢. (U stands for a nonprincipal ultrafilter on N.)



The density character x of a topological space is the least
cardinality of a dense subset.

X(A) = Ng < A is separable.

Lemma If A is separable and infinite-dimensional, then AU has
density character ¢. (U stands for a nonprincipal ultrafilter on N.)

Proof: Let {0,1}<N denote the (countable) set of finite binary sequences.
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The density character x of a topological space is the least
cardinality of a dense subset.
X(A) = Xg < A is separable.

Lemma [If A is separable and infinite-dimensional, thes
density character ¢. (U stands for a nonprincipal ultrafilter on N.)

Proof: Let {0,1}<N denote the (countable) set of finite binary sequences.

We will now proceed to see what an isomorphism between algebras
of density character Ny has to look like.
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Approximate intertwining is of no use with nonseparable structures.

Lemma [If x,, for a« < Ny, is a Cauchy net in a metric space then
it is eventually constant, and therefore convergent.
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Approximate intertwining is of no use with nonseparable structures.

Lemma [If x,, for a« < Ny, is a Cauchy net in a metric space then
it is eventually constant, and therefore convergent.
Therefore, if ®,: A— B, for a < Ny, is a point-norm convergent

net of *~homomorphisms, then (®,(a)). is eventually constant for
every a € A.




A model theory refresher

Recall that §4 is the algebra of formulas over A. If A < C and b is
in C", then typec(b/A) is the functional ¢ — ©C(b) on

e,

Fa = {p(X) € Falx is of the same sort as b}.

Def [If B < C, we say t/lat B is an elementary submodel of C,
and write B < C, if oB(b) = ©(b) for all ¢ € Fg. (Equiv., for all
© € §p, fora fixed A< B.) ——

In other words, if B < C then B < C if type-(b/0)) = typeg(b/0)
for all bin B. -



A model theory refresher

Recall that §4 is the algebra of formulas over A. If A < C and b is
in C", then type(b/A) is the functional ¢ — ¢ (b) on

Fa = {p(X) € Falx is of the same sort as b}.

Def [If B < C, we say t/lat B is an elementary submodel of C,
and write B < C, if oB(b) = ©(b) for all ¢ € Fg. (Equiv., for all
w € §a, for a fixed A< B.)

In other words, if B < C then B < C if type-(b/0)) = typeg(b/0)
for all b in B.

Exercise. If A < B and u is a unitary in A, then u has a square
root in A if and only if it has a square root in B.

Exercise. (Requires familiarity with the Cuntz—Pedersen nullset.) If
A < C then every tracial state of A has an extension to a tracial
state of C. —



Some ®: A — B is an elementary embedding if
() = v°(0(3))

for every formula ) and every a %1% the appropriate sort.
(Equivalently,Q is an elementary embedding if it is injective and

9[A] < B)
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Some ®: A — B is an elementary embedding if
Y(3) = v°(0(3))

for every formula ¢ and every a of the appropriate sort:
(Equivalently, ® is an elementary embedding if it is injective and
S[A] < B.)

A formula with no free variables is a sentence. The theory of A is

(ar—_ 8

Th(A) = {p € Fp, ¢ is a sentence and o™ = 0}.
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We can identify it as the functional on the algebra of all sentences,
l.e., with the type of the empty sequence over the empty set.
We say that A = B (A is elementarily equivalent to B) if

F\—\

Th(A) = Th(B).
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Some ®: A — B is an elementary embedding if
Y(3) = v°(0(3))

for every formula ¢ and every a of the appropriate sort.
(Equivalently, ® is an elementary embedding if it is injective and
S[A] < B.)

A formula with no free variables is a sentence. The theory of A is

Th(A) = {p € §j, |¢ is a sentence and ™ = 0}.

We can identify it as the functional on the algebra of all sentences,
i.e., with the type of the empty sequence over the empty set.

We say that A = B (A is elementarily equivalent to B) if

Th(A) = Th(B).

Exercise. For all A and B, A= B if and only if for every type t(}é/
ovﬂ t is approximately ?lnlteiy Satisfiable in A if and only if itis
approximately finitely satisfiable in B. -




A C*-algebra is UHF if it is unital and an inductive limit of full
matrix algebras, M,(C).
A C*-algebra is AF if it is an inductive limit of finite-dimensional

C*-algebras.
e 10K, /3.5



A C*-algebra is UHF if it is unital and an inductive limit of full
matrix algebras, M,(C).

A C*-algebra is AF if it is an inductive limit of finite-dimensional
C*-algebras.

Exercise. If A and B are (separable) UHF algebras, then A= B if
and only if A= B.



A C*-algebra is UHF if it is unital and an inductive limit of full
matrix algebras, M,(C).

A C*-algebra is AF if it is an inductive limit of finite-dimensional
C*-algebras.

Exercise. If A and B are (separable) UHF algebras, then A= B if
and only if A= B.

Fact

There are unital, separable, AF algebras A and B such that A= B
and A % B.



A C*-algebra is UHF if it is unital and an inductive limit of full
matrix algebras, M,(C).

A C*-algebra is AF if it is an inductive limit of finite-dimensional
C*-algebras.

Exercise. If A and B are (separable) UHF algebras, then A= B if
and only if A= B.

Fact

There are unital, separable, AF algebras A and B such that A= B
and A % B.

The proof of this fact is purely existential; no concrete example of
a pair of such algebras is known. (Analogous remark applies to the
Kirchberg algebras.)



Lemma (Downward Lowenheim—Skolem Theorem) If C is a
nonseparable C*-algebra and X C C is countable, then there is a
separable A < C such that X C A.
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Lemma (Downward Lowenheim—Skolem Theorem) If C is a
nonseparable C*-algebra and X C C is countable, then there is a
separable A < C such that X C A.

The proof relies on the following: /§’< /r

Thm D.1.3 (The Tarski—Vaught test) If B < A then B < A if and
only if for every formula ¢(x, Z) and every b in B of the

appropriate sort
. b) A B).
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Lemma (Downward Lowenheim—Skolem Theorem) If C is a
nonseparable C*-algebra and X C C is countable, then there is a
separable A < C such that X C A.

The proof relies on the following:

Thm D.1.3 (The Tarski-Vaught test) If B < A then B < A if and
only if for every formula p(x,Zz) and every b in B of the
appropriate sort,

inf  ©*(x,b)> inf  ©A(x,b).
XEAI,WXHSl Lt (X ) o XEBI,ﬂngl 1t (X )
Cn A C{ 4(‘24//,

Lemma [f C is a C*-algebra of density character Ny, then C
Cc=U, <Ry C, for a continuous N1-chain of separable elementary

‘submodels C,,, for a < Nj. C ,(/Co<
4 <A
(Continuous means that Cg = lim,g C, for every limit ordinal j3.)
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Lemma (Downward Lowenheim—Skolem Theorem) If C is a
nonseparable C*-algebra and X C C is countable, then there is a
separable A < C such that X C A.

The proof relies on the following:

Thm D.1.3 (The Tarski-Vaught test) If B < A then B < A if and
only if for every formula p(x,Zz) and every b in B of the
appropriate sort,

inf Alx, b) > inf Ax, b).
XEA,HXHSlSO b by 2 X€B,IIXHS1¢ (x. b)

Lemma [f C is a C*-algebra of density character Ny, then
Cc=U, <Ry C, for a continuous Ni-chain of separable elemen
submodels C,, for o < Nj. Q((/

(Continuous means that Cg = lim,g C, for every limit ordinal j3.)

Exercise. If A has density character 8; and it is the union of a continuous
chain (Aa)a<y, Of separable substructures, then C’ := {A,|A, < A} is a
e

———

continuous chain of separable substructures and A = J&.



What an isomorphism has t

Lemma Suppose that A and B have density character N1 and ¢
is an isomorphism from A onto B. Then A and B can be
represented as increasing unions of countable chains of separable
elementary substructures, A =, Ao, B =J,, Ba, so that

P[A,] = B, foralla. -~ -
_— e

e Lt A fg/ﬁi (= U4

((5 [ €/Zéﬁ~ , C L b 0/‘1/./
I 07 Fix A< é/,
A=, — 7

o>

(



T l/ﬂ@ - [)ollb/

N V= D CIOF =)
¢[/%0(({/] < Ko((;/

Food ) wepy Sl

<
lék(?h*b/ - ?SEA%CLQf/)] = < (rhy
#Q?//

E/KbUﬁW = L/é[;a@ﬁﬂj
- /égl//oi(’% - M%umcﬂ

/

T b /"f #L ot
<k, ] dCk) =0b,)

() (/Lfé vadad (4 /((

f/‘ (- /J C//([ (UQJ// SV r o/
CH/() Y\///a/—//



