Massive C^{*}-algebras

Ilijas Farah

Winter 2021
Lecture 3, January 18

Tutorials (with Saeed Ghasemi):
Monday, 1-3pm (EST)
Zoom Meeting ID: 94063870029 Passcode: 135882
We now continue the study of coronas using degree-1 conditions and types.

Conditions and types

Def 15.1.1 A degree-1 condition over a C^{*}-algebra C is an expression of the form

$$
\begin{equation*}
\left\|a_{0} x a_{1}+a_{2} x^{*} a_{3}+a_{4}\right\|=r \tag{1}
\end{equation*}
$$

with coefficients a_{j} in C and $r \in \mathbb{R}_{+}$.
The condition $\|P(x)\|=r$ is satisfied in C by b if $\|P(b)\|=r$.

Conditions and types

Def 15.1.1 A degree-1 condition over a C^{*}-algebra C is an expression of the form

$$
\begin{equation*}
\left\|a_{0} x a_{1}+a_{2} x^{*} a_{3}+a_{4}\right\|=r \tag{1}
\end{equation*}
$$

with coefficients a_{j} in C and $r \in \mathbb{R}_{+}$.
The condition $\|P(x)\|=r$ is satisfied in C by b if $\|P(b)\|=r$.
Def 15.1.2 A degree-1 type over C is a set of degree- 1 conditions over C. A type $\mathrm{t}(x)$ is realized in C if there exists b in the unit ball of C such that every condition in $\mathrm{t}(x)$ is satisfied by b.

Conditions and types

Def 15.1.1 A degree-1 condition over a C^{*}-algebra C is an expression of the form

$$
\begin{equation*}
\left\|a_{0} x a_{1}+a_{2} x^{*} a_{3}+a_{4}\right\|=r \tag{1}
\end{equation*}
$$

with coefficients a_{j} in C and $r \in \mathbb{R}_{+}$.
The condition $\|P(x)\|=r$ is satisfied in C by b if $\|P(b)\|=r$.
Def 15.1.2 A degree-1 type over C is a set of degree- 1 conditions over C. A type $\mathrm{t}(x)$ is realized in C if there exists b in the unit ball of C such that every condition in $\mathrm{t}(x)$ is satisfied by b. A type $\mathrm{t}(x)$ is approximately realized in C (or satisfiable) if for every finite subset $\mathrm{t}_{0}(x)$ of $\mathrm{t}(x)$ and every $\varepsilon>0$ there exists b in the unit ball of C such that for every condition $\|P(x)\|=r$ in $\mathrm{t}_{0}(\bar{x})$ we have $||P(b) \|-r|<\varepsilon$. Such b is a partial realization of $\mathrm{t}(x)$.

$$
\begin{aligned}
& C([a,]) \quad f_{4}: \prod_{\frac{1}{2} \frac{11}{2} \frac{1}{2}}, g_{4}: \underset{\frac{i}{2}+\frac{1}{2}}{ } \\
& \frac{\left\|x f_{n}-f_{n}\right\|=0}{\left(f_{n}\right)}, \frac{\left\|x f_{n}\right\|=0}{}, n \in \mathbb{N}
\end{aligned}
$$

Conditions and types

Def 15.1.1 A degree-1 condition over a C^{*}-algebra C is an expression of the form

$$
\begin{equation*}
\left\|a_{0} x a_{1}+a_{2} x^{*} a_{3}+a_{4}\right\|=r \tag{1}
\end{equation*}
$$

with coefficients a_{j} in C and $r \in \mathbb{R}_{+}$.
The condition $\|P(x)\|=r$ is satisfied in C by b if $\|P(b)\|=r$.
Def 15.1.2 A degree-1 type over C is a set of degree- 1 conditions over C. A type $\mathrm{t}(x)$ is realized in C if there exists b in the unit ball of C such that every condition in $\mathrm{t}(x)$ is satisfied by b. A type $\mathrm{t}(x)$ is approximately realized in C (or satisfiable) if for every finite subset $\mathrm{t}_{0}(x)$ of $\mathrm{t}(x)$ and every $\varepsilon>0$ there exists b in the unit ball of C such that for every condition $\|P(x)\|=r$ in $t_{0}(\bar{x})$ we have $||P(b) \|-r|<\varepsilon$. Such b is a partial realization of $\mathrm{t}(x)$.
(All this can be defined for types in n variables for $n \leq \aleph_{0}$.)

Def 15.1.4 $A \mathrm{C}^{*}$-algebra C is countably degree-1 saturated if every satisfiable countable degree-1 type over C in n variables, for any n, is realized in C.

$A=K(H)$

Def 15.1.4 A C ${ }^{*}$-algebra C is countably degree-1 saturated if every satisfiable countable degree-1 type over C in n variables, for any n, is realized in C.

Thm 15.1.5 The corona of every σ-unital, nonunital, C^{*}-algebra is countably degree-1 saturated.

A remark for C^{*}-algebraists: More is true. Every massive C^{*}-algebra is countably degree-1 saturated, and ultraproducts associated with free (i.e., nonprincipal) ultrafilters on \mathbb{N} have a stronger property.
We will first prove an easier result, as a warm-up.

Thm Suppose that B_{n}, for $n \in \mathbb{N}$, are unital C* -algebras. The corona of $\bigoplus_{n} B_{n}$ is countably degree-1 saturated.

$$
\begin{aligned}
& \cap_{n} B_{n}=\left\{\left(b_{n}\right) \in X B_{n} \left\lvert\, \begin{array}{lll}
\sup _{n}\left\|b_{n}\right\| & <\infty \\
n
\end{array}\right.\right. \\
& \theta_{n} B_{n}=\left\{\left(b_{n}\right) \in \prod_{n} B_{n} \mid \quad\left\|G_{n}\right\| \rightarrow 0, \quad n \rightarrow \infty\right. \\
& e_{u}=\sum_{j \leq n} I_{B_{j}} \in \Theta_{u} 1_{n} \\
& M\left(母_{n} l_{n}\right)=\prod_{n} k_{1} \\
& \prod_{u} B_{u} / \bigoplus_{u} B_{n}
\end{aligned}
$$

Thm Suppose that B_{n}, for $n \in \mathbb{N}$, are unital C^{*}-algebras. The corona of $\bigoplus_{n} B_{n}$ is countably degree- 1 saturated.

Proof: This corona is isomorphic to $C:=\prod_{n} B_{n} / \bigoplus_{n} B_{n}$. Let

$$
\pi: \prod_{n} B_{n} \rightarrow C
$$

be the quotient map.

Fact. For $\left(d_{n}\right)_{n=0}^{\infty} \in \prod_{n} B_{n}$,

$$
\begin{aligned}
& \left\|\left(d_{n}\right)\right\|=\sup \left\|d_{n}\right\| \\
& \frac{\left\|\pi\left(\left(d_{n}\right)\right)\right\|}{n}=\frac{\limsup _{n}\left\|d_{n}\right\|}{e_{m} \| \pi\left(\left(d_{n}\right)\| \|=\lim _{n \rightarrow \infty}\left\|\left(1-e_{m}\right)\left(d_{n}\right)_{n=0}^{\infty}\right\|\right.} .
\end{aligned}
$$

Fact. For $\left(d_{n}\right) \in \prod_{n} B_{n}$,

$$
\begin{aligned}
\left\|\left(d_{n}\right)\right\| & =\sup _{n}\left\|d_{n}\right\| \\
\left\|\pi\left(\left(d_{n}\right)\right)\right\| & =\lim \sup \left\|d_{n}\right\| .
\end{aligned}
$$

Fix a satisfiable countable degree-1 type $t(x)$, and enumerate it as $\left\|P_{n}(x)\right\|=r_{n}$, for $n \in \mathbb{N}$. (In this proof, P_{n} can be a ${ }^{*}$-polynomial over C of any degree.)

Fact. For $\left(d_{n}\right) \in \prod_{n} B_{n}$,

$$
\begin{gathered}
\left\|\left(d_{n}\right)\right\|=\sup _{n}\left\|d_{n}\right\| \\
\left\|\pi\left(\left(d_{n}\right)\right)\right\|=\lim \sup _{n}\left\|d_{n}\right\| \cdot .
\end{gathered}
$$

Fix a satisfiable countable degree-1 type $t(x)$, and enumerate it as $\left\|P_{n}(x)\right\|=r_{n}$, for $n \in \mathbb{N}$. (In this proof, P_{n} can be a ${ }^{*}$-polynomial over C of any degree.)
Lift the coefficients of P_{n} to $\prod_{n} B_{n}$, and let \tilde{P}_{n} be a polynomial over $\prod_{n} B_{n}$ that lifts $\widetilde{P_{n}}$.

Fact. For $\left(d_{n}\right) \in \prod_{n} B_{n}$,

$$
\begin{aligned}
\left\|\left(d_{n}\right)\right\| & =\sup _{n}\left\|d_{n}\right\| \\
\left\|\pi\left(\left(d_{n}\right)\right)\right\| & =\lim \sup _{n}\left\|d_{n}\right\| .
\end{aligned}
$$

Fix a satisfiable countable degree-1 type $\mathrm{t}(x)$, and enumerate it as $\left\|P_{n}(x)\right\|=r_{n}$, for $n \in \mathbb{N}$. (In this proof, P_{n} can be a ${ }^{*}$-polynomial over C of any degree.)
Lift the coefficients of P_{n} to $\prod_{n} B_{n}$, and let \tilde{P}_{n} be a polynomial over $\prod_{n} B_{n}$ that lifts P_{n}.
We'll need a nice approximate unit for $\bigoplus_{n} B_{n}$. Let $e_{j}=\sum_{n \leq j} 1_{B_{n}}$, for $j \in \mathbb{N}$.

Fact. Each e_{j} is a projection, $e_{j} \leq e_{j+1}$, and e_{j} is in the center of $\Pi_{n} B_{n}$.

$$
e_{j} e_{i+1}=e_{j}
$$

For $n \in \mathbb{N}$ fix $\tilde{b}(n)$ in the unit ball of $\prod_{n} B_{n}$ such that

$$
\max _{j \leq n} \left\lvert\, \| \pi\left(\tilde{P}_{j}((\tilde{b}(n))) \|-r_{j} \left\lvert\,<\frac{1}{n}\right.\right.\right.
$$

$$
\left(\left(\pi\left(\tilde{r}_{i}\right) \tilde{b}^{(u)}\right) \|=r_{i}\right.
$$

For $n \in \mathbb{N}$ fix $\tilde{b}(n)$ in the unit ball of $\prod_{n} B_{n}$ such that lime $=r$,

$$
\max _{j \leq n} \left\lvert\, \| \pi\left(\tilde{P}_{j}((\tilde{b}(n))) \|-r_{j} \left\lvert\,<\frac{1}{n}\right.\right.\right.
$$

Fact. There are $0<m(0)<m(1)<\ldots$ in \mathbb{N} such that for all n and all $k \leq n$ we have

$$
\left\lvert\, \|\left(e_{m(n+1)}-e_{m(n)}\right) \xrightarrow{\tilde{P}_{k}(\tilde{b}(n)) \|-r_{k} \mid}<\frac{1}{\tilde{n} \nmid}\right.
$$

$$
\begin{aligned}
& \begin{array}{l}
\widehat{P}_{\lim }(b(1))=\left(d_{u} l_{n=0}\right. \\
\left\|d_{a}\right\| \leqslant V_{1}+\frac{1}{L}
\end{array} \\
& \text { lim }\left\|d_{n}\right\| \geqslant \mathbb{V}_{1}-\frac{1}{1} \\
& m_{1}(l) \quad \tilde{p}_{j}(\bar{b}(k)) \quad v_{i} \\
& m \text { (hat) } \xlongequal{\hat{p} ;(\hat{b}(h+1))}
\end{aligned}
$$

For $n \in \mathbb{N}$ fix $\tilde{b}(n)$ in the unit ball of $\prod_{n} B_{n}$ such that

$$
\max _{j \leq n} \left\lvert\, \| \pi\left(\tilde{P}_{j}((\tilde{b}(n))) \|-r_{j} \left\lvert\,<\frac{1}{n}\right.\right.\right.
$$

Fact. There are $0<m(0)<m(1)<\ldots$ in \mathbb{N} such that for all n and all $k \leq n$ we have

$$
\left|\left\|\left(e_{m(n+1)}-e_{m(n)}\right) \tilde{P}_{k}(\tilde{b}(n))\right\|-r_{k}\right|<\frac{1}{n}
$$

Let $\underset{\tilde{b}:=\sum_{n}\left(e_{m(n+1)}-e_{m(n)}\right) \tilde{b}_{n}}{ }$. $\left.e_{n(c)} \hat{\rho}_{;}(G)(i)\right)$
Then $P_{k}(\tilde{b})=\sum_{n}\left(e_{m(n+1)}-e_{m(n)}\right) \tilde{P}_{k}\left(\tilde{b}_{n}\right)=\hat{P}_{j}\left(P_{m(L)}, \overline{(j)}\right)$

For $n \in \mathbb{N}$ fix $\tilde{b}(n)$ in the unit ball of $\prod_{n} B_{n}$ such that

$$
\max _{j \leq n} \left\lvert\, \| \pi\left(\tilde{P}_{j}((\tilde{b}(n))) \|-r_{j} \left\lvert\,<\frac{1}{n}\right.\right.\right.
$$

Fact. There are $0<m(0)<m(1)<\ldots$ in \mathbb{N} such that for all n and all $k \leq n$ we have

$$
\left|\left\|\left(e_{m(n+1)}-e_{m(n)}\right) \tilde{P}_{k}(\tilde{b}(n))\right\|-r_{k}\right|<\frac{1}{n}
$$

$$
\text { Let } \tilde{b}:=\sum_{n}\left(e_{m(n+1)}-e_{m(n)}\right) \tilde{b}_{n} .
$$

Then $P_{k}(\tilde{b})=\sum_{n}\left(e_{m(n+1)}-e_{m(n)}\right) \tilde{P}_{k}\left(\tilde{b}_{n}\right)$.
Then $b:=\pi(\tilde{b})$ realizes the type t .

Remarks (1) We did not need the assumption that the polynomials P_{n} were of degree 1 .
(2) The proof shows that the corona $\prod_{n} B_{n} / \bigoplus_{n} B_{n}$ is quantifier-free countably saturated, and it is even countably saturated (in the sense of continuous model theory), but the proof of the latter involves additional ideas.

$$
\begin{array}{r}
A=K(H) \\
\theta_{n} B_{n}
\end{array}
$$

Back to the main result: A $M(A) / A$
Chm 15.1.5 The corona of every σ-unital, nonunital, C^{*}-algebra is countably degree-1 saturated.

In the proof we will need a theorem of Arveson.

$$
\begin{array}{|l|l|ll}
\hline B_{6} & ? & e_{u} P_{j}(4) \\
\frac{B_{1}}{?} & =P_{j}\left(e_{w} b\right)
\end{array}
$$

Quasi-central approximate units

$$
(1977, \text { pule })
$$

Def 1.9.1 Suppose A is an ideal in M and $X \subseteq M$. An approximate unit (e_{m}) in A is X-quasi-central if $\lim _{m}\left\|a e_{m}-e_{m} a\right\|=0$ for every $a \in X$.

Quasi-central approximate units

Def 1.9.1 Suppose A is an ideal in M and $X \subseteq M$. An approximate unit (e_{m}) in A is X-quasi-central if $\lim _{m}\left\|a e_{m}-e_{m} a\right\|=0$ for every $a \in X$.

Prop 1.9.3 Suppose A is σ-unital ideal in a C^{*}-algebra M and $X \subseteq M$ is separable. Then there exists an X-quasi-central approximate unit e_{n}, for $n \in \mathbb{N}$, in A such that $e_{n+1} e_{n}=e_{n}$

The proof of this fact (due to Arveson) uses GNS representations in a clever way; since I promised that I'll not go into the representation theory, and since the proof is presented in the text, Ill skip it.

$$
e_{u \pi 1} e_{n}=e_{4} e_{4 \tau 1}
$$

One more fact about commutation

Lemma

 there is $g_{f}(\varepsilon) \geqq \delta 0$ such that for all a and b with a normal and $\mathrm{sp}(a) \subseteq \bar{S}$ we have

$$
\begin{aligned}
& \quad \underline{\|a, b\| \|<g_{t}(\varepsilon)} \Rightarrow\|f(a), b\| \geq \varepsilon_{.} \\
& \text {(E tc) If } f(x)=x^{4} \\
& \left\|\left[a^{4}, b\right]\right\| \leqslant(n+1)\|[0, L]\|
\end{aligned}
$$

(v) lf f is a $x-1014$.
orlls (1)
(3) Use Stane - Lavierstars). 3

$$
\left\|f-p_{\cong}\right\|<\varepsilon / 4
$$

Proof that every corona $\mathcal{M}(A) / A$ of a σ-unital C^{*}-algebra is countably degree-1 saturated

Fix a satisfiable countable degree- 1 type $t(x)$, and enumerate it as $\left\|P_{n}(x)\right\|=r_{n}$, for $n \in \mathbb{N}$.

Proof that every corona $\mathcal{M}(A) / A$ of a σ-unital C^{*}-algebra

 is countably degree-1 saturatedFix a satisfiable countable degree- 1 type $t(x)$, and enumerate it as $\left\|P_{n}(x)\right\|=r_{n}$, for $n \in \mathbb{N}$.
Lift the coefficients of P_{n} to $\mathcal{M}(A)$, and let \tilde{P}_{n} be a polynomial over $A_{4}\left\langle\otimes_{n}\right.$ that lifts $\widehat{P_{n}}$
For $n \in \mathbb{N}$ fix $\tilde{b}(n)$ in the unit ball of $\mathcal{M}(A)$ such that
$M(A)$

$$
\max _{j \leq n} \left\lvert\, \| \pi\left(\tilde{P}_{j}((\tilde{b}(n))) \|-r_{j} \left\lvert\,<\frac{1}{n}\right.\right.\right.
$$

Let X_{j} De the set of all coefficients of \tilde{P}_{n} and all $b(n)$, for $n \leq j$. Let $X:=\bigcup_{j} X_{j}$.
Fix an X-quasicentral approximate unit $\left(e_{n}\right)$ for A such that $e_{n+1} e_{n}=e_{n}$ for all n.

Let X_{j} be the set of all coefficients of \tilde{P}_{n} and all $b(n)$, for $n \leq j$. Let $X:=\bigcup_{j} X_{j}$.
Fix an X-quasicentral approximate unit $\left(e_{n}\right)$ for A such that $e_{n+1} e_{n}=e_{n}$ for all n.
By going to a subsequence, assure that

$$
\left\|\left[e_{j}, c\right]\right\|<g_{\sqrt{ } \cdot[0,1]}\left(2^{-j}\right) / 2
$$

for all $c \in X_{j}$ and all j.

Let X_{j} be the set of all coefficients of \tilde{P}_{n} and all $b(n)$, for $n \leq j$.
Let $X:=\bigcup_{j} X_{j}$.
Fix an X-quasicentral approximate unit $\left(e_{n}\right)$ for A such that $e_{n+1} e_{n}=e_{n}$ for all n.
By going to a subsequence, assure that

$$
\left\|\left[e_{j}, c\right]\right\| g_{\sqrt{\cdot\lceil[0,1]}\left(2^{-j}\right) / 2}
$$

for all $c \in X_{j}$ and all j.
Let $f_{j}:=\left(e_{j+1}-e_{j}\right)^{1 / 2}\left(\right.$ with $\left.e_{-1}:=0\right) . \quad e_{j+1}-e_{j} \geqslant 0$

1. For all $n \leq j, \frac{\tilde{P}_{n}\left(f_{j} \tilde{b}_{j} f_{j}\right)}{\overline{\hat{b}(j)}} \approx_{2^{-j}} \frac{\tilde{f}_{j} P_{n}\left(\tilde{b}_{j}\right) f_{j}}{\bar{b}(i)} \approx_{2^{-j}} \tilde{P}_{n}\left(\tilde{b}_{j}\right) f_{j}^{2}$.

$$
P_{4} A x=\frac{a_{1}}{a_{1}} \times a_{2}+a_{3} \times{ }^{*}{a_{5}}_{\rightleftarrows}+a_{T}
$$

Let X_{j} be the set of all coefficients of \tilde{P}_{n} and all $b(n)$, for $n \leq j$. Let $X:=\bigcup_{j} X_{j}$.
Fix an X-quasicentral approximate unit $\left(e_{n}\right)$ for A such that $e_{n+1} e_{n}=e_{n}$ for all n.
By going to a subsequence, assure that

$$
\left\|\left[e_{j}, c\right]\right\|<g_{\sqrt{ } \cdot[[0,1]}\left(2^{-j}\right) / 2
$$

for all $c \in X_{j}$ and all j.
Let $f_{j}:=\left(e_{j+1}-e_{j}\right)^{1 / 2}\left(\right.$ with $\left.e_{-1}:=0\right)$.

1. For all $n \leq j, P_{n}\left(f_{j} \tilde{b}_{j} f_{j}\right) \approx_{2^{-j}} \tilde{f}_{j} P_{n}\left(\tilde{b}_{j}\right) f_{j} \approx_{2^{-j}} \tilde{P}_{n}\left(\tilde{b}_{j}\right) f_{j}^{2}$.
2. $\sum_{j} f_{j}^{2}=\frac{1}{M(\nmid)}$ (the infinite sum strictly converges).

Let X_{j} be the set of all coefficients of \tilde{P}_{n} and all $b(n)$, for $n \leq j$. Let $X:=\bigcup_{j} X_{j}$.
Fix an X-quasicentral approximate unit $\left(e_{n}\right)$ for A such that $e_{n+1} e_{n}=e_{n}$ for all n.
By going to a subsequence, assure that $O \leq e_{j} \leqslant 1$

$$
\left\|\left[e_{j}, c\right]\right\|<g_{\sqrt{ } \cdot \mid[0,1]}\left(2^{-j}\right) / 2
$$

for all $c \in X_{j}$ and all j.
Let $f_{j}:=\left(e_{j+1}-e_{j}\right)^{1 / 2}\left(\right.$ with $\left.e_{-1}:=0\right)$.

1. For all $n \leq j, \tilde{P}_{n}\left(f_{j} \tilde{b}_{j} f_{j}\right) \approx_{2^{-j}} \tilde{f}_{j} P_{n}\left(\tilde{b}_{j}\right) f_{j} \approx_{2^{-j}} \tilde{P}_{n}\left(\tilde{b}_{j}\right) f_{j}^{2}$.
$2 \sum_{j} f_{j}^{2}=1$ (the infinite sum strictly converges).
2. For $\left(a_{j}\right) \in \ell_{\infty}(A)$ the sum $\sum_{j} f_{j} a_{j} f_{j}$ strictly converges and

3. If moreover $\left\|\left\|a_{j}\right\|-\right\| a_{j} f_{j}^{2}\| \| \rightarrow 0$, then

$$
\begin{aligned}
& \left\|a_{j}\right\|-\left\|a_{j} f_{j}^{2}\right\| \| \\
& \left\|\underline{\underline{\sim}\left(\sum_{j} a_{j} f_{j}^{2}\right)}\right\| \geq \text {, then } \\
& \limsup \sup _{j}\left\|a_{j} f_{j}^{2}\right\| .
\end{aligned} \text { lin suv }\left\|a_{j}\right\|
$$

Pf (5) $\quad A$ ssiune $A \subseteq B(H)$
Fix $\xi, \in H, \quad\|\xi\|=$,
$\left\|a_{j} f_{j}^{2} \xi_{i}\right\| \approx\left\|a_{j}\right\| /=f_{i} \xi_{j}^{2}\left\|f_{i}^{2} \xi_{\|}\right\|-1$
wo.t: $\left\|\sum_{k} G_{k} f_{k}^{2} \xi_{j}\right\|$

$$
e_{k+1} l_{k}=e_{k}
$$

$$
f_{k} f_{l}=0 \quad \text { if }|k-l| \geqslant \mid
$$

$$
||a+b| \geqslant\|a|-\| b|
$$

$$
\begin{aligned}
& \left\|a_{j} \xi\right\| \leq\left\|a_{j}\right\|\|\xi\| \\
& \left\|a_{j} f_{j}^{2} \xi\right\| \approx\left\|a_{i}\right\| \\
& \left\|f_{j}^{2} \xi\right\|<1 \\
& \left\|a_{j} f_{j}^{2} \xi ;\right\| \leq\left\|a_{i}\right\| f_{i}^{2} \xi ; \|
\end{aligned}
$$

(3) $w \log , k=\sup \left\|a_{j}\right\|<\infty$

Irove: $\forall n\left\|\sum_{j \leq n} f_{j} a_{j} f_{j}\right\| \leqslant k$

$$
\begin{aligned}
& \text { So, }\left\|\sum_{i \leq n} f_{i} q_{q} F_{i}\right\| \leq\|A\| \cdot\|B\|\| \| C\left\|\leq m_{i} \times x\right\| a=\| \\
& \text { max10:" } \\
& \left.\|A\|^{2}=\left\|A A^{*}\right\|=\| \begin{array}{cc}
\frac{1}{5 \epsilon_{i}^{2}} & 0 \\
0 & 0
\end{array}\right] \| \leqslant 1 \\
& \|c\|^{2}=\left\|c^{*} c\right\|^{\|}=-11-\leq 1
\end{aligned}
$$

Finally, replace $\left(e_{j}\right)$ with a subsequence such that

$$
f_{-}=\left(l_{i+1}-e_{i}\right)^{k /}
$$

$$
1\left\|f_{j} \tilde{P}_{n}\left(\tilde{b}_{j}\right) f_{j}\right\|+\text { 区 }<\frac{1}{j}
$$

for all $n \leq j$.

$$
\left\|\pi\left(\bar{p}_{n}\left(\tilde{h}_{j}\right)\right)\right\| \approx r_{n}
$$

Finally, replace $\left(e_{j}\right)$ with a subsequence such that

$$
\left|\left\|f_{j} \tilde{P}_{n}\left(\tilde{b}_{j}\right) f_{j}\right\|-r_{n}\right|<\frac{1}{j}
$$

for all $n \leq j$.
Then $b:=\pi\left(\sum_{j} f_{j} \tilde{b}_{j} f_{j}\right)$ is in $\underline{(\mathcal{M}(A) / A)_{1}}$.

Finally, replace $\left(e_{j}\right)$ with a subsequence such that

$$
\left|\left\|f_{j} \tilde{P}_{n}\left(\tilde{b}_{j}\right) f_{j}\right\|-r_{n}\right|<\frac{1}{j}
$$

for all $n \leq j$.
Then $b:=\pi\left(\sum_{j} f_{j} \tilde{b}_{j} f_{j}\right)$ is in $(\mathcal{M}(A) / A)_{1}$ and satisfies

$$
\left\|P_{n}(b)\right\|=\left\|P_{n}\left(\sum_{j} f_{j} b_{j} f_{j}\right)\right\|=\left\|\sum_{j} f_{j} P_{n}\left(b_{j}\right) f_{j}\right\|=r_{j}
$$

Therefore b realizes the type t.

