
Massive C⇤-algebras, Winter 2021
Ilijas Farah. Lecture 5, January 25

Last class I said the following:

Prop (Exercise 15.6.4) Suppose C is infinite-dimensional and

countably degree-1 saturated.

1. Then C is non-separable.

2. Every masa (maximal abelian C⇤
-subalgebra) in C is

nonseparable.

3. C is not a von Neumann algebra.

. . . and all this is correct. The doubts I expressed were caused by
the following.

Prop There exists a countably degree-1 saturated,

infinite-dimensional C⇤
-algebra C whose center Z (C ) is separable

and infinite-dimensional. (Hence Z (C ) is not countably degree-1

saturated.)
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Thm (Voiculescu) If A is a separable unital C⇤
-subalgebra of

Q(H), then (A0 \Q(H))0 = A.

Quoting from Brown–Ozawa, C⇤
-algebras and finite-dimensional

approximations, Amer. Math. Soc., 2008:

Brown and Ozawa did not even state the above form of Voiculescu’s theorem.

Question [Pedersen] If C is the corona of a �-unital C⇤
-algebra

and C is simple, does every separable unital C⇤
-subalgebra A of C

satisfy (A0 \ C )0 = A?

(When is a corona simple? See the early work of Huaxin Lin.)
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Ultrafilters, ultraproducts, ultrapowers

Def Given a set J, a filter U on J is ultrafilter if for every Y ✓ J
exactly one of Y and J \ Y belongs to U .

Lemma
If X is a compact Hausdor↵ space, U is an ultrafilter on J, and
f : J ! X , then there exists a unique x 2 X such that f

�1(V ) 2 U
for every open V 3 x .

We write x = limj!U f (j).
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Ultraproducts in analysis

Def D.2.14, C.7.1 Suppose U is an ultrafilter on an index set J,
Aj , for j 2 J, are C⇤

-algebras. Then

cU = {a 2
Q

j Aj : limj!U kajk = 0}

is a two-sided, self-adjoint, norm-closed ideal of
Q

j Aj , and the

quotient Q
U Aj :=

Q
j Aj/cU

is the (norm) ultraproduct associated to U . If all Aj are equal to

some A, the ultraproduct is denoted AU
1
and called ultrapower.

Exercise.If Aj is unital for all j 2 J, then M(cU ) ⇠=
Q

j Aj andQ
U Aj is isomorphic to the corona of cU .

1
Or AU

; we’ll get back to the choice of the notation.
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Languages, 1: terms

Chang–Keisler: Model theory = logic + universal algebra
Continuous model theory ⇡ functional analysis

Suppose A is a C⇤-algebra, n � 1, and xj , j 2 N, are
non-commuting variables.
Each variable belongs to a sort: x2k (2j+1) ranges over the k-ball.

A[x̄ ]: The algebra of ⇤-polynomials in x̄ with coe�cients in A.
If A  B (with 1A = 1B if A is unital) then P(x̄) 2 A[x̄ ] defines
the evaluation function

B
N 7! B : b̄ 7! P(b0, . . . , bn�1).

Def The elements of A[x̄ ] are called terms over A.

(We’ll eventually expand the language, but for now this will do.)

O



Languages, 1: terms

Chang–Keisler: Model theory = logic + universal algebra
Continuous model theory ⇡ functional analysis

Suppose A is a C⇤-algebra, n � 1, and xj , j 2 N, are
non-commuting variables.
Each variable belongs to a sort: x2k (2j+1) ranges over the k-ball.

A[x̄ ]: The algebra of ⇤-polynomials in x̄ with coe�cients in A.

If A  B (with 1A = 1B if A is unital) then P(x̄) 2 A[x̄ ] defines
the evaluation function

B
N 7! B : b̄ 7! P(b0, . . . , bn�1).

Def The elements of A[x̄ ] are called terms over A.

(We’ll eventually expand the language, but for now this will do.)

G
og

Q

7

0k



Languages, 1: terms

Chang–Keisler: Model theory = logic + universal algebra
Continuous model theory ⇡ functional analysis

Suppose A is a C⇤-algebra, n � 1, and xj , j 2 N, are
non-commuting variables.
Each variable belongs to a sort: x2k (2j+1) ranges over the k-ball.

A[x̄ ]: The algebra of ⇤-polynomials in x̄ with coe�cients in A.
If A  B (with 1A = 1B if A is unital) then P(x̄) 2 A[x̄ ] defines
the evaluation function

B
N 7! B : b̄ 7! P(b0, . . . , bn�1).

Def The elements of A[x̄ ] are called terms over A.

(We’ll eventually expand the language, but for now this will do.)

I Terror s t



Languages, 2: formulas

Def D.2.2 The space FA of formulas over A is defined recursively:

1. The atomic formulas are expressions of the form kP(x̄)k, for
P(x̄) a term over A.

2. If n � 1, f : Rn ! R is a continuous function, and

'0, . . . ,'n�1 are formulas then f ('0, . . . ,'n�1) is a formula.

3. If ' is a formula, x is a variable of the appropriate sort, and

k < 1, then both infkxkk ' and supkxkk ' are formulas.

The space FA of formulas over A has an algebra structure.

If A  B and '(x̄) 2 FA, define the interpretation (i.e., evaluation)
'B from (an appropriate sort of) B into R.



Languages, 2: formulas

Def D.2.2 The space FA of formulas over A is defined recursively:

1. The atomic formulas are expressions of the form kP(x̄)k, for
P(x̄) a term over A.

2. If n � 1, f : Rn ! R is a continuous function, and

'0, . . . ,'n�1 are formulas then f ('0, . . . ,'n�1) is a formula.

3. If ' is a formula, x is a variable of the appropriate sort, and

k < 1, then both infkxkk ' and supkxkk ' are formulas.

The space FA of formulas over A has an algebra structure.

If A  B and '(x̄) 2 FA, define the interpretation (i.e., evaluation)
'B from (an appropriate sort of) B into R.



Examples of formulas over C

Example

1. k[x , y ]k.
2. supkyk1 k[x , y ]k.
3. supkxk1 supkyk1 k[x , y ]k.
4. supkxk1 |kxk2 � kxx⇤k|.

5. We can expand the language by continuous functional calculus
infkykk kx � exp(i⇡y⇤y)k.
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Induction/recursion on complexity of the formula

In order to prove that all formulas in FA have a certain property P,
it su�ces to prove the following:

1. P(') for every atomic '.

2. If P('0), . . . ,P('n�1) holds and g is continuous, then
P(g('0, . . . ,'n�1)) holds.

3. If P(') holds and x is a variable, then P(supkxkk ') holds
and P(infkxkk ') holds.

This is induction on complexity of the formula. Similarly, if one
needs to define something for all formulas, this is usually done by
recursion on complexity of the formula.

Def If '(x̄) is in FA, A  B , b̄ in B of the same ‘sort’ as x̄ ,

define the interpretation 'B(b̄) by recursion on complexity of '.
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On B
n consider the norm

kx̄k := max
i<n

kxjk.

Lemma D.2.3 To every term P(x̄) over A and every formula '(x̄)
over A one can associate a uniform continuity modulus so that if

A  B then the interpretations ⌧B and 'B
satisfy this uniform

continuity modulus, and their ranges are bounded subsets of B and

R, respectively.
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The fundamental theorem of ultraproducts

Thm 16.2.8,  Loś’s Theorem If A  Aj for all j 2 J, U is an

ultrafilter on J, '(x̄) is a formula over A, and C :=
Q

U Aj , then

'C (ā) = limj!U 'Aj (āj) for every ā = (āj)j2J in
Q

U Aj of the

appropriate sort.

Proof by induction on complexity:

1. Suppose '(x̄) = kP(x̄)k.

2. Suppose ' = f ('0, . . . ,'n�1), where f : Rn ! R is a
continuous function, and each of '0, . . . ,'n�1 satisfies the
conclusion.

3. Suppose ' = infkxkk  , where  satisfies the conclusion.
(limj!U inf⇤  inf⇤ limj!U ) Suppose ' = supkxkk  , where
 satisfies the conclusion.
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Type as a functional
The algebra FA of formulas over A can be endowed with a
seminorm,

k'(x̄)k = sup
B,b̄

|'B(b̄)|.

(The sup is taken over all A  B and b̄ in B of the appropriate
sort.)
Let WA be the Banach algebra obtained by quotienting and
completing FA with respect to k · k.

Def 16.1.4, roughly If A  C and b̄ 2 C
N
, the type of b̄ is the

evaluation character (with x̄ of the appropriate sort) on

Fx̄
A := {'(x̄)|'(x̄) 2 FA}:

Fx̄
A 7! R : '(x̄) 7! 'C (b̄).

It is denoted typeC (b̄/A).

The type of b̄ over A codes all first-order properties of b̄ with
parameters in A.
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Def If B  C , we say that B is an elementary submodel of C ,

and write B � C , if 'B(b̄) = 'C (b̄) for all ' 2 FB . (Equiv., for all

' 2 FA, for a fixed A  B .)

Thm ( Loś) A � AU .
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Type as a set of conditions

Def 16.1.2 A condition (over A) is an expression of the form

'(x) = r for r 2 R and '(x) in FA.

A type (over A) is a set of conditions over A.

If A  C , a type t(x̄) is realized in C if there exists b̄ of the

appropriate sort in C such that every condition in t(x̄) is satisfied
by b̄.

A type t(x̄) is approximately realized (or satisfiable) in C if for

every finite subset t0(x̄) of t(x̄) and every " > 0 there exists b̄ of

the appropriate sort in C such that for every condition '(x̄) = r in

t0(x̄) we have |'C (b̄)� r | < ". Such b̄ is a partial realization of

t(x̄).

Lemma
If A  C , b 2 C

n
, then

ker(typeC (b̄/A)) = {'(x̄)� r : 'C (b̄) = r}.
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(Full) countable saturation

Def 16.1.5 A C⇤
-algebra C is countably saturated if every

satisfiable countable type over C is realized in C .

An ultrafilter U on a set X is countably incomplete if there exists a
partition of X into countably many sets Xj , for j 2 N, neither of
which belongs to U .
Every nonprincipal ultrafilter on N is countably incomplete.

Thm 16.4.1 Suppose that U is a countably incomplete ultrafilter

on J and that Aj , for j 2 J, are C⇤
-algebras. Then the ultraproduct

C :=
Q

U Aj is countably saturated. This is a relative to

Kirchberg’s "-test.
Proof: Fix a type 'n(x̄) = rn, for n 2 N. Fix b̄(n) such that all
k  n satisfy |'C

k (b̄(n))� rk | < 1

n .
By  Loś, there is Yn 2 U such that all j 2 Yn and all k  n satisfy

|'Aj

k (b̄(n)j)� rk | <
1

n
.
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|'Aj

k (b̄(n)j)� rk | <
1

n
.
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Coro If U is a nonprincipal ultrafilter on N and An, for n 2 N, are
C⇤

-algebras, C :=
Q

U An, and B  C is separable, then each one of C

and B
0 \ C is countably degree-1 saturated. It is therefore SAW

⇤
, CRISP,

every uniformly bounded reporesentation of an amenable group into it is

uniformizable, it allows ‘discontinuous functional calculus’, it is essentially

non-factorizable, satisfies the conclusion of Kasparov’s Technical

Theorem, etc.

Coro (E↵ros–Rosenberg, Kirchberg) For every separable B the

following are equivalent

1. For all F b B , for all " > 0, M2(C) ,! B so that it

"-commutes with all b 2 F .

2. M2(C) ,! BU \ B
0
.

3. M2(C) ,! BU \ C
0
for every separable C  BU .

4.
N

NM2(C) ,! BU \ B
0

5.
N

@1
M2(C) ,! BU \ B

0
.

rattle



Coro If U is a nonprincipal ultrafilter on N and An, for n 2 N, are
C⇤

-algebras, C :=
Q

U An, and B  C is separable, then each one of C

and B
0 \ C is countably degree-1 saturated. It is therefore SAW

⇤
, CRISP,

every uniformly bounded reporesentation of an amenable group into it is

uniformizable, it allows ‘discontinuous functional calculus’, it is essentially

non-factorizable, satisfies the conclusion of Kasparov’s Technical

Theorem, etc.

Coro (E↵ros–Rosenberg, Kirchberg) For every separable B the

following are equivalent

1. For all F b B , for all " > 0, M2(C) ,! B so that it

"-commutes with all b 2 F .

2. M2(C) ,! BU \ B
0
.

3. M2(C) ,! BU \ C
0
for every separable C  BU .

4.
N

NM2(C) ,! BU \ B
0

5.
N

@1
M2(C) ,! BU \ B

0
.

0 0
q

k

2 n ca n DE



B

BLC I
A EB

f

typefal tyaeda

4454 945,4

4ft M 44TH
G Is

DEE

YEN
E E A

PII



A formula ' is quantifier-free if it does not involve quantifiers sup
or inf; that is, ' = f ( 0, . . . , n�1) for atomic formulas  j , j < n.
Quantifier-free formulas over A form an algebra.

Quantifier-free conditions, quantifier-free types, and quantifier-free
saturation are defined in a natural way.
For n � 2, degree-n conditions, degree-n types, and degree-n
saturation are defined in a natural way.

Fact
Saturation ) quantifier-free saturation ). . .) degree-n + 1
saturation ) degree-n saturation ) . . .) degree-2 saturation )
degree-1 saturation

Q: Which, if any, of these arrows are reversible?

Prop If C is countably saturated and A  C is separable, then

A
0 \ C is countably quantifier-free saturated but not necessarily

countably saturated.

A proof can be found in today’s lecture.
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Notably, the proofs of  Loś’s Theorem and countable saturation of
ultraproducts have nothing to do with C⇤-algebras. They are
general theorems of model theory, applicable to arbitrary
(appropriately defined) metric structures.
Let’s take a look at a relevant example.



Tracial ultraproducts

Def A state ⌧ on a C⇤
-algebra is a positive functional of norm 1.

It is tracial if ⌧(ab) = ⌧(ba) for all a and b in A.

T (A) := {⌧ |⌧ is a tracial state on A}.

Def A unital C⇤
-algebra A is finite if there is no v 2 A such that

v
⇤
v = 1A and vv

⇤ < 1A.
It is stably finite if Mn(A) is finite for all n.

Fact
if T (A) 6= ; then A is stably finite.

The converse is an open problem (deep partial results by
Haagerup, Kirchberg, Haagrup–Thornbjørsen.)
(Note that ‘A is not finite’ is equivalent to  A = 0, with  defined
as

inf
kxk1

k1� x
⇤
xk+ kx⇤xxx⇤ � x

⇤
xk+ |1� kx⇤x � xx

⇤k|.



Tracial ultraproducts

Def A state ⌧ on a C⇤
-algebra is a positive functional of norm 1.

It is tracial if ⌧(ab) = ⌧(ba) for all a and b in A.

T (A) := {⌧ |⌧ is a tracial state on A}.

Def A unital C⇤
-algebra A is finite if there is no v 2 A such that

v
⇤
v = 1A and vv

⇤ < 1A.
It is stably finite if Mn(A) is finite for all n.

Fact
if T (A) 6= ; then A is stably finite.

The converse is an open problem (deep partial results by
Haagerup, Kirchberg, Haagrup–Thornbjørsen.)
(Note that ‘A is not finite’ is equivalent to  A = 0, with  defined
as

inf
kxk1

k1� x
⇤
xk+ kx⇤xxx⇤ � x

⇤
xk+ |1� kx⇤x � xx

⇤k|.



Tracial ultraproducts

Def A state ⌧ on a C⇤
-algebra is a positive functional of norm 1.

It is tracial if ⌧(ab) = ⌧(ba) for all a and b in A.

T (A) := {⌧ |⌧ is a tracial state on A}.

Def A unital C⇤
-algebra A is finite if there is no v 2 A such that

v
⇤
v = 1A and vv

⇤ < 1A.
It is stably finite if Mn(A) is finite for all n.

Fact
if T (A) 6= ; then A is stably finite.

The converse is an open problem (deep partial results by
Haagerup, Kirchberg, Haagrup–Thornbjørsen.)
(Note that ‘A is not finite’ is equivalent to  A = 0, with  defined
as

inf
kxk1

k1� x
⇤
xk+ kx⇤xxx⇤ � x

⇤
xk+ |1� kx⇤x � xx

⇤k|.



Tracial ultraproducts

Def A state ⌧ on a C⇤
-algebra is a positive functional of norm 1.

It is tracial if ⌧(ab) = ⌧(ba) for all a and b in A.

T (A) := {⌧ |⌧ is a tracial state on A}.

Def A unital C⇤
-algebra A is finite if there is no v 2 A such that

v
⇤
v = 1A and vv

⇤ < 1A.
It is stably finite if Mn(A) is finite for all n.

Fact
if T (A) 6= ; then A is stably finite.

The converse is an open problem (deep partial results by
Haagerup, Kirchberg, Haagrup–Thornbjørsen.)
(Note that ‘A is not finite’ is equivalent to  A = 0, with  defined
as

inf
kxk1

k1� x
⇤
xk+ kx⇤xxx⇤ � x

⇤
xk+ |1� kx⇤x � xx

⇤k|.



Lemma If ⌧ 2 T (A) then

kak2,⌧ := ⌧(a⇤a)1/2

is a seminorm on A and J⌧ := {a|kak2,⌧ = 0} is an ideal of A.

If T (A) 6= ;, then

kak2,u := sup
⌧2T (A)

kak2,⌧

is a seminorm on A and J := {a|kak2,u = 0} is an ideal of A.

Exercise. If A is abelian, then k · k and k · k2,u agree on A.

Caveat: k · k2,u is uniformly continuous with respect to k · k, but
not vice versa, except in very specific situations.
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Tracial ultraproduct

Def D.2.14, C.7.1 Suppose U is an ultrafilter on an index set J,
Aj , for j 2 J, are unital C⇤

-algebras with T (Aj) 6= ;. Then

JU := {a 2
Q

j Aj : limj!U kajk2,u = 0}

is a two-sided, self-adjoint, norm-closed ideal of
Q

j Aj , and the

quotient QU
Aj :=

Q
j Aj/cU

is the (tracial) ultraproduct associated to U . If all Aj are equal to

some A, the tracial ultraproduct is denoted A
U
and called tracial

ultrapower.

(See e.g., C. Schafhauser A new proof of the Tikuisis–White–Winter

theorem, Crelle, 2020 or Castillejos et. al., Nuclear dimension of simple

C⇤
-algbras, Inv. Math. 2020)



Formulas, revisited

Recall that A[x̄ ] is the algebra of ⇤-polynomials in x̄ with
coe�cients in A, called terms. Suppose T (A) 6= ; and A is unital.

Def D.2.2 Formulas over A are defined recursively:

1. The atomic formulas are expressions of the form kP(x̄)k2 for

P(x̄) a term over A.

2. If n � 1, f : Rn ! R is a continuous function, and

'0, . . . ,'n�1 are formulas then f ('0, . . . ,'n�1) is a formula.

3. If ' is a formula, x is a variable, and k < 1, then both

infkxkk ' and supkxkk ' are formulas.

The space FA,t of formulas over A has an algebra structure.
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Def If '(x̄) is in FA,t , A  B , T (B) 6= ;, b̄ in B of the same

‘sort’ as x̄ , define the interpretation 'B(b̄) by recursion on

complexity of '.



 Loś’s Theorem and countable saturation hold for tracial
ultraproducts

Thm 16.2.8,  Loś’s Theorem If A  Aj are unital, T (Aj) 6= ; for all

j 2 J, U is an ultrafilter on J, '(x̄) 2 FA,t , and C :=
QU

Aj , then

'C (ā) = limj!U 'Aj (āj) for all ā in
QU

Aj of the appropriate sort.

Thm 16.4.1 Suppose that U is a countably incomplete ultrafilter

on J and that Aj , for j 2 J, are unital C⇤
-algebras with T (Aj) 6= ;.

Then the ultraproduct C :=
QU

Aj is countably saturated (with

respect to the tracial language FC ,t).

Coro If U is a nonprincipal ultrafilter on N and An, for n 2 N, are unital

C⇤
-algebras, T (An) 6= ;, C :=

QU
An, then C is countably saturated

with respect to FC ,t . It is therefore SAW
⇤
, CRISP,. . .

Q: If a 2 C , 0  a  1 and 0 2 sp(a), is a? \ C 6= {0}?
A: Not necessarily! Let’s see why.
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Example
Let A be the CAR algebra M21 . It has a unique tracial state ⌧ . let
C := A

U . Choose a 2 A+ such that sp(a) = [0, 1] and
⌧U � C⇤(a) ⇠= C ([0, 1]) is the Lebesgue measure. (I.e.,
⌧(f (a)) =

R
f d� for all f 2 C ([0, 1]).)



Formulas, re-revisited

Recall that A[x̄ ] is the algebra of ⇤-polynomials in x̄ with
coe�cients in A, called terms.

Def D.2.2 Formulas in FA,t+ are defined recursively:

1. The atomic formulas are expressions of the form kP(x̄)k
or kP(x̄)k2 for P(x̄) a term over A.

2. If n � 1, f : Rn ! R is a continuous function, and

'0, . . . ,'n�1 are formulas then f ('0, . . . ,'n�1) is a formula.

3. If ' is a formula, x is a variable, and k < 1, then both

infkxkk ' and supkxkk ' are formulas.

The space Fx̄
A,t+ of formulas over A has an algebra structure.

This language describes pairs (C ,C/J), where J = {a|kak2,u = 0}
(the quotient map ⇡ : C ! C/J is definable in this language).
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ultraproducts

A AU

A
t

A
U

◆

◆ ⇡id

⇡



Suppose that A is a separable C⇤-algebra, T (A) 6= ;. If D  AU is
separable and a 2 ⇡[D]0 \ A

U , consider the type with conditions

ka� xk2 = 0, k[d , x ]k = 0, d 2 D.

This type is consistent and “countable”.

So there is ã 2 AU \ D
0 such that ⇡(ã) = a.

Prop (Sato, Kirchberg–Rørdam) If T (A) 6= ; and D  AU is

separable, then ⇡[D 0 \ AU ] = ⇡[D]0 \ A
U
.
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Kirchberg’s invariant:
F (A) = (AU \ A

0)/(A? \ AU ).

Fact
If A is unital, then F (A) = AU \ A

0
.

(Even if not, F (A) still ought to be countably quantifier-free
saturated, but nobody verified this yet as far as I know.)
In the following, all ultrafilters are nonprincipal and on N.
Question (McDu↵, 1970) Are all ultrapowers of the

hyperfinite II1 factor isomorphic?

(, are all tracial ultrapowers of M21 isomorphic?)

(Kirchberg, 2004) If A is a separable C⇤
-algebra, does F (A)

depend on the choice of the ultrafilter?

Thm (F.–Hart–Sherman) The answer to either question cannot be

decided in ZFC.
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Massive C⇤-algebras, Winter 2021
Ilijas Farah. Lecture 5, January 25

Last class I said the following:

Prop (Exercise 15.6.4) Suppose C is infinite-dimensional and

countably degree-1 saturated.

1. Then C is non-separable.

2. Every masa (maximal abelian C⇤
-subalgebra) in C is

nonseparable.

3. C is not a von Neumann algebra.

. . . and all this is correct. The doubts I expressed were caused by
the following.

Prop There exists a countably degree-1 saturated,

infinite-dimensional C⇤
-algebra C whose center Z (C ) is separable

and infinite-dimensional. (Hence Z (C ) is not countably degree-1

saturated.)
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Thm (Voiculescu) If A is a separable unital C⇤
-subalgebra of

Q(H), then (A0 \Q(H))0 = A.

Quoting from Brown–Ozawa, C⇤
-algebras and finite-dimensional

approximations, Amer. Math. Soc., 2008:

Brown and Ozawa did not even state the above form of Voiculescu’s theorem.

Question [Pedersen] If C is the corona of a �-unital C⇤
-algebra

and C is simple, does every separable unital C⇤
-subalgebra A of C

satisfy (A0 \ C )0 = A?

(When is a corona simple? See the early work of Huaxin Lin.)
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Ultrafilters, ultraproducts, ultrapowers

Def Given a set J, a filter U on J is ultrafilter if for every Y ✓ J
exactly one of Y and J \ Y belongs to U .

Lemma
If X is a compact Hausdor↵ space, U is an ultrafilter on J, and
f : J ! X , then there exists a unique x 2 X such that f

�1(V ) 2 U
for every open V 3 x .

We write x = limj!U f (j).
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Ultraproducts in analysis

Def D.2.14, C.7.1 Suppose U is an ultrafilter on an index set J,
Aj , for j 2 J, are C⇤

-algebras. Then

cU = {a 2
Q

j Aj : limj!U kajk = 0}

is a two-sided, self-adjoint, norm-closed ideal of
Q

j Aj , and the

quotient Q
U Aj :=

Q
j Aj/cU

is the (norm) ultraproduct associated to U . If all Aj are equal to

some A, the ultraproduct is denoted AU
1
and called ultrapower.

Exercise.If Aj is unital for all j 2 J, then M(cU ) ⇠=
Q

j Aj andQ
U Aj is isomorphic to the corona of cU .

1
Or AU

; we’ll get back to the choice of the notation.



Languages, 1: terms

Chang–Keisler: Model theory = logic + universal algebra
Continuous model theory ⇡ functional analysis

Suppose A is a C⇤-algebra, n � 1, and xj , j 2 N, are
non-commuting variables.
Each variable belongs to a sort: x2k (2j+1) ranges over the k-ball.

A[x̄ ]: The algebra of ⇤-polynomials in x̄ with coe�cients in A.
If A  B (with 1A = 1B if A is unital) then P(x̄) 2 A[x̄ ] defines
the evaluation function

B
N 7! B : b̄ 7! P(b0, . . . , bn�1).

Def The elements of A[x̄ ] are called terms over A.

(We’ll eventually expand the language, but for now this will do.)
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Languages, 2: formulas

Def D.2.2 The space FA of formulas over A is defined recursively:

1. The atomic formulas are expressions of the form kP(x̄)k, for
P(x̄) a term over A.

2. If n � 1, f : Rn ! R is a continuous function, and

'0, . . . ,'n�1 are formulas then f ('0, . . . ,'n�1) is a formula.

3. If ' is a formula, x is a variable of the appropriate sort, and

k < 1, then both infkxkk ' and supkxkk ' are formulas.

The space FA of formulas over A has an algebra structure.

If A  B and '(x̄) 2 FA, define the interpretation (i.e., evaluation)
'B from (an appropriate sort of) B into R.
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Examples of formulas over C

Example

1. k[x , y ]k.
2. supkyk1 k[x , y ]k.
3. supkxk1 supkyk1 k[x , y ]k.
4. supkxk1 |kxk2 � kxx⇤k|.

5. We can expand the language by continuous functional calculus
infkykk kx � exp(i⇡y⇤y)k.
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Induction/recursion on complexity of the formula

In order to prove that all formulas in FA have a certain property P,
it su�ces to prove the following:

1. P(') for every atomic '.

2. If P('0), . . . ,P('n�1) holds and g is continuous, then
P(g('0, . . . ,'n�1)) holds.

3. If P(') holds and x is a variable, then P(supkxkk ') holds
and P(infkxkk ') holds.

This is induction on complexity of the formula. Similarly, if one
needs to define something for all formulas, this is usually done by
recursion on complexity of the formula.

Def If '(x̄) is in FA, A  B , b̄ in B of the same ‘sort’ as x̄ ,

define the interpretation 'B(b̄) by recursion on complexity of '.
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On B
n consider the norm

kx̄k := max
i<n

kxjk.

Lemma D.2.3 To every term P(x̄) over A and every formula '(x̄)
over A one can associate a uniform continuity modulus so that if

A  B then the interpretations ⌧B and 'B
satisfy this uniform

continuity modulus, and their ranges are bounded subsets of B and

R, respectively.



The fundamental theorem of ultraproducts

Thm 16.2.8,  Loś’s Theorem If A  Aj for all j 2 J, U is an

ultrafilter on J, '(x̄) is a formula over A, and C :=
Q

U Aj , then

'C (ā) = limj!U 'Aj (āj) for every ā = (āj)j2J in
Q

U Aj of the

appropriate sort.

Proof by induction on complexity:

1. Suppose '(x̄) = kP(x̄)k.

2. Suppose ' = f ('0, . . . ,'n�1), where f : Rn ! R is a
continuous function, and each of '0, . . . ,'n�1 satisfies the
conclusion.

3. Suppose ' = infkxkk  , where  satisfies the conclusion.
(limj!U inf⇤  inf⇤ limj!U ) Suppose ' = supkxkk  , where
 satisfies the conclusion.
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Thm 16.2.8,  Loś’s Theorem If A  Aj for all j 2 J, U is an

ultrafilter on J, '(x̄) is a formula over A, and C :=
Q

U Aj , then
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Type as a functional
The algebra FA of formulas over A can be endowed with a
seminorm,

k'(x̄)k = sup
B,b̄

|'B(b̄)|.

(The sup is taken over all A  B and b̄ in B of the appropriate
sort.)
Let WA be the Banach algebra obtained by quotienting and
completing FA with respect to k · k.

Def 16.1.4, roughly If A  C and b̄ 2 C
N
, the type of b̄ is the

evaluation character (with x̄ of the appropriate sort) on

Fx̄
A := {'(x̄)|'(x̄) 2 FA}:

Fx̄
A 7! R : '(x̄) 7! 'C (b̄).

It is denoted typeC (b̄/A).

The type of b̄ over A codes all first-order properties of b̄ with
parameters in A.
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Def If B  C , we say that B is an elementary submodel of C ,

and write B � C , if 'B(b̄) = 'C (b̄) for all ' 2 FB . (Equiv., for all

' 2 FA, for a fixed A  B .)

Thm ( Loś) A � AU .
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Type as a set of conditions

Def 16.1.2 A condition (over A) is an expression of the form

'(x) = r for r 2 R and '(x) in FA.

A type (over A) is a set of conditions over A.

If A  C , a type t(x̄) is realized in C if there exists b̄ of the

appropriate sort in C such that every condition in t(x̄) is satisfied
by b̄.

A type t(x̄) is approximately realized (or satisfiable) in C if for

every finite subset t0(x̄) of t(x̄) and every " > 0 there exists b̄ of

the appropriate sort in C such that for every condition '(x̄) = r in

t0(x̄) we have |'C (b̄)� r | < ". Such b̄ is a partial realization of

t(x̄).

Lemma
If A  C , b 2 C

n
, then

ker(typeC (b̄/A)) = {'(x̄)� r : 'C (b̄) = r}.



Type as a set of conditions

Def 16.1.2 A condition (over A) is an expression of the form

'(x) = r for r 2 R and '(x) in FA.

A type (over A) is a set of conditions over A.

If A  C , a type t(x̄) is realized in C if there exists b̄ of the

appropriate sort in C such that every condition in t(x̄) is satisfied
by b̄.

A type t(x̄) is approximately realized (or satisfiable) in C if for

every finite subset t0(x̄) of t(x̄) and every " > 0 there exists b̄ of

the appropriate sort in C such that for every condition '(x̄) = r in

t0(x̄) we have |'C (b̄)� r | < ". Such b̄ is a partial realization of

t(x̄).

Lemma
If A  C , b 2 C

n
, then

ker(typeC (b̄/A)) = {'(x̄)� r : 'C (b̄) = r}.



Type as a set of conditions

Def 16.1.2 A condition (over A) is an expression of the form

'(x) = r for r 2 R and '(x) in FA.

A type (over A) is a set of conditions over A.

If A  C , a type t(x̄) is realized in C if there exists b̄ of the

appropriate sort in C such that every condition in t(x̄) is satisfied
by b̄.

A type t(x̄) is approximately realized (or satisfiable) in C if for

every finite subset t0(x̄) of t(x̄) and every " > 0 there exists b̄ of

the appropriate sort in C such that for every condition '(x̄) = r in

t0(x̄) we have |'C (b̄)� r | < ". Such b̄ is a partial realization of

t(x̄).

Lemma
If A  C , b 2 C

n
, then

ker(typeC (b̄/A)) = {'(x̄)� r : 'C (b̄) = r}.



Type as a set of conditions

Def 16.1.2 A condition (over A) is an expression of the form

'(x) = r for r 2 R and '(x) in FA.

A type (over A) is a set of conditions over A.

If A  C , a type t(x̄) is realized in C if there exists b̄ of the

appropriate sort in C such that every condition in t(x̄) is satisfied
by b̄.

A type t(x̄) is approximately realized (or satisfiable) in C if for

every finite subset t0(x̄) of t(x̄) and every " > 0 there exists b̄ of

the appropriate sort in C such that for every condition '(x̄) = r in

t0(x̄) we have |'C (b̄)� r | < ". Such b̄ is a partial realization of

t(x̄).

Lemma
If A  C , b 2 C

n
, then

ker(typeC (b̄/A)) = {'(x̄)� r : 'C (b̄) = r}.



(Full) countable saturation

Def 16.1.5 A C⇤
-algebra C is countably saturated if every

satisfiable countable type over C is realized in C .

An ultrafilter U on a set X is countably incomplete if there exists a
partition of X into countably many sets Xj , for j 2 N, neither of
which belongs to U .
Every nonprincipal ultrafilter on N is countably incomplete.

Thm 16.4.1 Suppose that U is a countably incomplete ultrafilter

on J and that Aj , for j 2 J, are C⇤
-algebras. Then the ultraproduct

C :=
Q

U Aj is countably saturated. This is a relative to

Kirchberg’s "-test.
Proof: Fix a type 'n(x̄) = rn, for n 2 N. Fix b̄(n) such that all
k  n satisfy |'C

k (b̄(n))� rk | < 1

n .
By  Loś, there is Yn 2 U such that all j 2 Yn and all k  n satisfy

|'Aj

k (b̄(n)j)� rk | <
1

n
.
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Coro If U is a nonprincipal ultrafilter on N and An, for n 2 N, are
C⇤

-algebras, C :=
Q

U An, and B  C is separable, then each one of C

and B
0 \ C is countably degree-1 saturated. It is therefore SAW

⇤
, CRISP,

every uniformly bounded reporesentation of an amenable group into it is

uniformizable, it allows ‘discontinuous functional calculus’, it is essentially

non-factorizable, satisfies the conclusion of Kasparov’s Technical

Theorem, etc.

Coro (E↵ros–Rosenberg, Kirchberg) For every separable B the

following are equivalent

1. For all F b B , for all " > 0, M2(C) ,! B so that it

"-commutes with all b 2 F .

2. M2(C) ,! BU \ B
0
.

3. M2(C) ,! BU \ C
0
for every separable C  BU .

4.
N

NM2(C) ,! BU \ B
0

5.
N

@1
M2(C) ,! BU \ B

0
.
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M2(C) ,! BU \ B

0
.



A formula ' is quantifier-free if it does not involve quantifiers sup
or inf; that is, ' = f ( 0, . . . , n�1) for atomic formulas  j , j < n.
Quantifier-free formulas over A form an algebra.

Quantifier-free conditions, quantifier-free types, and quantifier-free
saturation are defined in a natural way.
For n � 2, degree-n conditions, degree-n types, and degree-n
saturation are defined in a natural way.

Fact
Saturation ) quantifier-free saturation ). . .) degree-n + 1
saturation ) degree-n saturation ) . . .) degree-2 saturation )
degree-1 saturation

Q: Which, if any, of these arrows are reversible?

Prop If C is countably saturated and A  C is separable, then

A
0 \ C is countably quantifier-free saturated but not necessarily

countably saturated.

A proof can be found in today’s lecture.
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Notably, the proofs of  Loś’s Theorem and countable saturation of
ultraproducts have nothing to do with C⇤-algebras. They are
general theorems of model theory, applicable to arbitrary
(appropriately defined) metric structures.
Let’s take a look at a relevant example.



Tracial ultraproducts

Def A state ⌧ on a C⇤
-algebra is a positive functional of norm 1.

It is tracial if ⌧(ab) = ⌧(ba) for all a and b in A.

T (A) := {⌧ |⌧ is a tracial state on A}.

Def A unital C⇤
-algebra A is finite if there is no v 2 A such that

v
⇤
v = 1A and vv

⇤ < 1A.
It is stably finite if Mn(A) is finite for all n.

Fact
if T (A) 6= ; then A is stably finite.

The converse is an open problem (deep partial results by
Haagerup, Kirchberg, Haagrup–Thornbjørsen.)
(Note that ‘A is not finite’ is equivalent to  A = 0, with  defined
as

inf
kxk1

k1� x
⇤
xk+ kx⇤xxx⇤ � x

⇤
xk+ |1� kx⇤x � xx

⇤k|.
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Lemma If ⌧ 2 T (A) then

kak2,⌧ := ⌧(a⇤a)1/2

is a seminorm on A and J⌧ := {a|kak2,⌧ = 0} is an ideal of A.

If T (A) 6= ;, then

kak2,u := sup
⌧2T (A)

kak2,⌧

is a seminorm on A and J := {a|kak2,u = 0} is an ideal of A.

Exercise. If A is abelian, then k · k and k · k2,u agree on A.

Caveat: k · k2,u is uniformly continuous with respect to k · k, but
not vice versa, except in very specific situations.



Lemma If ⌧ 2 T (A) then

kak2,⌧ := ⌧(a⇤a)1/2

is a seminorm on A and J⌧ := {a|kak2,⌧ = 0} is an ideal of A.

If T (A) 6= ;, then

kak2,u := sup
⌧2T (A)

kak2,⌧

is a seminorm on A and J := {a|kak2,u = 0} is an ideal of A.

Exercise. If A is abelian, then k · k and k · k2,u agree on A.

Caveat: k · k2,u is uniformly continuous with respect to k · k, but
not vice versa, except in very specific situations.



Tracial ultraproduct

Def D.2.14, C.7.1 Suppose U is an ultrafilter on an index set J,
Aj , for j 2 J, are unital C⇤

-algebras with T (Aj) 6= ;. Then

JU := {a 2
Q

j Aj : limj!U kajk2,u = 0}

is a two-sided, self-adjoint, norm-closed ideal of
Q

j Aj , and the

quotient QU
Aj :=

Q
j Aj/cU

is the (tracial) ultraproduct associated to U . If all Aj are equal to

some A, the tracial ultraproduct is denoted A
U
and called tracial

ultrapower.

(See e.g., C. Schafhauser A new proof of the Tikuisis–White–Winter

theorem, Crelle, 2020 or Castillejos et. al., Nuclear dimension of simple

C⇤
-algbras, Inv. Math. 2020)



Formulas, revisited

Recall that A[x̄ ] is the algebra of ⇤-polynomials in x̄ with
coe�cients in A, called terms. Suppose T (A) 6= ; and A is unital.

Def D.2.2 Formulas over A are defined recursively:

1. The atomic formulas are expressions of the form kP(x̄)k2 for

P(x̄) a term over A.

2. If n � 1, f : Rn ! R is a continuous function, and

'0, . . . ,'n�1 are formulas then f ('0, . . . ,'n�1) is a formula.

3. If ' is a formula, x is a variable, and k < 1, then both

infkxkk ' and supkxkk ' are formulas.

The space FA,t of formulas over A has an algebra structure.



Formulas, revisited

Recall that A[x̄ ] is the algebra of ⇤-polynomials in x̄ with
coe�cients in A, called terms. Suppose T (A) 6= ; and A is unital.

Def D.2.2 Formulas over A are defined recursively:

1. The atomic formulas are expressions of the form kP(x̄)k2 for

P(x̄) a term over A.

2. If n � 1, f : Rn ! R is a continuous function, and

'0, . . . ,'n�1 are formulas then f ('0, . . . ,'n�1) is a formula.

3. If ' is a formula, x is a variable, and k < 1, then both

infkxkk ' and supkxkk ' are formulas.

The space FA,t of formulas over A has an algebra structure.



Def If '(x̄) is in FA,t , A  B , T (B) 6= ;, b̄ in B of the same

‘sort’ as x̄ , define the interpretation 'B(b̄) by recursion on

complexity of '.



 Loś’s Theorem and countable saturation hold for tracial
ultraproducts

Thm 16.2.8,  Loś’s Theorem If A  Aj are unital, T (Aj) 6= ; for all

j 2 J, U is an ultrafilter on J, '(x̄) 2 FA,t , and C :=
QU

Aj , then

'C (ā) = limj!U 'Aj (āj) for all ā in
QU

Aj of the appropriate sort.

Thm 16.4.1 Suppose that U is a countably incomplete ultrafilter

on J and that Aj , for j 2 J, are unital C⇤
-algebras with T (Aj) 6= ;.

Then the ultraproduct C :=
QU

Aj is countably saturated (with

respect to the tracial language FC ,t).

Coro If U is a nonprincipal ultrafilter on N and An, for n 2 N, are unital

C⇤
-algebras, T (An) 6= ;, C :=

QU
An, then C is countably saturated

with respect to FC ,t . It is therefore SAW
⇤
, CRISP,. . .

Q: If a 2 C , 0  a  1 and 0 2 sp(a), is a? \ C 6= {0}?
A: Not necessarily! Let’s see why.
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Example
Let A be the CAR algebra M21 . It has a unique tracial state ⌧ . let
C := A

U . Choose a 2 A+ such that sp(a) = [0, 1] and
⌧U � C⇤(a) ⇠= C ([0, 1]) is the Lebesgue measure. (I.e.,
⌧(f (a)) =

R
f d� for all f 2 C ([0, 1]).)



Formulas, re-revisited

Recall that A[x̄ ] is the algebra of ⇤-polynomials in x̄ with
coe�cients in A, called terms.

Def D.2.2 Formulas in FA,t+ are defined recursively:

1. The atomic formulas are expressions of the form kP(x̄)k
or kP(x̄)k2 for P(x̄) a term over A.

2. If n � 1, f : Rn ! R is a continuous function, and

'0, . . . ,'n�1 are formulas then f ('0, . . . ,'n�1) is a formula.

3. If ' is a formula, x is a variable, and k < 1, then both

infkxkk ' and supkxkk ' are formulas.

The space Fx̄
A,t+ of formulas over A has an algebra structure.

This language describes pairs (C ,C/J), where J = {a|kak2,u = 0}
(the quotient map ⇡ : C ! C/J is definable in this language).
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 Loś’s Theorem and countable saturation hold for tracial
ultraproducts

A AU

A
t

A
U

◆

◆ ⇡id

⇡



Suppose that A is a separable C⇤-algebra, T (A) 6= ;. If D  AU is
separable and a 2 ⇡[D]0 \ A

U , consider the type with conditions

ka� xk2 = 0, k[d , x ]k = 0, d 2 D.

This type is consistent and “countable”.

So there is ã 2 AU \ D
0 such that ⇡(ã) = a.

Prop (Sato, Kirchberg–Rørdam) If T (A) 6= ; and D  AU is

separable, then ⇡[D 0 \ AU ] = ⇡[D]0 \ A
U
.
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Kirchberg’s invariant:
F (A) = (AU \ A

0)/(A? \ AU ).

Fact
If A is unital, then F (A) = AU \ A

0
.

(Even if not, F (A) still ought to be countably quantifier-free
saturated, but nobody verified this yet as far as I know.)
In the following, all ultrafilters are nonprincipal and on N.
Question (McDu↵, 1970) Are all ultrapowers of the

hyperfinite II1 factor isomorphic?

(, are all tracial ultrapowers of M21 isomorphic?)

(Kirchberg, 2004) If A is a separable C⇤
-algebra, does F (A)

depend on the choice of the ultrafilter?

Thm (F.–Hart–Sherman) The answer to either question cannot be

decided in ZFC.
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