Massive C*-algebras, Winter 2021 Ilijas Farah. Lecture 5, January 25 Last class I said the following:

Prop (Exercise 15.6.4) Suppose C is infinite-dimensional and countably degree-1 saturated.

- 1. Then C is non-separable.
- 2. Every masa (maximal abelian C*-subalgebra) in C is nonseparable.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

3. C is not a von Neumann algebra.

Massive C*-algebras, Winter 2021 Ilijas Farah. Lecture 5, January 25 Last class I said the following:

Prop (Exercise 15.6.4) Suppose C is infinite-dimensional and countably degree-1 saturated.

- 1. Then C is non-separable.
- 2. Every masa (maximal abelian C*-subalgebra) in C is nonseparable.
- 3. C is not a von Neumann algebra.

... and all this is correct. The doubts I expressed were caused by the following.

Prop There exists a countably degree-1 saturated, infinite-dimensional C^* -algebra C whose center Z(C) is separable and infinite-dimensional. (Hence Z(C) is not countably degree-1 saturated.) Thm (Voiculescu) If A is a separable unital C*-subalgebra of $\mathcal{Q}(H)$, then $(A' \cap \mathcal{Q}(H))' = A$.

 $C(X) \qquad ((E_0, IJ) \hookrightarrow, Q(H)) \\ C = C(E_0, IJ) \land Q(H) \\ Z(C) = C(E_0, IJ) \end{cases}$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

Thm (Voiculescu) If A is a separable unital C*-subalgebra of $\mathcal{Q}(H)$, then $(A' \cap \mathcal{Q}(H))' = A$.

Quoting from Brown–Ozawa, C*-algebras and finite-dimensional approximations, Amer. Math. Soc., 2008:

1.7. Voiculescu's Theorem

Voiculescu's Theorem is analogous to the Hahn-Banach Theorem in two ways: It gets used all of the time; and it really refers to a collection of related results and corollaries.⁴ Here, we collect all the forms we need, though we only prove those which haven't yet appeared in a book.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ◇ ◇ ◇

Brown and Ozawa did not even state the above form of Voiculescu's theorem.

 $^{^{4}\}mathrm{Thirdly},$ some authors assume familiarity with all possible formulations and don't bother explaining which version is being invoked.

Thm (Voiculescu) If A is a separable unital C*-subalgebra of $\mathcal{Q}(H)$, then $(A' \cap \mathcal{Q}(H))' = A$.

Quoting from Brown–Ozawa, C*-algebras and finite-dimensional approximations, Amer. Math. Soc., 2008:

1.7. Voiculescu's Theorem

Voiculescu's Theorem is analogous to the Hahn-Banach Theorem in two ways: It gets used all of the time; and it really refers to a collection of related results and corollaries.⁴ Here, we collect all the forms we need, though we only prove those which haven't yet appeared in a book.

Brown and Ozawa did not even state the above form of Voiculescu's theorem.

Question [Pedersen] If C is the corona of a σ -unital C*-algebra and C is simple, does every separable unital C*-subalgebra A of C satisfy $(A' \cap C)' = A$?

(When is a corona simple? See the early work of Huaxin Lin.)

 $^{^{4}\}mathrm{Thirdly},$ some authors assume familiarity with all possible formulations and don't bother explaining which version is being invoked.

Ultrafilters, ultraproducts, ultrapowers

N Given a set \mathbb{J} , a filter \mathcal{U} on \mathbb{J} is ultrafilter if for every $Y \subseteq \mathbb{J}$ Def exactly one of Y and $\mathbb{J} \setminus Y$ belongs to \mathcal{U} . $\{\mathcal{Y} \subseteq \mathcal{J} \mid \mathcal{I} \in \mathcal{Y}\}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Ultrafilters, ultraproducts, ultrapowers

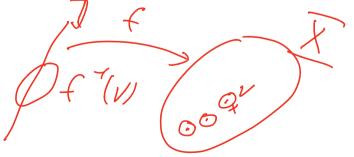
Def Given a set \mathbb{J} , a filter \mathcal{U} on \mathbb{J} is ultrafilter if for every $Y \subseteq \mathbb{J}$ exactly one of Y and $\mathbb{J} \setminus Y$ belongs to \mathcal{U} .

Lemma

If X is a compact Hausdorff space, \mathcal{U} is an ultrafilter on \mathbb{J} , and $f: \mathbb{J} \to X$, then there exists a unique $x \in X$ such that $f^{-1}(V) \in \mathcal{U}$ for every open $V \ni x$.

We write $x = \lim_{j \to \mathcal{U}} f(j)$.

 $\overline{\langle V | V \leq X, oley, f^{-1}(V) \in \mathcal{U} \rangle}$



<ロト < 同ト < ヨト < ヨト

Ultraproducts in analysis

Def D.2.14, C.7.1 Suppose \mathcal{U} is an ultrafilter on an index set \mathbb{J} , A_j , for $j \in \mathbb{J}$, are C^{*}-algebras. Then

$$c_{\mathcal{U}} = \{ a \in \prod_j A_j : \lim_{j \to \mathcal{U}} \|a_j\| = 0 \}$$

is a two-sided, self-adjoint, norm-closed ideal of $\prod_j A_j$, and the quotient

$$\prod_{\mathcal{U}} A_j := \prod_j A_j / c_{\mathcal{U}}$$

is the (norm) ultraproduct associated to \mathcal{U} . If all A_j are equal to some A, the ultraproduct is denoted $A_{\mathcal{U}}$ and called ultrapower.

Exercise. If A_j is unital for all $j \in \mathbb{J}$, then $\mathcal{M}(c_U) \cong \prod_j A_j$ and $\prod_{\mathcal{U}} A_j$ is isomorphic to the corona of c_U .

¹Or $A^{\mathcal{U}}$, we'll get back to the choice of the notation $\mathbb{A} \to \mathbb{A} = \mathbb{A} = \mathbb{A} = \mathbb{A} = \mathbb{A} = \mathbb{A}$

Languages, 1: terms

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Chang-Keisler: Model theory = logic + universal algebra Continuous model theory \approx functional analysis

Languages, 1: terms

Chang-Keisler: Model theory = logic + universal algebra Continuous model theory \approx functional analysis

Suppose A is a C*-algebra, $n \in I$, and $x_j, j \in \mathbb{N}$, are non-commuting variables. Each variable belongs to a *sort*: $x_{2^k(2j+1)}$ ranges over the *k*-ball. $A[\bar{x}]$ The algebra of *-polynomials in \bar{x} with coefficients in A.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Languages, 1: terms

Chang–Keisler: Model theory = logic + universal algebra Continuous model theory \approx functional analysis

Suppose A is a C*-algebra, $n \ge 1$, and x_j , $j \in \mathbb{N}$, are non-commuting variables. Each variable belongs to a *sort*: $x_{2^k(2j+1)}$ ranges over the k-ball. $A[\bar{x}]$: The algebra of *-polynomials in \bar{x} with coefficients in A. If $A \le B$ (with $1_A = 1_B$ if A is unital) then $P(\bar{x}) \in A[\bar{x}]$ defines the evaluation function $B_1^{\mathbb{N}} \mapsto B : \bar{b} \mapsto P(b_0, \dots, b_{n-1}).$

Def The elements of $A[\bar{x}]$ are called terms over A.

(We'll eventually expand the language, but for now this will do.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少へ⊙

Languages, 2: formulas

Def D.2.2 The space \mathfrak{F}_A of formulas over A is defined recursively:

- 1. The atomic formulas are expressions of the form $\|P(\bar{x})\|$, for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- 3. If φ is a formula, x is a variable of the appropriate sort, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas. The space \mathfrak{F}_A of formulas over A has an algebra structure.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Languages, 2: formulas

Def D.2.2 The space \mathfrak{F}_A of formulas over A is defined recursively:

- **1**. The atomic formulas are expressions of the form $||P(\bar{x})||$, for $P(\bar{x})$ a term over A.
 - 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- 3. If φ is a formula, x is a variable of the appropriate sort, and k < ∞, then both inf_{||x||≤k} φ and sup_{||x||≤k} φ are formulas.
 The space 𝔅_A of formulas over A has an algebra structure.
 If A ≤ B and φ(x̄) ∈ 𝔅_A, define the interpretation (i.e., evaluation) φ^B from (an appropriate sort of) B into ℝ.

Examples of formulas over $\ensuremath{\mathbb{C}}$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● のへで

Example

1. ||[x, y]||. 2. $\sup_{\|y\| \le 1} ||[x, y]||$. 3. $\sup_{\|x\| \le 1} \sup_{\|y\| \le 1} ||[x, y]||$. 4. $\sup_{\|x\| \le 1} |||x||^2 - ||xx^*|||$.

Examples of formulas over $\ensuremath{\mathbb{C}}$

Example

- 1. ||[x, y]||.
- 2. $\sup_{\|y\| \le 1} \|[x, y]\|$.
- 3. $\sup_{\|x\| \le 1} \sup_{\|y\| \le 1} \|[x, y]\|.$
- 4. $\sup_{\|x\| \le 1} |\|x\|^2 \|xx^*\||.$
- 5. We can expand the language by continuous functional calculus $\inf_{\|y\| \le k} \|x + \exp(i\pi y^* y)\|.$ $\sum \frac{\chi}{|y|}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

explusiexplish

Induction/recursion on complexity of the formula

In order to prove that all formulas in \mathfrak{F}_A have a certain property \mathbb{P} , it suffices to prove the following:

- 1. $\mathbb{P}(\varphi)$ for every atomic φ .
- 2. If $\mathbb{P}(\varphi_0), \ldots, \mathbb{P}(\varphi_{n-1})$ holds and \underline{g} is continuous, then $\mathbb{P}(\underline{g}(\varphi_0, \ldots, \varphi_{n-1}))$ holds.
- 3. If $\mathbb{P}(\varphi)$ holds and x is a variable, then $\mathbb{P}(\sup_{\|x\| \le k} \varphi)$ holds and $\mathbb{P}(\inf_{\|x\| \le k} \varphi)$ holds.

This is *induction on complexity of the formula*. Similarly, if one needs to <u>define</u> something for all formulas, this is usually done by *recursion on complexity of the formula*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Induction/recursion on complexity of the formula

In order to prove that all formulas in \mathfrak{F}_A have a certain property \mathbb{P} , it suffices to prove the following:

 P(φ) for every atomic φ.
 If P(φ₀),..., P(φ_{n-1}) holds and g is continuous, then P(g(φ₀,...,φ_{n-1})) holds.

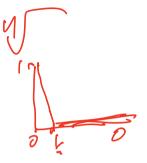
3. If $\mathbb{P}(\varphi)$ holds and x is a variable, then $\mathbb{P}(\sup_{\|x\| \le k} \varphi)$ holds and $\mathbb{P}(\inf_{\|x\| \le k} \varphi)$ holds.

This is *induction* on *complexity of the formula*. Similarly, if one needs to define something for all formulas, this is usually done by *recursion on complexity of the formula*.

Def If $\varphi(\overline{x})$ is in \mathfrak{F}_A , $A \leq \underline{B}, \overline{b}$ in \underline{B} of the same 'sort' as \overline{x} , define the interpretation $\varphi^{\overline{B}}(\overline{b})$ by recursion on complexity of φ .

On B^n consider the norm

$$\|\bar{x}\| := \max_{i < n} \|x_j\|.$$



Lemma D.2.3 To every term $P(\bar{x})$ over A and every formula $\varphi(\bar{x})$ over A one can associate a uniform continuity modulus so that if $A \leq B$ then the interpretations p^B and φ^B satisfy this uniform continuity modulus, and their ranges are bounded subsets of B and \mathbb{R} , respectively.

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x})$ is a formula over A, and $C := \prod_{\mathcal{U}} A_j$, then $\varphi^{C}(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for every $\bar{a} = (\bar{a}_j)_{j \in \mathbb{J}}$ in $\prod_{\mathcal{U}} A_j$ of the appropriate sort.

< ロ > < 同 > < E > < E > E の < C</p>

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x})$ is a formula over A, and $C := \prod_{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for every $\bar{a} = (\bar{a}_j)_{j \in \mathbb{J}}$ in $\prod_{\mathcal{U}} A_j$ of the appropriate sort.

< ロ > < 同 > < E > < E > E の < C</p>

Proof by induction on complexity:

1. Suppose $\varphi(\bar{x}) = \|P(\bar{x})\|$.

Thm 16.2.8, Łoś's Theorem If $A \leq A_i$ for all $j \in J$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x})$ is a formula over A, and $C := \prod_{\mathcal{U}} A_i$, then $\varphi^{C}(\bar{a}) = \lim_{i \to \mathcal{U}} \varphi^{A_{i}}(\bar{a}_{i})$ for every $\bar{a} = (\bar{a}_{i})_{i \in \mathbb{J}}$ in $\prod_{\mathcal{U}} A_{i}$ of the appropriate sort. $\begin{aligned} \lim_{s \to u} f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ \ell_{u} & \ell_{u} \\ f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u} \\ s \to u \end{array}\right) \\ & f\left(\begin{array}{ccc} \ell_{u} & \ell_{u}$

Proof by induction on complexity:

- 1. Suppose $\varphi(\bar{x}) = \|P(\bar{x})\|$.
- 2. Suppose $\varphi = f(\varphi_0, \dots, \varphi_{n-1})$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and each of $\varphi_0, \ldots, \varphi_{n-1}$ satisfies the conclusion.
- 3. Suppose $\varphi = \inf_{\|x\| \le k} \psi$, where ψ satisfies the conclusion.

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x})$ is a formula over A, and $C := \prod_{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for every $\bar{a} = (\bar{a}_j)_{j \in \mathbb{J}}$ in $\prod_{\mathcal{U}} A_j$ of the appropriate sort.

Proof by induction on complexity:

- 1. Suppose $\varphi(\bar{x}) = \|P(\bar{x})\|$.
- 2. Suppose $\varphi = f(\varphi_0, \ldots, \varphi_{n-1})$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and each of $\varphi_0, \ldots, \varphi_{n-1}$ satisfies the conclusion.
- 3. Suppose $\varphi = \inf_{\|x\| \le k} \psi$, where ψ satisfies the conclusion. $(\lim_{j \to U} \inf_{x} \le) \inf_{x} \lim_{j \to U} (\lim_{k \to U} \varphi)$ $\lim_{k \to U} \inf_{x} \varphi = \psi(x) = \psi$ $\lim_{k \to U} \lim_{k \to U} \varphi = \psi(x) = \psi$

 $Y = \left\{ j \left| \left| i h f \Psi'(X) - V \right| < \varepsilon \right\} \in \mathcal{U} \\ \| x \| \leq h$ $f: X \quad X_{j} \in A_{j} \quad (|X_{j}|| \leq h)$ $i \in \mathcal{Y}$ $\begin{aligned} & \left(\begin{array}{c} \left(\Psi'(x_{j}) - V \right) < \varepsilon & x = (\chi_{j}) \\ \Psi(x) = \lim_{i \to w} \left(\Psi^{-}(X_{i}) \geq V \\ i \to w \end{array} \right) \end{aligned}$

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x})$ is a formula over A, and $C := \prod_{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for every $\bar{a} = (\bar{a}_j)_{j \in \mathbb{J}}$ in $\prod_{\mathcal{U}} A_j$ of the appropriate sort.

Proof by induction on complexity:

- 1. Suppose $\varphi(\bar{x}) = \|P(\bar{x})\|$.
- 2. Suppose $\varphi = f(\varphi_0, \ldots, \varphi_{n-1})$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and each of $\varphi_0, \ldots, \varphi_{n-1}$ satisfies the conclusion.
- 3. Suppose $\varphi = \inf_{\|x\| \le k} \psi$, where ψ satisfies the conclusion. $(\lim_{j \to \mathcal{U}} \inf_* \le \inf_* \lim_{j \to \mathcal{U}})$ Suppose $\varphi = \sup_{\|x\| \le k} \psi$, where ψ satisfies the conclusion.

SUR 4 = - inf(-4/

3

Sar

Type as a functional

The algebra \mathfrak{F}_A of formulas over A can be endowed with a seminorm,

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

(The sup is taken over all $A \leq B$ and \overline{b} in B of the appropriate sort.) Let \mathfrak{W}_A be the Banach algebra obtained by quotienting and completing \mathfrak{F}_A with respect to $\|\cdot\|$.

T Z M

Type as a functional

The algebra \mathfrak{F}_A of formulas over A can be endowed with a seminorm,

$$\|arphi(ar{x})\| = \sup_{B,ar{b}} |arphi^B(ar{b})|.$$

(The sup is taken over all $A \leq B$ and \overline{b} in B of the appropriate sort.)

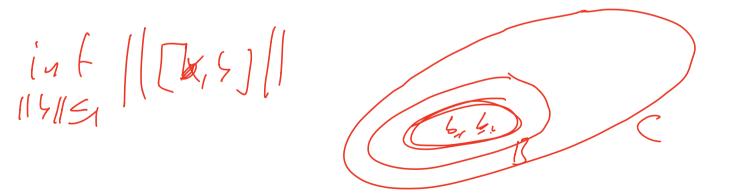
Let \mathfrak{W}_A be the Banach algebra obtained by quotienting and completing \mathfrak{F}_A with respect to $\|\cdot\|$.

Def 16.1.4, roughly If $A \leq C$ and $\overline{b} \in C^{\mathbb{A}}$, the type of \overline{b} is the evaluation character (with \overline{x} of the appropriate sort) on $\mathfrak{F}_{A}^{\widehat{x}} := \{\varphi(\overline{x}) | \varphi(\overline{x}) \in \mathfrak{F}_{A}\}:$ $\mathfrak{F}_{A}^{\overline{x}} \mapsto \mathbb{R} : \varphi(\overline{x}) \mapsto \varphi^{C}(\overline{b}).$

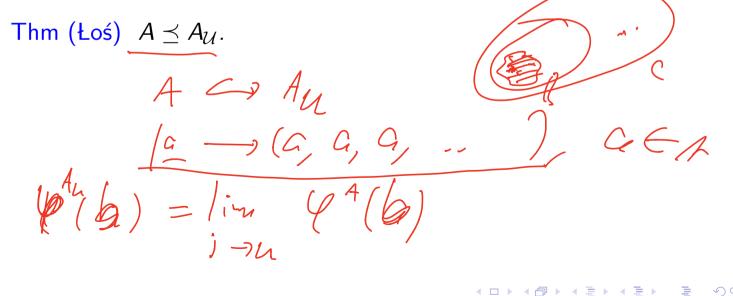
It is denoted type_C(\bar{b}/A).

The type of \overline{b} over A codes all first-order properties of \overline{b} with parameters in A.

Def If $B \leq C$, we say that B is an elementary submodel of C, and write $\underline{B} \prec \underline{C}$, if $\varphi^{B}(\overline{b}) = \varphi^{C}(\overline{b})$ for all $\varphi \in \mathfrak{F}_{\underline{B}}$. (Equiv., for all $\varphi \in \mathfrak{F}_{A}$, for a fixed $A \leq B$.)



Def If $B \leq C$, we say that B is an elementary submodel of C, and write $B \leq C$, if $\varphi^B(\bar{b}) = \varphi^C(\bar{b})$ for all $\varphi \in \mathfrak{F}_B$. (Equiv., for all $\varphi \in \mathfrak{F}_A$, for a fixed $A \leq B$.)



SQ P

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Def 16.1.2 A condition (over A) is an expression of the form $\varphi(\overline{x}) = r$ for $r \in \mathbb{R}$ and $\varphi(\overline{x})$ in \mathfrak{F}_A . A type (over A) is a set of conditions over A.

Def 16.1.2 A condition (over A) is an expression of the form $\varphi(x) = r$ for $r \in \mathbb{R}$ and $\varphi(x)$ in \mathfrak{F}_A . A type (over A) is a set of conditions over A. If $A \leq C$, a type $t(\bar{x})$ is realized in C if there exists \bar{b} of the appropriate sort in C such that every condition in $t(\bar{x})$ is satisfied by \bar{b} .

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Def 16.1.2 A condition (over A) is an expression of the form $\varphi(x) = r$ for $r \in \mathbb{R}$ and $\varphi(x)$ in \mathfrak{F}_A . A type (over A) is a set of conditions over A. If $A \leq C$, a type $t(\bar{x})$ is realized in C if there exists \bar{b} of the appropriate sort in C such that every condition in $t(\bar{x})$ is satisfied by \bar{b} . A type $t(\bar{x})$ is approximately realized (or satisfiable) in C if for every finite subset $t_0(\bar{x})$ of $t(\bar{x})$ and every $\varepsilon > 0$ there exists \bar{b} of the appropriate sort in C such that for every condition $\varphi(\bar{x}) = r$ in $t_0(\bar{x})$ we have $|\varphi^C(\bar{b}) - r| < \varepsilon$. Such \bar{b} is a partial realization of

 $t(\bar{x})$.

くしゃ 4 回 > 4 □ > 4

Def 16.1.2 A condition (over A) is an expression of the form $\varphi(x) = r$ for $r \in \mathbb{R}$ and $\varphi(x)$ in \mathfrak{F}_A . A type (over A) is a set of conditions over A. If $A \leq C$, a type $t(\bar{x})$ is realized in C if there exists \bar{b} of the appropriate sort in C such that every condition in $t(\bar{x})$ is satisfied by \bar{b} .

A type $t(\bar{x})$ is approximately realized (or satisfiable) in C if for every finite subset $t_0(\bar{x})$ of $t(\bar{x})$ and every $\varepsilon > 0$ there exists \bar{b} of the appropriate sort in C such that for every condition $\varphi(\bar{x}) = r$ in $t_0(\bar{x})$ we have $|\varphi^C(\bar{b}) - r| < \varepsilon$. Such \bar{b} is a partial realization of $t(\bar{x})$.

Lemma If $A \leq C$, $\underline{b} \in C^n$, then $\ker(\operatorname{type}_C(\overline{b}/A)) = \{\varphi(\overline{x}) - r : \varphi^C(\overline{b}) = r\}.$

Def 16.1.5 A C*-algebra C is countably saturated if every satisfiable countable type over C is realized in C.

Def 16.1.5 A C^* -algebra C is countably saturated if every satisfiable countable type over C is realized in C.

An ultrafilter \mathcal{U} on a set \mathcal{J} is *countably incomplete* if there exists a partition of \mathcal{J} into countably many sets X_j , for $j \in \mathbb{N}$, neither of which belongs to \mathcal{U} .

< ロ > < 同 > < E > < E > E の < C</p>

Every nonprincipal ultrafilter on \mathbb{N} is countably incomplete.

Def 16.1.5 A C^* -algebra C is countably saturated if every satisfiable countable type over C is realized in C.

An ultrafilter \mathcal{U} on a set X is *countably incomplete* if there exists a partition of X into countably many sets X_j , for $j \in \mathbb{N}$, neither of which belongs to \mathcal{U} .

Every nonprincipal ultrafilter on \mathbb{N} is countably incomplete.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are C*-algebras. Then the ultraproduct $C := \prod_{\mathcal{U}} A_j$ is countably saturated. This is a relative to Kirchberg's ε -test.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの()

Def 16.1.5 A C^* -algebra C is countably saturated if every satisfiable countable type over C is realized in C.

An ultrafilter \mathcal{U} on a set X is *countably incomplete* if there exists a partition of X into countably many sets X_j , for $j \in \mathbb{N}$, neither of which belongs to \mathcal{U} .

Every nonprincipal ultrafilter on \mathbb{N} is countably incomplete.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are C*-algebras. Then the ultraproduct $C := \prod_{\mathcal{U}} A_j$ is countably saturated. This is a relative to Kirchberg's ε -test. Proof: Fix a type $\varphi_n(\overline{x}) = r_n$, for $n \in \mathbb{N}$. Fix $\overline{b}(n)$ such that all $k \leq n$ satisfy $|\varphi_k^C(\overline{b}(n)) - r_k| < \frac{1}{n}$.

(Full) countable saturation

Def 16.1.5 A C*-algebra C is countably saturated if every satisfiable countable type over C is realized in C.

An ultrafilter \mathcal{U} on a set X is *countably incomplete* if there exists a partition of X into countably many sets X_j , for $j \in \mathbb{N}$, neither of which belongs to \mathcal{U} .

Every nonprincipal ultrafilter on \mathbb{N} is countably incomplete.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are \mathbb{C}^* -algebras. Then the ultraproduct $\mathcal{C} := \prod_{\mathcal{U}} A_j$ is countably saturated. This is a relative to

Kirchberg's ε -test.

Proof: Fix a type $\varphi_n(\bar{x}) = r_n$, for $n \in \mathbb{N}$. Fix $\bar{b}(n)$ such that all $k \leq n$ satisfy $|\varphi_k^C(\bar{b}(n)) - r_k| < \frac{1}{n}$. By Łoś, there is $Y_n \in \mathcal{U}$ such that all $j \in Y_n$ and all $k \leq n$ satisfy $|\varphi_k^{A_j}(\bar{b}(n)_j) - r_k| < \frac{1}{n}$.

42 DAT. BEMAS (11) he wout: w_{out} : $\overline{b}_{j} = \overline{b}(1)_{j}$ e / L > j $5_{,}=\bar{5}(2)_{,}$ € 1/2 \/ $\overline{5}_{,:} = \overline{5}_{(h)}_{,}$ $j \in \mathcal{T}_{h} \setminus \mathcal{T}_{h}_{,t}$ (17) = p , they $Q_{k}^{C}(\overline{5}) = \lim_{i \to L} Q_{k}^{A_{i}}(\overline{5})$ th assure My; =2 70 $Y'_{u} = \left(Y_{u} \cup \left(\bigcup_{j \in u} X_{j}\right)\right)$ $Y_{i}' = Y_{i} \cup X_{i}$

Fix LEN $\begin{pmatrix} n_{h}A_{i}(\overline{5}) = \lim_{j \to u} \begin{pmatrix} A_{j}(\overline{5}) \\ k \end{pmatrix}$ $\lim_{i \to 1} S_i = V_k$ < >> + < >> 2; 1 (S; - V/2 / 2) EU $Z_{j} = \bigcup_{ij > j} X_{ij}$ $\in \mathcal{U}$

 $T_{j} = T_{j} \cap T_{j}$

Coro If \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} and A_n , for $n \in \mathbb{N}$, are \mathbb{C}^* -algebras, $C := \prod_{\mathcal{U}} A_n$, and $B \leq C$ is separable, then each one of C and $B' \cap C$ is countably degree-1 saturated. It is therefore SAW*, CRISP, every uniformly bounded reporesentation of an 'amenable group into it is uniformizable, it allows 'discontinuous functional calculus', it is essentially non-factorizable, satisfies the conclusion of Kasparov's Technical Theorem, etc.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

Coro If \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} and A_n , for $n \in \mathbb{N}$, are \mathbb{C}^* -algebras, $C := \prod_{\mathcal{U}} A_n$, and $B \leq C$ is separable, then each one of C and $B' \cap C$ is countably degree-1 saturated. It is therefore SAW*, CRISP, every uniformly bounded reporesentation of an amenable group into it is uniformizable, it allows 'discontinuous functional calculus', it is essentially non-factorizable, satisfies the conclusion of Kasparov's Technical Theorem, etc.

Coro (Effros-Rosenberg, Kirchberg) For every separable B the following are equivalent For all $F \subseteq B$, for all $\varepsilon > 0$, $M_2(\mathbb{C})$ ε -commutes with all $b \in F$. $\hookrightarrow B$ so that it 2. $M_2(\mathbb{C}) \hookrightarrow \overline{\mathcal{B}}_{\mathcal{U}}$ 3. $M_2(\mathbb{C}) \hookrightarrow B_{\mathcal{U}} \cap C'$ for every separable $C \leq B_{\mathcal{U}}$. $ightarrow B_{\mathcal{U}} \cap B'$ 4. $\bigotimes_{\mathbb{N}} M_2(\mathbb{C})$ $\hookrightarrow B_{\mathcal{U}} \cap B'.$ SQ (V

a R $\partial_{\mathbb{C}}$ $\mathcal{K} \prec \mathcal{C}$ $A \leq B$ J45 tyre(a) = tyre(a) $\psi(\overline{x}, a) = \psi(\overline{x}, a)$ $\varphi^{\beta}(\overline{X}, \Psi) = \varphi^{\beta}(\overline{Z}, Y)$ $(\cdot 1_{A} \simeq C)$ $C \leq A$ X)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quantifier-free conditions, quantifier-free types, and quantifier-free saturation are defined in a natural way.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

For $n \ge 2$, degree-*n* conditions, degree-*n* types, and degree-*n* saturation are defined in a natural way.

Quantifier-free conditions, quantifier-free types, and quantifier-free saturation are defined in a natural way.

For $n \ge 2$, degree-*n* conditions, degree-*n* types, and degree-*n* saturation are defined in a natural way.

Fact

Saturation \Rightarrow quantifier-free saturation $\Rightarrow ... \Rightarrow$ degree-n + 1saturation \Rightarrow degree-n saturation $\Rightarrow ... \Rightarrow$ degree-2 saturation \Rightarrow degree-1 saturation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ りへぐ

Q: Which, if any, of these arrows are reversible?

Quantifier-free conditions, quantifier-free types, and quantifier-free saturation are defined in a natural way.

For $n \ge 2$, degree-*n* conditions, degree-*n* types, and degree-*n* saturation are defined in a natural way.

Fact

 $Saturation \Rightarrow quantifier$ -free saturation $\Rightarrow ... \Rightarrow degree - n + 1$ saturation $\Rightarrow degree - n$ saturation $\Rightarrow ... \Rightarrow degree - 2$ saturation \Rightarrow degree - 1 saturation

Q: Which, if any, of these arrows are reversible?

Prop If C is countably saturated and $A \le C$ is separable, then $A' \cap C$ is countably quantifier-free saturated but not necessarily countably saturated.

A proof can be found in today's lecture.

Notably, the proofs of Łoś's Theorem and countable saturation of ultraproducts have nothing to do with C^* -algebras. They are general theorems of model theory, applicable to arbitrary (appropriately defined) metric structures. Let's take a look at a relevant example.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$

Def A unital C^{*}-algebra A is finite if there is no $v \in A$ such that $v^*v = 1_A$ and $vv^* < 1_A$. It is stably finite if $M_n(A)$ is finite for all n.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$

Def A unital C^{*}-algebra A is finite if there is no $v \in A$ such that $v^*v = 1_A$ and $vv^* < 1_A$. It is stably finite if $M_n(A)$ is finite for all n.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Fact

if $T(A) \neq \emptyset$ then A is stably finite.

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$

Def A unital C^{*}-algebra A is finite if there is no $v \in A$ such that $v^*v = 1_A$ and $vv^* < 1_A$. It is stably finite if $M_n(A)$ is finite for all n.

Fact

if $T(A) \neq \emptyset$ then A is stably finite.

The converse is an open problem (deep partial results by Haagerup, Kirchberg, Haagrup–Thornbjørsen.) (Note that 'A is not finite' is equivalent to $\psi^A = 0$, with ψ defined as

$$\inf_{\|x\| \le 1} \|1 - x^* x\| + \|x^* x x x^* - x^* x\| + |1 - \|x^* x - x x^*\||.$$

Lemma If $\tau \in T(A)$ then

$$\|a\|_{2, au}:= au(a^*a)^{1/2}$$

is a seminorm on A and $J_{\tau} := \{a | ||a||_{2,\tau} = 0\}$ is an ideal of A. If $T(A) \neq \emptyset$, then

$$||a||_{2,u} := \sup_{\tau \in T(A)} ||a||_{2,\tau}$$

is a seminorm on A and $J := \{a | ||a||_{2,u} = 0\}$ is an ideal of A.

Lemma If $\tau \in T(A)$ then

$$\|a\|_{2, au}:= au(a^*a)^{1/2}$$

is a seminorm on A and $J_{\tau} := \{a | ||a||_{2,\tau} = 0\}$ is an ideal of A. If $T(A) \neq \emptyset$, then

$$||a||_{2,u} := \sup_{\tau \in T(A)} ||a||_{2,\tau}$$

is a seminorm on A and $J := \{a | ||a||_{2,u} = 0\}$ is an ideal of A.

Exercise. If A is abelian, then $\|\cdot\|$ and $\|\cdot\|_{2,u}$ agree on A. Caveat: $\|\cdot\|_{2,u}$ is uniformly continuous with respect to $\|\cdot\|$, but not vice versa, except in very specific situations.

Def D.2.14, C.7.1 Suppose \mathcal{U} is an ultrafilter on an index set \mathbb{J} , A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then

$$J_{\mathcal{U}} := \{ a \in \prod_j A_j : \lim_{j \to \mathcal{U}} \|a_j\|_{2,u} = 0 \}$$

is a two-sided, self-adjoint, norm-closed ideal of $\prod_j A_j$, and the quotient

$$\prod^{\mathcal{U}} A_j := \prod_j A_j / c_{\mathcal{U}}$$

is the (tracial) ultraproduct associated to \mathcal{U} . If all A_j are equal to some A, the tracial ultraproduct is denoted $A^{\mathcal{U}}$ and called tracial ultrapower.

(See e.g., C. Schafhauser *A new proof of the Tikuisis–White–Winter theorem*, Crelle, 2020 or Castillejos et. al., *Nuclear dimension of simple* C**-algbras*, Inv. Math. 2020)

Formulas, revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*. Suppose $T(A) \neq \emptyset$ and A is unital.

Def D.2.2 Formulas over A are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- 3. If φ is a formula, x is a variable, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas.

The space $\mathfrak{F}_{A,t}$ of formulas over A has an algebra structure.

Formulas, revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*. Suppose $T(A) \neq \emptyset$ and A is unital.

Def D.2.2 Formulas over A are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- 3. If φ is a formula, x is a variable, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas.

The space $\mathfrak{F}_{A,t}$ of formulas over A has an algebra structure.

Def If $\varphi(\bar{x})$ is in $\mathfrak{F}_{A,t}$, $A \leq B$, $T(B) \neq \emptyset$, \bar{b} in B of the same 'sort' as \bar{x} , define the interpretation $\varphi^B(\bar{b})$ by recursion on complexity of φ .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ are unital, $T(A_j) \neq \emptyset$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x}) \in \mathfrak{F}_{A,t}$, and $C := \prod^{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for all \bar{a} in $\prod^{\mathcal{U}} A_j$ of the appropriate sort.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then the ultraproduct $C := \prod^{\mathcal{U}} A_j$ is countably saturated (with respect to the tracial language $\mathfrak{F}_{C,t}$).

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ are unital, $T(A_j) \neq \emptyset$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x}) \in \mathfrak{F}_{A,t}$, and $C := \prod^{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for all \bar{a} in $\prod^{\mathcal{U}} A_j$ of the appropriate sort.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then the ultraproduct $C := \prod^{\mathcal{U}} A_j$ is countably saturated (with respect to the tracial language $\mathfrak{F}_{C,t}$).

Coro If \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} and A_n , for $n \in \mathbb{N}$, are unital \mathbb{C}^* -algebras, $T(A_n) \neq \emptyset$, $C := \prod^{\mathcal{U}} A_n$, then C is countably saturated with respect to $\mathfrak{F}_{C,t}$. It is therefore SAW^{*}, CRISP,...

Q: If $a \in C$, $0 \le a \le 1$ and $0 \in \operatorname{sp}(a)$, is $a^{\perp} \cap C \ne \{0\}$?

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ are unital, $T(A_j) \neq \emptyset$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x}) \in \mathfrak{F}_{A,t}$, and $C := \prod^{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for all \bar{a} in $\prod^{\mathcal{U}} A_j$ of the appropriate sort.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then the ultraproduct $C := \prod^{\mathcal{U}} A_j$ is countably saturated (with respect to the tracial language $\mathfrak{F}_{C,t}$).

Coro If \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} and A_n , for $n \in \mathbb{N}$, are unital \mathbb{C}^* -algebras, $T(A_n) \neq \emptyset$, $C := \prod^{\mathcal{U}} A_n$, then C is countably saturated with respect to $\mathfrak{F}_{C,t}$. It is therefore SAW^{*}, CRISP,...

Q: If $a \in C$, $0 \le a \le 1$ and $0 \in sp(a)$, is $a^{\perp} \cap C \ne \{0\}$? A: Not necessarily! Let's see why.

Example

Let A be the CAR algebra $M_{2^{\infty}}$. It has a unique tracial state τ . let $C := A^{\mathcal{U}}$. Choose $a \in A_+$ such that $\operatorname{sp}(a) = [0, 1]$ and $\tau^{\mathcal{U}} \upharpoonright \operatorname{C}^*(a) \cong C([0, 1])$ is the Lebesgue measure. (I.e., $\tau(f(a)) = \int f d\lambda$ for all $f \in C([0, 1])$.)

< ロ > < 同 > < E > < E > E の < C</p>

Formulas, re-revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*.

Def D.2.2 Formulas in \mathfrak{F}_{A,t^+} are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||$ or $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの()

3. If φ is a formula, x is a variable, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas.

The space $\mathfrak{F}_{A,t^+}^{\bar{x}}$ of formulas over A has an algebra structure.

Formulas, re-revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*.

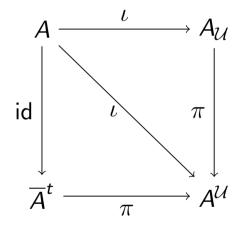
Def D.2.2 Formulas in \mathfrak{F}_{A,t^+} are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||$ or $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- 3. If φ is a formula, x is a variable, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas.

The space $\mathfrak{F}_{A,t^+}^{\bar{x}}$ of formulas over A has an algebra structure.

This language describes pairs (C, C/J), where $J = \{a | ||a||_{2,u} = 0\}$ (the quotient map $\pi \colon C \to C/J$ is definable in this language).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ



Suppose that A is a separable C*-algebra, $T(A) \neq \emptyset$. If $D \leq A_{\mathcal{U}}$ is separable and $a \in \pi[D]' \cap A^{\mathcal{U}}$, consider the type with conditions

$$||a - x||_2 = 0, ||[d, x]|| = 0, \ d \in D.$$

This type is consistent and "countable".

Suppose that A is a separable C*-algebra, $T(A) \neq \emptyset$. If $D \leq A_{\mathcal{U}}$ is separable and $a \in \pi[D]' \cap A^{\mathcal{U}}$, consider the type with conditions

$$||a - x||_2 = 0, ||[d, x]|| = 0, \ d \in D.$$

This type is consistent and "countable". So there is $\tilde{a} \in A_{\mathcal{U}} \cap D'$ such that $\pi(\tilde{a}) = a$.

Prop (Sato, Kirchberg–Rørdam) If $T(A) \neq \emptyset$ and $D \leq A_{\mathcal{U}}$ is separable, then $\pi[D' \cap A_{\mathcal{U}}] = \pi[D]' \cap A^{\mathcal{U}}$.

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

<□> <□> <□> <□> <=> <=> <=> <=> <<

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.)

< ロ > < 同 > < E > < E > E の < C</p>

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.) In the following, all ultrafilters are nonprincipal and on \mathbb{N} . Question (McDuff, 1970) Are all ultrapowers of the

hyperfinite II₁ factor isomorphic? (\Leftrightarrow are all tracial ultrapowers of $M_{2^{\infty}}$ isomorphic?)

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.) In the following, all ultrafilters are nonprincipal and on \mathbb{N} . Question (McDuff, 1970) Are all ultrapowers of the

hyperfinite II₁ factor isomorphic? (\Leftrightarrow are all tracial ultrapowers of $M_{2^{\infty}}$ isomorphic?) (Kirchberg, 2004) If A is a separable C^{*}-algebra, does F(A) depend on the choice of the ultrafilter?

< ロ > < 同 > < E > < E > E の < C</p>

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.) In the following, all ultrafilters are nonprincipal and on \mathbb{N} . Question (*McDuff, 1970*) Are all ultrapowers of the

hyperfinite II₁ factor isomorphic? (\Leftrightarrow are all tracial ultrapowers of $M_{2^{\infty}}$ isomorphic?) (Kirchberg, 2004) If A is a separable C^{*}-algebra, does F(A) depend on the choice of the ultrafilter?

Thm (F.–Hart–Sherman) The answer to either question cannot be decided in ZFC.

Massive C*-algebras, Winter 2021 Ilijas Farah. Lecture 5, January 25 Last class I said the following:

Prop (Exercise 15.6.4) Suppose C is infinite-dimensional and countably degree-1 saturated.

- 1. Then C is non-separable.
- 2. Every masa (maximal abelian C*-subalgebra) in C is nonseparable.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

3. C is not a von Neumann algebra.

Massive C*-algebras, Winter 2021 Ilijas Farah. Lecture 5, January 25 Last class I said the following:

Prop (Exercise 15.6.4) Suppose C is infinite-dimensional and countably degree-1 saturated.

- 1. Then C is non-separable.
- 2. Every masa (maximal abelian C*-subalgebra) in C is nonseparable.
- 3. C is not a von Neumann algebra.

... and all this is correct. The doubts I expressed were caused by the following.

Prop There exists a countably degree-1 saturated, infinite-dimensional C^* -algebra C whose center Z(C) is separable and infinite-dimensional. (Hence Z(C) is not countably degree-1 saturated.) Thm (Voiculescu) If A is a separable unital C*-subalgebra of $\mathcal{Q}(H)$, then $(A' \cap \mathcal{Q}(H))' = A$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thm (Voiculescu) If A is a separable unital C*-subalgebra of $\mathcal{Q}(H)$, then $(A' \cap \mathcal{Q}(H))' = A$.

Quoting from Brown–Ozawa, C*-algebras and finite-dimensional approximations, Amer. Math. Soc., 2008:

1.7. Voiculescu's Theorem

Voiculescu's Theorem is analogous to the Hahn-Banach Theorem in two ways: It gets used all of the time; and it really refers to a collection of related results and corollaries.⁴ Here, we collect all the forms we need, though we only prove those which haven't yet appeared in a book.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ◇ ◇ ◇

Brown and Ozawa did not even state the above form of Voiculescu's theorem.

 $^{^{4}\}mathrm{Thirdly},$ some authors assume familiarity with all possible formulations and don't bother explaining which version is being invoked.

Thm (Voiculescu) If A is a separable unital C*-subalgebra of $\mathcal{Q}(H)$, then $(A' \cap \mathcal{Q}(H))' = A$.

Quoting from Brown–Ozawa, C*-algebras and finite-dimensional approximations, Amer. Math. Soc., 2008:

1.7. Voiculescu's Theorem

Voiculescu's Theorem is analogous to the Hahn-Banach Theorem in two ways: It gets used all of the time; and it really refers to a collection of related results and corollaries.⁴ Here, we collect all the forms we need, though we only prove those which haven't yet appeared in a book.

Brown and Ozawa did not even state the above form of Voiculescu's theorem.

Question [Pedersen] If C is the corona of a σ -unital C*-algebra and C is simple, does every separable unital C*-subalgebra A of C satisfy $(A' \cap C)' = A$?

(When is a corona simple? See the early work of Huaxin Lin.)

 $^{^{4}\}mathrm{Thirdly},$ some authors assume familiarity with all possible formulations and don't bother explaining which version is being invoked.

Ultrafilters, ultraproducts, ultrapowers

Def Given a set \mathbb{J} , a filter \mathcal{U} on \mathbb{J} is ultrafilter if for every $Y \subseteq \mathbb{J}$ exactly one of Y and $\mathbb{J} \setminus Y$ belongs to \mathcal{U} .

▲□▶ ▲□▶ ▲ □▶ ★ □▶ □ のへで

Ultrafilters, ultraproducts, ultrapowers

Def Given a set \mathbb{J} , a filter \mathcal{U} on \mathbb{J} is ultrafilter if for every $Y \subseteq \mathbb{J}$ exactly one of Y and $\mathbb{J} \setminus Y$ belongs to \mathcal{U} .

Lemma

If X is a compact Hausdorff space, \mathcal{U} is an ultrafilter on \mathbb{J} , and $f: \mathbb{J} \to X$, then there exists a unique $x \in X$ such that $f^{-1}(V) \in \mathcal{U}$ for every open $V \ni x$. We write $x = \lim_{j \to \mathcal{U}} f(j)$.

< ロ > < 同 > < E > < E > E の < C</p>

Ultraproducts in analysis

Def D.2.14, C.7.1 Suppose \mathcal{U} is an ultrafilter on an index set \mathbb{J} , A_j , for $j \in \mathbb{J}$, are C^{*}-algebras. Then

$$c_{\mathcal{U}} = \{ a \in \prod_{j} A_{j} : \lim_{j \to \mathcal{U}} \|a_{j}\| = 0 \}$$

is a two-sided, self-adjoint, norm-closed ideal of $\prod_j A_j$, and the quotient

$$\prod_{\mathcal{U}} A_j := \prod_j A_j / c_{\mathcal{U}}$$

is the (norm) ultraproduct associated to \mathcal{U} . If all A_j are equal to some A, the ultraproduct is denoted $A_{\mathcal{U}}^1$ and called ultrapower.

Exercise. If A_j is unital for all $j \in \mathbb{J}$, then $\mathcal{M}(c_U) \cong \prod_j A_j$ and $\prod_{\mathcal{U}} A_j$ is isomorphic to the corona of $c_{\mathcal{U}}$.

¹Or $A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the choice of the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get back to the notation $\rightarrow A^{\mathcal{U}}$; we'll get

Languages, 1: terms

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Chang-Keisler: Model theory = logic + universal algebra Continuous model theory \approx functional analysis

Languages, 1: terms

< ロ > < 同 > < E > < E > E の < C</p>

Chang–Keisler: Model theory = logic + universal algebra Continuous model theory \approx functional analysis

Suppose A is a C*-algebra, $n \ge 1$, and x_j , $j \in \mathbb{N}$, are non-commuting variables. Each variable belongs to a *sort*: $x_{2^k(2j+1)}$ ranges over the k-ball. $A[\bar{x}]$: The algebra of *-polynomials in \bar{x} with coefficients in A.

Languages, 1: terms

Chang–Keisler: Model theory = logic + universal algebra Continuous model theory \approx functional analysis

Suppose A is a C*-algebra, $n \ge 1$, and x_j , $j \in \mathbb{N}$, are non-commuting variables. Each variable belongs to a *sort*: $x_{2^k(2j+1)}$ ranges over the k-ball. $A[\bar{x}]$: The algebra of *-polynomials in \bar{x} with coefficients in A. If $A \le B$ (with $1_A = 1_B$ if A is unital) then $P(\bar{x}) \in A[\bar{x}]$ defines the evaluation function

$$B^{\mathbb{N}} \mapsto B : \overline{b} \mapsto P(b_0, \ldots, b_{n-1}).$$

Def The elements of $A[\bar{x}]$ are called terms over A.

(We'll eventually expand the language, but for now this will do.)

・ロト・日本・日本・日本・日本・日本

Languages, 2: formulas

Def D.2.2 The space \mathfrak{F}_A of formulas over A is defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||$, for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- If φ is a formula, x is a variable of the appropriate sort, and k < ∞, then both inf_{||x||≤k} φ and sup_{||x||≤k} φ are formulas.
 The space 𝔅_A of formulas over A has an algebra structure.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

Languages, 2: formulas

Def D.2.2 The space \mathfrak{F}_A of formulas over A is defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||$, for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- 3. If φ is a formula, x is a variable of the appropriate sort, and k < ∞, then both inf_{||x||≤k} φ and sup_{||x||≤k} φ are formulas.
 The space 𝔅_A of formulas over A has an algebra structure.
 If A ≤ B and φ(x̄) ∈ 𝔅_A, define the interpretation (i.e., evaluation) φ^B from (an appropriate sort of) B into ℝ.

Examples of formulas over $\ensuremath{\mathbb{C}}$

▲□▶ ▲□▶ ▲ □▶ ★ □▶ □ のへで

Example

- 1. ||[x, y]||.
- 2. $\sup_{\|y\| \le 1} \|[x, y]\|$.
- 3. $\sup_{\|x\| \le 1} \sup_{\|y\| \le 1} \|[x, y]\|.$
- 4. $\sup_{\|x\| \le 1} |\|x\|^2 \|xx^*\||.$

Examples of formulas over $\ensuremath{\mathbb{C}}$

Example

- 1. ||[x, y]||.
- 2. $\sup_{\|y\| \le 1} \|[x, y]\|$.
- 3. $\sup_{\|x\| \le 1} \sup_{\|y\| \le 1} \|[x, y]\|.$
- 4. $\sup_{\|x\| \le 1} |\|x\|^2 \|xx^*\||.$
- 5. We can expand the language by continuous functional calculus $\inf_{\|y\| \le k} \|x \exp(i\pi y^* y)\|.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Induction/recursion on complexity of the formula

In order to prove that all formulas in \mathfrak{F}_A have a certain property \mathbb{P} , it suffices to prove the following:

- 1. $\mathbb{P}(\varphi)$ for every atomic φ .
- 2. If $\mathbb{P}(\varphi_0), \ldots, \mathbb{P}(\varphi_{n-1})$ holds and g is continuous, then $\mathbb{P}(g(\varphi_0, \ldots, \varphi_{n-1}))$ holds.
- 3. If $\mathbb{P}(\varphi)$ holds and x is a variable, then $\mathbb{P}(\sup_{\|x\| \le k} \varphi)$ holds and $\mathbb{P}(\inf_{\|x\| \le k} \varphi)$ holds.

This is *induction on complexity of the formula*. Similarly, if one needs to define something for all formulas, this is usually done by *recursion on complexity of the formula*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Induction/recursion on complexity of the formula

In order to prove that all formulas in \mathfrak{F}_A have a certain property \mathbb{P} , it suffices to prove the following:

- 1. $\mathbb{P}(\varphi)$ for every atomic φ .
- 2. If $\mathbb{P}(\varphi_0), \ldots, \mathbb{P}(\varphi_{n-1})$ holds and g is continuous, then $\mathbb{P}(g(\varphi_0, \ldots, \varphi_{n-1}))$ holds.
- 3. If $\mathbb{P}(\varphi)$ holds and x is a variable, then $\mathbb{P}(\sup_{\|x\| \le k} \varphi)$ holds and $\mathbb{P}(\inf_{\|x\| \le k} \varphi)$ holds.

This is *induction on complexity of the formula*. Similarly, if one needs to define something for all formulas, this is usually done by *recursion on complexity of the formula*.

Def If $\varphi(\bar{x})$ is in \mathfrak{F}_A , $A \leq B$, \bar{b} in B of the same 'sort' as \bar{x} , define the interpretation $\varphi^B(\bar{b})$ by recursion on complexity of φ .

On B^n consider the norm

$$\|\bar{x}\| := \max_{i < n} \|x_j\|.$$

Lemma D.2.3 To every term $P(\bar{x})$ over A and every formula $\varphi(\bar{x})$ over A one can associate a uniform continuity modulus so that if $A \leq B$ then the interpretations τ^B and φ^B satisfy this uniform continuity modulus, and their ranges are bounded subsets of B and \mathbb{R} , respectively.

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x})$ is a formula over A, and $C := \prod_{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for every $\bar{a} = (\bar{a}_j)_{j \in \mathbb{J}}$ in $\prod_{\mathcal{U}} A_j$ of the appropriate sort.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のQ@

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ for all $j \in J$, U is an ultrafilter on J, $\varphi(\bar{x})$ is a formula over A, and $C := \prod_{\mathcal{U}} A_j$, then $\varphi^{C}(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for every $\bar{a} = (\bar{a}_j)_{j \in J}$ in $\prod_{\mathcal{U}} A_j$ of the appropriate sort.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Proof by induction on complexity:

1. Suppose $\varphi(\bar{x}) = \|P(\bar{x})\|$.

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x})$ is a formula over A, and $C := \prod_{\mathcal{U}} A_j$, then $\varphi^{C}(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for every $\bar{a} = (\bar{a}_j)_{j \in \mathbb{J}}$ in $\prod_{\mathcal{U}} A_j$ of the appropriate sort.

Proof by induction on complexity:

- 1. Suppose $\varphi(\bar{x}) = \|P(\bar{x})\|$.
- 2. Suppose $\varphi = f(\varphi_0, \ldots, \varphi_{n-1})$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and each of $\varphi_0, \ldots, \varphi_{n-1}$ satisfies the conclusion.
- 3. Suppose $\varphi = \inf_{\|x\| \le k} \psi$, where ψ satisfies the conclusion.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ りへぐ

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x})$ is a formula over A, and $C := \prod_{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for every $\bar{a} = (\bar{a}_j)_{j \in \mathbb{J}}$ in $\prod_{\mathcal{U}} A_j$ of the appropriate sort.

Proof by induction on complexity:

- 1. Suppose $\varphi(\bar{x}) = \|P(\bar{x})\|$.
- 2. Suppose $\varphi = f(\varphi_0, \ldots, \varphi_{n-1})$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and each of $\varphi_0, \ldots, \varphi_{n-1}$ satisfies the conclusion.
- 3. Suppose $\varphi = \inf_{\|x\| \le k} \psi$, where ψ satisfies the conclusion. $(\lim_{j \to U} \inf_* \le \inf_* \lim_{j \to U})$

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x})$ is a formula over A, and $C := \prod_{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for every $\bar{a} = (\bar{a}_j)_{j \in \mathbb{J}}$ in $\prod_{\mathcal{U}} A_j$ of the appropriate sort.

Proof by induction on complexity:

- 1. Suppose $\varphi(\bar{x}) = \|P(\bar{x})\|$.
- 2. Suppose $\varphi = f(\varphi_0, \ldots, \varphi_{n-1})$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and each of $\varphi_0, \ldots, \varphi_{n-1}$ satisfies the conclusion.
- 3. Suppose $\varphi = \inf_{\|x\| \le k} \psi$, where ψ satisfies the conclusion. $(\lim_{j \to \mathcal{U}} \inf_* \le \inf_* \lim_{j \to \mathcal{U}})$ Suppose $\varphi = \sup_{\|x\| \le k} \psi$, where ψ satisfies the conclusion.

Type as a functional

The algebra \mathfrak{F}_A of formulas over A can be endowed with a seminorm,

$$\|arphi(ar{x})\| = \sup_{B,ar{b}} |arphi^B(ar{b})|.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

(The sup is taken over all $A \leq B$ and \overline{b} in B of the appropriate sort.)

Let \mathfrak{W}_A be the Banach algebra obtained by quotienting and completing \mathfrak{F}_A with respect to $\|\cdot\|$.

Type as a functional

The algebra \mathfrak{F}_A of formulas over A can be endowed with a seminorm,

$$\|arphi(ar{x})\| = \sup_{B,ar{b}} |arphi^B(ar{b})|.$$

(The sup is taken over all $A \leq B$ and \overline{b} in B of the appropriate sort.)

Let \mathfrak{W}_A be the Banach algebra obtained by quotienting and completing \mathfrak{F}_A with respect to $\|\cdot\|$.

Def 16.1.4, roughly If $A \leq C$ and $\overline{b} \in C^{\mathbb{N}}$, the type of \overline{b} is the evaluation character (with \overline{x} of the appropriate sort) on $\mathfrak{F}_{A}^{\overline{x}} := \{\varphi(\overline{x}) | \varphi(\overline{x}) \in \mathfrak{F}_{A}\}:$

$$\mathfrak{F}^{\bar{x}}_{\mathcal{A}} \mapsto \mathbb{R} \colon \varphi(\bar{x}) \mapsto \varphi^{\mathcal{C}}(\bar{b}).$$

It is denoted type_C(\bar{b}/A).

The type of \overline{b} over A codes all first-order properties of \overline{b} with parameters in A.

Def If $B \leq C$, we say that B is an elementary submodel of C, and write $B \leq C$, if $\varphi^B(\overline{b}) = \varphi^C(\overline{b})$ for all $\varphi \in \mathfrak{F}_B$. (Equiv., for all $\varphi \in \mathfrak{F}_A$, for a fixed $A \leq B$.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Def If $B \leq C$, we say that B is an elementary submodel of C, and write $B \leq C$, if $\varphi^B(\overline{b}) = \varphi^C(\overline{b})$ for all $\varphi \in \mathfrak{F}_B$. (Equiv., for all $\varphi \in \mathfrak{F}_A$, for a fixed $A \leq B$.)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Thm (Łoś) $A \preceq A_{\mathcal{U}}$.

Def 16.1.2 A condition (over A) is an expression of the form $\varphi(x) = r$ for $r \in \mathbb{R}$ and $\varphi(x)$ in \mathfrak{F}_A . A type (over A) is a set of conditions over A.

Def 16.1.2 A condition (over A) is an expression of the form $\varphi(x) = r$ for $r \in \mathbb{R}$ and $\varphi(x)$ in \mathfrak{F}_A . A type (over A) is a set of conditions over A. If $A \leq C$, a type $t(\bar{x})$ is realized in C if there exists \bar{b} of the appropriate sort in C such that every condition in $t(\bar{x})$ is satisfied by \bar{b} .

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Def 16.1.2 A condition (over A) is an expression of the form $\varphi(x) = r$ for $r \in \mathbb{R}$ and $\varphi(x)$ in \mathfrak{F}_A . A type (over A) is a set of conditions over A. If $A \leq C$, a type $t(\bar{x})$ is realized in C if there exists \bar{b} of the appropriate sort in C such that every condition in $t(\bar{x})$ is satisfied by \bar{b} .

A type $t(\bar{x})$ is approximately realized (or satisfiable) in C if for every finite subset $t_0(\bar{x})$ of $t(\bar{x})$ and every $\varepsilon > 0$ there exists \bar{b} of the appropriate sort in C such that for every condition $\varphi(\bar{x}) = r$ in $t_0(\bar{x})$ we have $|\varphi^C(\bar{b}) - r| < \varepsilon$. Such \bar{b} is a partial realization of $t(\bar{x})$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少へ⊙

Def 16.1.2 A condition (over A) is an expression of the form $\varphi(x) = r$ for $r \in \mathbb{R}$ and $\varphi(x)$ in \mathfrak{F}_A . A type (over A) is a set of conditions over A. If $A \leq C$, a type $t(\bar{x})$ is realized in C if there exists \bar{b} of the appropriate sort in C such that every condition in $t(\bar{x})$ is satisfied by \bar{b} .

A type $t(\bar{x})$ is approximately realized (or satisfiable) in C if for every finite subset $t_0(\bar{x})$ of $t(\bar{x})$ and every $\varepsilon > 0$ there exists \bar{b} of the appropriate sort in C such that for every condition $\varphi(\bar{x}) = r$ in $t_0(\bar{x})$ we have $|\varphi^C(\bar{b}) - r| < \varepsilon$. Such \bar{b} is a partial realization of $t(\bar{x})$.

Lemma If $A \leq C$, $b \in C^n$, then $\ker(\operatorname{type}_C(\overline{b}/A)) = \{\varphi(\overline{x}) - r : \varphi^C(\overline{b}) = r\}.$

Def 16.1.5 A C^* -algebra C is countably saturated if every satisfiable countable type over C is realized in C.

Def 16.1.5 A C^* -algebra C is countably saturated if every satisfiable countable type over C is realized in C.

An ultrafilter \mathcal{U} on a set X is *countably incomplete* if there exists a partition of X into countably many sets X_j , for $j \in \mathbb{N}$, neither of which belongs to \mathcal{U} .

Every nonprincipal ultrafilter on \mathbb{N} is countably incomplete.

Def 16.1.5 A C^* -algebra C is countably saturated if every satisfiable countable type over C is realized in C.

An ultrafilter \mathcal{U} on a set X is *countably incomplete* if there exists a partition of X into countably many sets X_j , for $j \in \mathbb{N}$, neither of which belongs to \mathcal{U} .

Every nonprincipal ultrafilter on \mathbb{N} is countably incomplete.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are C*-algebras. Then the ultraproduct $C := \prod_{\mathcal{U}} A_j$ is countably saturated. This is a relative to Kirchborg's \subset tost

< ロ > < 同 > < E > < E > E の < C</p>

Kirchberg's ε -test.

Def 16.1.5 A C^* -algebra C is countably saturated if every satisfiable countable type over C is realized in C.

An ultrafilter \mathcal{U} on a set X is *countably incomplete* if there exists a partition of X into countably many sets X_j , for $j \in \mathbb{N}$, neither of which belongs to \mathcal{U} .

Every nonprincipal ultrafilter on \mathbb{N} is countably incomplete.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are \mathbb{C}^* -algebras. Then the ultraproduct $\mathcal{C} := \prod_{\mathcal{U}} A_j$ is countably saturated. This is a relative to

Kirchberg's ε -test.

Proof: Fix a type $\varphi_n(\bar{x}) = r_n$, for $n \in \mathbb{N}$. Fix $\bar{b}(n)$ such that all $k \leq n$ satisfy $|\varphi_k^C(\bar{b}(n)) - r_k| < \frac{1}{n}$.

・ロト・日本・日本・日本・日本・日本

Def 16.1.5 A C*-algebra C is countably saturated if every satisfiable countable type over C is realized in C.

An ultrafilter \mathcal{U} on a set X is *countably incomplete* if there exists a partition of X into countably many sets X_j , for $j \in \mathbb{N}$, neither of which belongs to \mathcal{U} .

Every nonprincipal ultrafilter on \mathbb{N} is countably incomplete.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are \mathbb{C}^* -algebras. Then the ultraproduct $\mathcal{C} := \prod_{\mathcal{U}} A_j$ is countably saturated. This is a relative to

Kirchberg's ε -test.

Proof: Fix a type $\varphi_n(\bar{x}) = r_n$, for $n \in \mathbb{N}$. Fix $\bar{b}(n)$ such that all $k \leq n$ satisfy $|\varphi_k^C(\bar{b}(n)) - r_k| < \frac{1}{n}$. By Łoś, there is $Y_n \in \mathcal{U}$ such that all $j \in Y_n$ and all $k \leq n$ satisfy

$$|\varphi_k^{A_j}(\bar{b}(n)_j)-r_k|<\frac{1}{n}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Coro If \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} and A_n , for $n \in \mathbb{N}$, are \mathbb{C}^* -algebras, $C := \prod_{\mathcal{U}} A_n$, and $B \leq C$ is separable, then each one of C and $B' \cap C$ is countably degree-1 saturated. It is therefore SAW^{*}, CRISP, every uniformly bounded reporesentation of an amenable group into it is uniformizable, it allows 'discontinuous functional calculus', it is essentially non-factorizable, satisfies the conclusion of Kasparov's Technical Theorem, etc.

Coro If \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} and A_n , for $n \in \mathbb{N}$, are \mathbb{C}^* -algebras, $C := \prod_{\mathcal{U}} A_n$, and $B \leq C$ is separable, then each one of C and $B' \cap C$ is countably degree-1 saturated. It is therefore SAW*, CRISP, every uniformly bounded reporesentation of an amenable group into it is uniformizable, it allows 'discontinuous functional calculus', it is essentially non-factorizable, satisfies the conclusion of Kasparov's Technical Theorem, etc.

Coro (Effros–Rosenberg, Kirchberg) For every separable B the following are equivalent

- 1. For all $F \subseteq B$, for all $\varepsilon > 0$, $M_2(\mathbb{C}) \hookrightarrow B$ so that it ε -commutes with all $b \in F$.
- 2. $M_2(\mathbb{C}) \hookrightarrow B_{\mathcal{U}} \cap B'$.
- 3. $M_2(\mathbb{C}) \hookrightarrow B_{\mathcal{U}} \cap C'$ for every separable $C \leq B_{\mathcal{U}}$.
- 4. $\bigotimes_{\mathbb{N}} M_2(\mathbb{C}) \hookrightarrow B_{\mathcal{U}} \cap B'$
- 5. $\bigotimes_{\aleph_1} M_2(\mathbb{C}) \hookrightarrow B_{\mathcal{U}} \cap B'$.

Quantifier-free conditions, quantifier-free types, and quantifier-free saturation are defined in a natural way.

< ロ > < 同 > < E > < E > E の < C</p>

For $n \ge 2$, degree-*n* conditions, degree-*n* types, and degree-*n* saturation are defined in a natural way.

Quantifier-free conditions, quantifier-free types, and quantifier-free saturation are defined in a natural way.

For $n \ge 2$, degree-*n* conditions, degree-*n* types, and degree-*n* saturation are defined in a natural way.

Fact

Saturation \Rightarrow quantifier-free saturation $\Rightarrow ... \Rightarrow$ degree-n + 1saturation \Rightarrow degree-n saturation $\Rightarrow ... \Rightarrow$ degree-2 saturation \Rightarrow degree-1 saturation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの()

Q: Which, if any, of these arrows are reversible?

Quantifier-free conditions, quantifier-free types, and quantifier-free saturation are defined in a natural way.

For $n \ge 2$, degree-*n* conditions, degree-*n* types, and degree-*n* saturation are defined in a natural way.

Fact

 $Saturation \Rightarrow quantifier$ -free saturation $\Rightarrow ... \Rightarrow degree - n + 1$ saturation $\Rightarrow degree - n$ saturation $\Rightarrow ... \Rightarrow degree - 2$ saturation \Rightarrow degree - 1 saturation

Q: Which, if any, of these arrows are reversible?

Prop If C is countably saturated and $A \le C$ is separable, then $A' \cap C$ is countably quantifier-free saturated but not necessarily countably saturated.

A proof can be found in today's lecture.

Notably, the proofs of Łoś's Theorem and countable saturation of ultraproducts have nothing to do with C^* -algebras. They are general theorems of model theory, applicable to arbitrary (appropriately defined) metric structures. Let's take a look at a relevant example.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$

Def A unital C^{*}-algebra A is finite if there is no $v \in A$ such that $v^*v = 1_A$ and $vv^* < 1_A$. It is stably finite if $M_n(A)$ is finite for all n.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$

Def A unital C^{*}-algebra A is finite if there is no $v \in A$ such that $v^*v = 1_A$ and $vv^* < 1_A$. It is stably finite if $M_n(A)$ is finite for all n.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Fact

if $T(A) \neq \emptyset$ then A is stably finite.

Def A state τ on a C*-algebra is a positive functional of norm 1. It is tracial if $\tau(ab) = \tau(ba)$ for all a and b in A. $T(A) := \{\tau | \tau \text{ is a tracial state on } A\}.$

Def A unital C^{*}-algebra A is finite if there is no $v \in A$ such that $v^*v = 1_A$ and $vv^* < 1_A$. It is stably finite if $M_n(A)$ is finite for all n.

Fact

if $T(A) \neq \emptyset$ then A is stably finite.

The converse is an open problem (deep partial results by Haagerup, Kirchberg, Haagrup–Thornbjørsen.) (Note that 'A is not finite' is equivalent to $\psi^A = 0$, with ψ defined as

$$\inf_{\|x\| \le 1} \|1 - x^* x\| + \|x^* x x x^* - x^* x\| + |1 - \|x^* x - x x^*\||.$$

Lemma If $\tau \in T(A)$ then

$$\|a\|_{2, au}:= au(a^*a)^{1/2}$$

is a seminorm on A and $J_{\tau} := \{a | ||a||_{2,\tau} = 0\}$ is an ideal of A. If $T(A) \neq \emptyset$, then

$$||a||_{2,u} := \sup_{\tau \in T(A)} ||a||_{2,\tau}$$

is a seminorm on A and $J := \{a | ||a||_{2,u} = 0\}$ is an ideal of A.

Lemma If $\tau \in T(A)$ then

$$\|a\|_{2, au}:= au(a^*a)^{1/2}$$

is a seminorm on A and $J_{\tau} := \{a | ||a||_{2,\tau} = 0\}$ is an ideal of A. If $T(A) \neq \emptyset$, then

$$||a||_{2,u} := \sup_{\tau \in T(A)} ||a||_{2,\tau}$$

is a seminorm on A and $J := \{a | ||a||_{2,u} = 0\}$ is an ideal of A.

Exercise. If A is abelian, then $\|\cdot\|$ and $\|\cdot\|_{2,u}$ agree on A. Caveat: $\|\cdot\|_{2,u}$ is uniformly continuous with respect to $\|\cdot\|$, but not vice versa, except in very specific situations.

Def D.2.14, C.7.1 Suppose \mathcal{U} is an ultrafilter on an index set \mathbb{J} , A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then

$$J_{\mathcal{U}} := \{ a \in \prod_j A_j : \lim_{j \to \mathcal{U}} \|a_j\|_{2,u} = 0 \}$$

is a two-sided, self-adjoint, norm-closed ideal of $\prod_j A_j$, and the quotient

$$\prod^{\mathcal{U}} A_j := \prod_j A_j / c_{\mathcal{U}}$$

is the (tracial) ultraproduct associated to \mathcal{U} . If all A_j are equal to some A, the tracial ultraproduct is denoted $A^{\mathcal{U}}$ and called tracial ultrapower.

(See e.g., C. Schafhauser *A new proof of the Tikuisis–White–Winter theorem*, Crelle, 2020 or Castillejos et. al., *Nuclear dimension of simple* C**-algbras*, Inv. Math. 2020)

Formulas, revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*. Suppose $T(A) \neq \emptyset$ and A is unital.

Def D.2.2 Formulas over A are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- 3. If φ is a formula, x is a variable, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas.

The space $\mathfrak{F}_{A,t}$ of formulas over A has an algebra structure.

Formulas, revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*. Suppose $T(A) \neq \emptyset$ and A is unital.

Def D.2.2 Formulas over A are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- 3. If φ is a formula, x is a variable, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas.

The space $\mathfrak{F}_{A,t}$ of formulas over A has an algebra structure.

Def If $\varphi(\bar{x})$ is in $\mathfrak{F}_{A,t}$, $A \leq B$, $T(B) \neq \emptyset$, \bar{b} in B of the same 'sort' as \bar{x} , define the interpretation $\varphi^B(\bar{b})$ by recursion on complexity of φ .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ are unital, $T(A_j) \neq \emptyset$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x}) \in \mathfrak{F}_{A,t}$, and $C := \prod^{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for all \bar{a} in $\prod^{\mathcal{U}} A_j$ of the appropriate sort.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then the ultraproduct $C := \prod^{\mathcal{U}} A_j$ is countably saturated (with respect to the tracial language $\mathfrak{F}_{C,t}$).

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ are unital, $T(A_j) \neq \emptyset$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x}) \in \mathfrak{F}_{A,t}$, and $C := \prod^{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for all \bar{a} in $\prod^{\mathcal{U}} A_j$ of the appropriate sort.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then the ultraproduct $C := \prod^{\mathcal{U}} A_j$ is countably saturated (with respect to the tracial language $\mathfrak{F}_{C,t}$).

Coro If \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} and A_n , for $n \in \mathbb{N}$, are unital \mathbb{C}^* -algebras, $T(A_n) \neq \emptyset$, $C := \prod^{\mathcal{U}} A_n$, then C is countably saturated with respect to $\mathfrak{F}_{C,t}$. It is therefore SAW^{*}, CRISP,...

Q: If $a \in C$, $0 \le a \le 1$ and $0 \in \operatorname{sp}(a)$, is $a^{\perp} \cap C \ne \{0\}$?

Thm 16.2.8, Łoś's Theorem If $A \leq A_j$ are unital, $T(A_j) \neq \emptyset$ for all $j \in \mathbb{J}$, \mathcal{U} is an ultrafilter on \mathbb{J} , $\varphi(\bar{x}) \in \mathfrak{F}_{A,t}$, and $C := \prod^{\mathcal{U}} A_j$, then $\varphi^C(\bar{a}) = \lim_{j \to \mathcal{U}} \varphi^{A_j}(\bar{a}_j)$ for all \bar{a} in $\prod^{\mathcal{U}} A_j$ of the appropriate sort.

Thm 16.4.1 Suppose that \mathcal{U} is a countably incomplete ultrafilter on \mathbb{J} and that A_j , for $j \in \mathbb{J}$, are unital \mathbb{C}^* -algebras with $T(A_j) \neq \emptyset$. Then the ultraproduct $C := \prod^{\mathcal{U}} A_j$ is countably saturated (with respect to the tracial language $\mathfrak{F}_{C,t}$).

Coro If \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} and A_n , for $n \in \mathbb{N}$, are unital \mathbb{C}^* -algebras, $T(A_n) \neq \emptyset$, $C := \prod^{\mathcal{U}} A_n$, then C is countably saturated with respect to $\mathfrak{F}_{C,t}$. It is therefore SAW^{*}, CRISP,...

Q: If $a \in C$, $0 \le a \le 1$ and $0 \in sp(a)$, is $a^{\perp} \cap C \ne \{0\}$? A: Not necessarily! Let's see why.

Example

Let A be the CAR algebra $M_{2^{\infty}}$. It has a unique tracial state τ . let $C := A^{\mathcal{U}}$. Choose $a \in A_+$ such that $\operatorname{sp}(a) = [0, 1]$ and $\tau^{\mathcal{U}} \upharpoonright \operatorname{C}^*(a) \cong C([0, 1])$ is the Lebesgue measure. (I.e., $\tau(f(a)) = \int f d\lambda$ for all $f \in C([0, 1])$.)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Formulas, re-revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*.

Def D.2.2 Formulas in \mathfrak{F}_{A,t^+} are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||$ or $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ りへぐ

3. If φ is a formula, x is a variable, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas.

The space $\mathfrak{F}_{A,t^+}^{\bar{x}}$ of formulas over A has an algebra structure.

Formulas, re-revisited

Recall that $A[\bar{x}]$ is the algebra of *-polynomials in \bar{x} with coefficients in A, called *terms*.

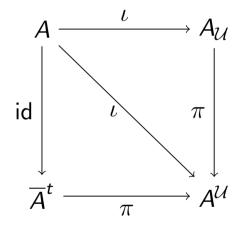
Def D.2.2 Formulas in \mathfrak{F}_{A,t^+} are defined recursively:

- 1. The atomic formulas are expressions of the form $||P(\bar{x})||$ or $||P(\bar{x})||_2$ for $P(\bar{x})$ a term over A.
- 2. If $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and $\varphi_0, \ldots, \varphi_{n-1}$ are formulas then $f(\varphi_0, \ldots, \varphi_{n-1})$ is a formula.
- 3. If φ is a formula, x is a variable, and $k < \infty$, then both $\inf_{\|x\| \le k} \varphi$ and $\sup_{\|x\| \le k} \varphi$ are formulas.

The space $\mathfrak{F}_{A,t^+}^{\bar{x}}$ of formulas over A has an algebra structure.

This language describes pairs (C, C/J), where $J = \{a | ||a||_{2,u} = 0\}$ (the quotient map $\pi \colon C \to C/J$ is definable in this language).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ



Suppose that A is a separable C*-algebra, $T(A) \neq \emptyset$. If $D \leq A_{\mathcal{U}}$ is separable and $a \in \pi[D]' \cap A^{\mathcal{U}}$, consider the type with conditions

$$||a - x||_2 = 0, ||[d, x]|| = 0, \ d \in D.$$

This type is consistent and "countable".

Suppose that A is a separable C*-algebra, $T(A) \neq \emptyset$. If $D \leq A_{\mathcal{U}}$ is separable and $a \in \pi[D]' \cap A^{\mathcal{U}}$, consider the type with conditions

$$||a - x||_2 = 0, ||[d, x]|| = 0, \ d \in D.$$

This type is consistent and "countable". So there is $\tilde{a} \in A_{\mathcal{U}} \cap D'$ such that $\pi(\tilde{a}) = a$.

Prop (Sato, Kirchberg–Rørdam) If $T(A) \neq \emptyset$ and $D \leq A_{\mathcal{U}}$ is separable, then $\pi[D' \cap A_{\mathcal{U}}] = \pi[D]' \cap A^{\mathcal{U}}$.

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

<□> <□> <□> <□> <=> <=> <=> <=> <<

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.) In the following, all ultrafilters are nonprincipal and on \mathbb{N} . Question (McDuff, 1970) Are all ultrapowers of the

hyperfinite II₁ factor isomorphic? (\Leftrightarrow are all tracial ultrapowers of $M_{2^{\infty}}$ isomorphic?)

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.) In the following, all ultrafilters are nonprincipal and on \mathbb{N} . Question (McDuff, 1970) Are all ultrapowers of the

hyperfinite II₁ factor isomorphic? (\Leftrightarrow are all tracial ultrapowers of $M_{2^{\infty}}$ isomorphic?) (Kirchberg, 2004) If A is a separable C^{*}-algebra, does F(A) depend on the choice of the ultrafilter?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Fact

If A is unital, then $F(A) = A_{\mathcal{U}} \cap A'$.

(Even if not, F(A) still ought to be countably quantifier-free saturated, but nobody verified this yet as far as I know.) In the following, all ultrafilters are nonprincipal and on \mathbb{N} . Question (*McDuff, 1970*) Are all ultrapowers of the

hyperfinite II₁ factor isomorphic? (\Leftrightarrow are all tracial ultrapowers of $M_{2^{\infty}}$ isomorphic?) (Kirchberg, 2004) If A is a separable C^{*}-algebra, does F(A) depend on the choice of the ultrafilter?

Thm (F.–Hart–Sherman) The answer to either question cannot be decided in ZFC.