Massive C*-algebras

llijas Farah

Winter 2021
Lecture 3, January 18

Tutorials (with Saeed Ghasemi):

Monday, 1-3pm (EST)

Zoom Meeting ID: 940 6387 0029 Passcode: 135882

We now continue the study of coronas using degree-1 conditions
and types.



Conditions and types

Def 15.1.1 A degree-1 condition over a C*-algebra C is an
expression of the form

|aoxa1 + axx*az + a4|| = r

with coefficients aj in C and r € R.

The condition ||P(x)|| = r is satisfied in C by b if |P(b)|| = r.

(1)



Conditions and types

Def 15.1.1 A degree-1 condition over a C*-algebra C is an
expression of the form

|apxa1 + axx*asz + a4|| = r (1)

with coefficients aj in C and r € R.
The condition ||P(x)|| = r is satisfied in C by b if |P(b)|| = r.

Def 15.1.2 A degree-1 type over C is a set of degree-1 conditions
over C. A type t(x) is realized in C if there exists b in the unit ball
of C such that every condition in t(x) is satisfied by b.



Conditions and types

Def 15.1.1 A degree-1 condition over a C*-algebra C is an
expression of the form

|apxa1 + axx*as + ag|| = r (1)

with coefficients aj in C and r € R.
The condition ||P(x)|| = r is satisfied in C by b if |P(b)|| = r.

Def 15.1.2 A degree-1 type over C is a set of degree-1 conditions
over C. A type t(x) is realized in C if there exists b in the unit ball
of C such that every condition in t(x) is satisfied by b. A type t(x)
is approximately realized in C (or satisfiable) if for every finite
subset to(x) of t(x) and every € > O there exists b in the unit ball
of C such that for every condition ||P(x)|| = r in to(x) we have
||P(b)|| — r| < e. Such b is a partial realization of t(x).






Conditions and types

Def 15.1.1 A degree-1 condition over a C*-algebra C is an
expression of the form

|apxa1 + axx*as + ag|| = r (1)

with coefficients aj in C and r € R.
The condition ||P(x)|| = r is satisfied in C by b if |P(b)|| = r.

Def 15.1.2 A degree-1 type over C is a set of degree-1 conditions
over C. A type t(x) is realized in C if there exists b in the unit ball
of C such that every condition in t(x) is satisfied by b. A type t(x)
is approximately realized in C (or satisfiable) if for every finite
subset to(x) of t(x) and every € > O there exists b in the unit ball
of C such that for every condition ||P(x)|| = r in to(x) we have
||P(b)|| — r| < e. Such b is a partial realization of t(x).

(All this can be defined for types in n variables for n < Ng.)



Def 15.1.4 A C*-algebra C is countably degree-1 saturated if
every satisfiable countable degree-1 type over C in n variables, for
any n, is realized in C.
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Def 15.1.4 A C*-algebra C is countably degree-1 saturated if
every satisfiable countable degree-1 type over C in n variables, for
any n, is realized in C.

Thm 15.1.5 The corona of every og-unital, nonunital, C*-algebra is
countably degree-1 saturated.

A remark for C*-algebraists: More is true. Every massive
C*-algebra is countably degree-1 saturated, and ultraproducts
associated with free (i.e., nonprincipal) ultrafilters on N have a
stronger property.

We will first prove an easier result, as a warm-up.



Thm Suppose that B, for n € N, are unital C*-algebras. The
corona of @, By, is countably degree-1 saturated.
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Thm Suppose that B, for n € N, are unital C*-algebras. The
corona of @, By, is countably degree-1 saturated.

Proof: This corona is isomorphic to C :=[][, Bn/ @, Bn. Let

T HBn—>C

be the quotient map.



Fact. For (dn)oaé 11, Bn,

1[(dn)|| = sup [|dy||
- =t
I ((d ))Il—llmsupHdnH

6,,,1 U »[r( (Ci(q /

SN



Fact. For (d,) € [, Bn.

||(dn)|| — Slevp ||dn”

[((dn))I] = lim sup |[dn]|

Fix a satisfiable countable degree-1 type t(x), and enumerate it as
|Pn(x)]| = ra, for n € N. (In this proof, P, can be a *-polynomial

over C of any degree.)
V)b T

VT

. C¥ @ <

—



Fact. For (d,) € [, Bn.

||(dn)H — Slip “dn”

[((dn))I] = lim sup |[dn]|

Fix a satisfiable countable degree-1 type t(x), and enumerate it as
| Pn(x)|| = rn, for n € N. (In this proof, P, can be a *-polynomial
over C of any degree.)

Lift the coefficients of P, to ||, Bn, and let I5n be a polynomial
over | [, By that lifts P,.



Fact. For (d,) € [, Bn.

||(dn)H :SUpHdn” l \

[((dn))I] = lim sup |[dn]|

Fix a satisfiable countable degree-1 type t(x), and enumerate it as
| Pn(x)|| = rn, for n € N. (In this proof, P, can be a *-polynomial
over C of any degree.)

Lift the coefficients of P, to ||, Bn, and let I5n be a polynomial
over | [, By that lifts P,.

We'll need a nice approximate unit for B, Bs. Let ej =} .15,
for j € N.

Fact. Each ¢; is a projection, ¢; < ejy1, and g is in the center of

11, Bn. _ —_
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For n € N fix b(n) in the unit ball of [], B, such that

P

max|[|w(Bi((B(m))]| — 1] <

J<n n
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For n € N fix b(n) in the unit ball of [], B, such that \}"”(W@

max|[|w(Bi((B(m))]| - 1] <

J<n n

Fact. There are 0 < m(0) < m(1) < ... in N such that for all n

and all k < n we have
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For n € N fix b(n) in the unit ball of [], B, such that

T§3<|H7T(ISJ((B(H)))H — 1| < %

Fact. There are 0 < m(0) < m(1) < ... in N such that for all n

and all k < n we have

[ (emnsr) — €miny) Pe(B(M)I| = ri] < 1.
Let B = Zn(em(m—l) - em(n))E - 17/ (4/(}//
T = 7 (8 0
Then Pk(b) — Zn(em(n—l—l) m(n))'Dk(b ) (L/ZLZ
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For n € N fix b(n) in the unit ball of [], B, such that

max|[|w(Bi(B(m))]| — 1] <

J<n n

Fact. There are 0 < m(0) < m(1) < ... in N such that for all n
and all k < n we have

1(em(ns1) (n))ﬁk(é(n))u—rm%.

Let b := Zn(em(n+1) — em(,,))E,,.

Then P(b) = 3" (€m(n+1) — €m(n)) Pk(bn).
Then b := 7(b) realizes the type t.
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Remarks (1) We did not need the assumption that the polynomials P,
were of degree 1.

(2) The proof shows that the corona [[, B,/ &, B, is quantifier-free
countably saturated, and it is even countably saturated (in the sense of
continuous model theory), but the proof of the Tatter involves additional

ideas.
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Back to the main result: A /\/Z lﬁ//ﬁl

Thm 15.1.5 The corona of every o-unital, nonunital, C*-algebra is

countably degree-1 saturated.
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In the proof we will need a theorem of Arveson.
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Quasi-central approximate units
(1937 Do/

Def 1.9.1 Suppose A is an ideal in M and X C M. An
approximate unit (ep,) in A is X-quasi-central if
limm [|aem — emal| = 0 for every a € X.
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Quasi-central approximate units

Def 1.9.1 Suppose A is an ideal in M and X C M. An
approximate unit (ep,) in A is X-quasi-central if
lim,, |[aem — emal| = 0 for every a € X.

Prop 1.9.3 Suppose A is o-unital ideal in a C*-algebra M and
X C M is separable. Then there exists an X-quasi-central
approximate unite,, for n € N, in A such that@;ﬂ

N\ ~

The proof of this fact (due to Arveson) uses GNS repre r6ns in a

]

clever way; since | promised that I'll not go into the representation
theory, and since the proof is presented in the text, I'll skip it.
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One more fact about commutation
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Lemma ﬂ? —
Suppose that S C &yis compact and f € C(S). Then for all e > 0

there is gf(e):% 0 such that for all a and b with a normal and

sp(a) € S we have
T =

lla, bl < gr(e) = [|[£(a), bl || <=.
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Proof that every corona M(A)/A of a o-unital C*-algebra
Is countably degree-1 saturated

Fix a satisfiable countable degree-1 type t(x), and enumerate it as
| Pn(x)|| = rn, for n € N. —

—————



Proof that every corona M(A)/A of a o-unital C*-algebra
Is countably degree-1 saturated

Fix a satisfiable countable degree-1 type t(x), and enumerate it as
|Pn(x)]| = rn, for n € N. )
Lift the coefficients of P, to M(A), and let P, be a polynomial

ove n that lifts P, _—“
or n € N fix b(n) in the unit ball of M(A) such that
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Le@e the set of all coefficients of P, and all b(n), for n <.
Let-X":= | J; X;. -

Fix an X-quasicentral approximate unit (e,) for A such that
ent1€n = €, for all n.




Let X; be the set of all coefficients of P, and all b(n), for n < ;.
Let X :={J; X;.

Fix an X-quasicentral approximate unit (e,) for A such that
ent1€n = ey for all n.

By going to a subsequence, assure that

ey, clll < gy, (27)/2

for all c € Xj and all j.



Let X; be the set of all coefficients of P, and all b(n), for n < ;.
Let X :={J; X;.

Fix an X-quasicentral approximate unit (e,) for A such that
ent1€n = ey for all n.

By going to a subsequence, assure that

s 1l Qoo )/2 )

for all c € X; and all j. é _,9, = 0
Let £ := (ej11 — €)/? (with e_; :=0). I+
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Let X; be the set of all coefficients of P, and all b(n), for n < ;.
Let X :={J; X;.

Fix an X-quasicentral approximate unit (e,) for A such that
ent1€n = ey for all n.

By going to a subsequence, assure that

ey, clll < gyrp0,u(27)/2

for all c € X; and all j.
Let fj := (MW (with ey := 0). o
1. For a” n <_] P (fbjf/) ~o—j 6P (b )f No—j Pn( _/)752

2. ) f2 = 1 (the infinite sum strlctly converges)
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Let X; be the set of all coefficients of P. and all b(n), for n <.
Fix an X-quasicentral approximate unit (e,) for A such that

ent1€n = ey for all n. - 6 = |
By going to a subsequence, assure thac?

ey, clll < gyrp0,u(27)/2

for all c € X; and all j.
Let £ := (ej11 — €))/? (with e_; :=0).

1. For all n < j, Po(fiB;6) mps FiPa(B))f; ~ps Po(b))F2.
,f?zj 13.2 = 1 (the infinite sum strictly converges).

3

For (aj) € £oo(A) the sum . fja;f; strictly converges and

SatISerSWZ fiaifi]| < sup; [[a;
A (2 faifi)ll < Timnsoo || ZjZn fiajfil-
5. If moreover |||a;|| — ||a;f2]|| — 0, then
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Finally, replace (e;) with a subsequence such that )
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Finally, replace (e;) with a subsequence such that
16:Pn(b) i1l — ral < 3
for all n <.

Then b := ZM) IS in (_/Vl,(’Ml
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Finally, replace (e;) with a subsequence such that
16:Pn(b) i1l — ral < 3

for all n <. )
Then b:=7(>_; fibjf) is in (M(A)/A)1and satisfies

1Pa(B)[| = 11 PaC2; fib )l = Il 22 fiPa(by) il = rj-
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Therefore b realizes the type t.
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