Massive C*-algebras

Ilijas Farah

Winter 2021 Lecture 3, January 18

Tutorials (with Saeed Ghasemi): Monday, 1-3pm (EST) Zoom Meeting ID: 940 6387 0029 Passcode: 135882 We now continue the study of coronas using degree-1 conditions and types.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Def 15.1.1 A degree-1 condition over a C^* -algebra C is an expression of the form

$$\|a_0 x a_1 + a_2 x^* a_3 + a_4\| = r \tag{1}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

with coefficients a_j in C and $r \in \mathbb{R}_+$. The condition ||P(x)|| = r is satisfied in C by b if ||P(b)|| = r.

Def 15.1.1 A degree-1 condition over a C^* -algebra C is an expression of the form

$$||a_0 x a_1 + a_2 x^* a_3 + a_4|| = r \tag{1}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

with coefficients a_j in C and $r \in \mathbb{R}_+$. The condition ||P(x)|| = r is satisfied in C by b if ||P(b)|| = r.

Def 15.1.2 A degree-1 type over C is a set of degree-1 conditions over C. A type t(x) is realized in C if there exists b in the unit ball of C such that every condition in t(x) is satisfied by b.

Def 15.1.1 A degree-1 condition over a C^* -algebra C is an expression of the form

$$||a_0 x a_1 + a_2 x^* a_3 + a_4|| = r \tag{1}$$

with coefficients a_j in C and $r \in \mathbb{R}_+$. The condition ||P(x)|| = r is satisfied in C by b if ||P(b)|| = r.

Def 15.1.2 A degree-1 type over C is a set of degree-1 conditions over C. A type t(x) is realized in C if there exists b in the unit ball of C such that every condition in t(x) is satisfied by b. A type t(x)is approximately realized in C (or satisfiable) if for every finite subset $t_0(x)$ of t(x) and every $\varepsilon > 0$ there exists b in the unit ball of C such that for every condition ||P(x)|| = r in $t_0(\bar{x})$ we have $|||P(b)|| - r| < \varepsilon$. Such b is a partial realization of t(x).

Def 15.1.1 A degree-1 condition over a C^* -algebra C is an expression of the form

$$\|a_0 x a_1 + a_2 x^* a_3 + a_4\| = r \tag{1}$$

with coefficients a_j in C and $r \in \mathbb{R}_+$. The condition ||P(x)|| = r is satisfied in C by b if ||P(b)|| = r.

Def 15.1.2 A degree-1 type over C is a set of degree-1 conditions over C. A type t(x) is realized in C if there exists b in the unit ball of C such that every condition in t(x) is satisfied by b. A type t(x)is approximately realized in C (or satisfiable) if for every finite subset $t_0(x)$ of t(x) and every $\varepsilon > 0$ there exists b in the unit ball of C such that for every condition ||P(x)|| = r in $t_0(\bar{x})$ we have $|||P(b)|| - r| < \varepsilon$. Such b is a partial realization of t(x).

(All this can be defined for types in *n* variables for $n \leq \aleph_0$.)

Def 15.1.4 A C*-algebra C is countably degree-1 saturated if every satisfiable countable degree-1 type over C in n variables, for any n, is realized in C.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

A=K(H)

Def 15.1.4 A C*-algebra C is countably degree-1 saturated if every satisfiable countable degree-1 type over C in n variables, for any n, is realized in C.

Thm 15.1.5 The corona of every σ -unital, nonunital, C^{*}-algebra is countably degree-1 saturated.

A remark for C^{*}-algebraists: More is true. Every massive C^{*}-algebra is countably degree-1 saturated, and ultraproducts associated with free (i.e., nonprincipal) ultrafilters on \mathbb{N} have a stronger property.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

We will first prove an easier result, as a warm-up.

Thm Suppose that B_n , for $n \in \mathbb{N}$, are unital C^{*}-algebras. The corona of $\bigoplus_n B_n$ is countably degree-1 saturated. $\prod_{n} B_{n} = \langle (b_{n}) \in X B_{n} | Sup | | b_{n} | < \infty \rangle$ $\overline{\mathcal{B}}_{\mu} = \left\{ \left(b_{\mu} \right) \in \left[\left[B_{\mu} \right] \right] \mid B_{\mu} \right\} \mid \left[\left| \left[b_{\mu} \right] \right| \rightarrow 0, \quad n \rightarrow \infty \right]$ $C_{u} = \sum_{j \leq u} |_{\mathcal{B}_{j}} \in \mathcal{B}_{u} |_{\mathcal{B}_{u}}$ $\mathcal{M}(\Phi_{n}) = 0 B_{n}$ $\left(\right) \mathcal{B}_{\mu} / \mathcal{B} \mathcal{B}_{\mu}$ ◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○ Thm Suppose that B_n , for $n \in \mathbb{N}$, are unital C^{*}-algebras. The corona of $\bigoplus_n B_n$ is countably degree-1 saturated.

Proof: This corona is isomorphic to $C := \prod_n B_n / \bigoplus_n B_n$. Let

$$\pi:\prod_n B_n\to C$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

be the quotient map.

・ロト・「中下・「中下・「中下・(日)

Fact. For $(d_n) \in \prod_n B_n$,

$$\|(d_n)\| = \sup_n \|d_n\|$$

 $\|\pi((d_n))\| = \limsup_n \|d_n\|.$

Fix a satisfiable countable degree-1 type t(x), and enumerate it as $||P_n(x)|| = r_n$, for $n \in \mathbb{N}$. (In this proof, P_n can be a *-polynomial over *C* of any degree.)

 $\subseteq \lceil \chi \rceil$

P

Fact. For $(d_n) \in \prod_n B_n$,

$$\|(d_n)\| = \sup_n \|d_n\|$$

 $\|\pi((d_n))\| = \limsup_n \|d_n\|.$

Fix a satisfiable countable degree-1 type t(x), and enumerate it as $||P_n(x)|| = r_n$, for $n \in \mathbb{N}$. (In this proof, P_n can be a *-polynomial over *C* of any degree.) Lift the coefficients of P_n to $\prod_n B_n$, and let \tilde{P}_n be a polynomial over $\prod_n B_n$ that lifts P_n .

Fix a satisfiable countable degree-1 type t(x), and enumerate it as $||P_n(x)|| = r_n$, for $n \in \mathbb{N}$. (In this proof, P_n can be a *-polynomial over C of any degree.) Lift the coefficients of P_n to $\prod_n B_n$, and let \tilde{P}_n be a polynomial over $\prod_n B_n$ that lifts P_n . We'll need a nice approximate unit for $\bigoplus_n B_n$. Let $e_j = \sum_{n \leq j} 1_{B_n}$, for $j \in \mathbb{N}$.

Fact. Each e_j is a projection, $e_j \leq e_{j+1}$, and e_j is in the center of $\prod_n B_n$. $C_j \in C_{j+1} = C_j$ For $n \in \mathbb{N}$ fix $\tilde{b}(n)$ in the unit ball of $\prod_{n \in \mathbb{N}} B_n$ such that $\max_{j \leq n} |||\pi(\tilde{P}_j((\tilde{b}(n)))|| - r_j| < \frac{1}{n}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For $n \in \mathbb{N}$ fix $\tilde{b}(n)$ in the unit ball of $\prod_n B_n$ such that $\lim_{n \to \infty} \tilde{b}(n) = r$,

$$\max_{j\leq n} |\|\pi(\tilde{P}_j((\tilde{b}(n)))\| - r_j| < \frac{1}{n}$$

Fact. There are $0 < m(0) < m(1) < \ldots$ in \mathbb{N} such that for all n and all $k \leq n$ we have

$$|||(e_{m(n+1)} - e_{m(n)})\tilde{P}_{k}(\tilde{b}(n))|| - r_{k}| < \frac{1}{n + r}$$

$$\tilde{b}(n) \qquad \tilde{b}(n) \qquad \tilde{b$$

P lin Id. // \$\$1, ---- $\widehat{P_{j}}(\widehat{L}(h))$ V- $W(l_{i})$ (j. (j. (h. 1/)) м (4 ег/

For $n \in \mathbb{N}$ fix $\tilde{b}(n)$ in the unit ball of $\prod_n B_n$ such that

$$\max_{j\leq n} |\|\pi(\tilde{P}_j((\tilde{b}(n)))\| - r_j| < \frac{1}{n}$$

Fact. There are $0 < m(0) < m(1) < \ldots$ in \mathbb{N} such that for all n and all $k \leq n$ we have

$$\begin{split} \|\|(e_{m(n+1)}-e_{m(n)})\tilde{P}_{k}(\tilde{b}(n))\|-r_{k}\| &< \frac{1}{n}.\\ \text{Let } \underbrace{\tilde{b}:=\sum_{n}(e_{m(n+1)}-e_{m(n)})\tilde{b}_{n}.}_{\text{Then } P_{k}(\tilde{b})=\sum_{n}(e_{m(n+1)}-e_{m(n)})\tilde{P}_{k}(\tilde{b}_{n}).}_{\mathcal{L}(2/2)} = \widehat{\beta}_{j}\left(\underbrace{P_{u_{1}}(\iota_{j},\widetilde{b}_{j})}_{\mathcal{L}(2/2)}\right)\\ \underbrace{\tilde{\mathcal{L}}(1)}_{\mathcal{L}(1)} \underbrace{\tilde{\mathcal{L}}(2/2)}_{\mathcal{L}(2/2)} \underbrace{\tilde{\mathcal{L}}(2/2)} \underbrace{\tilde{\mathcal{L}}(2/2)}_{\mathcal{L}(2/2)} \underbrace{\tilde{\mathcal{L}}(2/2)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 のへぐ

For $n \in \mathbb{N}$ fix $\tilde{b}(n)$ in the unit ball of $\prod_n B_n$ such that

$$\max_{j\leq n} |\|\pi(\tilde{P}_j((\tilde{b}(n)))\| - r_j| < \frac{1}{n}$$

Fact. There are $0 < m(0) < m(1) < \ldots$ in \mathbb{N} such that for all n and all $k \leq n$ we have

$$|||(e_{m(n+1)} - e_{m(n)})\tilde{P}_{k}(\tilde{b}(n))|| - r_{k}| < \frac{1}{n}.$$
Let $\tilde{b} := \sum_{n} (e_{m(n+1)} - e_{m(n)})\tilde{b}_{n}.$
Then $P_{k}(\tilde{b}) = \sum_{n} (e_{m(n+1)} - e_{m(n)})\tilde{P}_{k}(\tilde{b}_{n}).$
Then $b := \pi(\tilde{b})$ realizes the type t.
$$(|| (e_{m(n+1)} - e_{m(n)})\tilde{P}_{k}(\tilde{b}_{n})|| = V_{i}, \quad i \to \infty$$

Remarks (1) We did not need the assumption that the polynomials P_n were of degree 1.

2

(2) The proof shows that the corona $\prod_n B_n / \bigoplus_n B_n$ is quantifier-free countably saturated, and it is even countably saturated (in the sense of continuous model theory), but the proof of the latter involves additional ideas.

A = K(H)

Back to the main result:

Thm 15.1.5 The corona of every σ -unital, nonunital, C*-algebra is countably degree-1 saturated.

MAI/A

 $\mathcal{A} \mathcal{A} \mathcal{A}$

In the proof we will need a theorem of Arveson.

Quasi-central approximate units

Def 1.9.1 Suppose A is an ideal in M and $X \subseteq M$. An approximate unit (e_m) in A is X-quasi-central if $\lim_m ||ae_m - e_ma|| = 0$ for every $a \in X$.

Prop 1.9.3 Suppose A is σ -unital ideal in a C*-algebra M and $X \subseteq M$ is separable. Then there exists an X-quasi-central approximate unit e_n , for $n \in \mathbb{N}$, in A such that $e_{n+1}e_n = e_n$. The proof of this fact (due to Arveson) uses GNS representations in a clever way; since I promised that I'll not go into the representation theory, and since the proof is presented in the text, I'll skip it.

the la = la Cyt

・・・・・・

Э

One more fact about commutation

(b) if f i a x - hig.011/5 () Use for - Constans. $\left(\right)$ $\|f - p\| \leq \frac{5}{4}$ N

Proof that every corona $\mathcal{M}(A)/A$ of a σ -unital C*-algebra is countably degree-1 saturated

Fix a satisfiable countable degree-1 type $\underline{t(x)}$, and enumerate it as $||P_n(x)|| = r_n$, for $n \in \mathbb{N}$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● のへぐ

Proof that every corona $\mathcal{M}(A)/A$ of a σ -unital C*-algebra is countably degree-1 saturated

Fix a satisfiable countable degree-1 type t(x), and enumerate it as $\|P_n(x)\| = r_n$, for $n \in \mathbb{N}$. Lift the coefficients of P_n to $\mathcal{M}(A)$, and let \tilde{P}_n be a polynomial over \mathcal{M}_n that lifts \tilde{P}_n . For $n \in \mathbb{N}$ fix $\tilde{b}(n)$ in the unit ball of $\mathcal{M}(A)$ such that $\mathcal{M}(A)$ $\max_{j \leq n} |||\pi(\tilde{P}_j((\tilde{b}(n)))|| - r_j| < \frac{1}{n}$

Let X_j be the set of all coefficients of \tilde{P}_n and all $\underline{b(n)}$, for $\underline{n \leq j}$. Let $X := \bigcup_j X_j$. Fix an X-quasicentral approximate unit (e_n) for A such that $e_{n+1}e_n = e_n$ for all n.

Let X_j be the set of all coefficients of \tilde{P}_n and all b(n), for $n \leq j$. Let $X := \bigcup_j X_j$. Fix an X-quasicentral approximate unit (e_n) for A such that $e_{n+1}e_n = e_n$ for all n. By going to a subsequence, assure that

$$\|[e_j, c]\| < g_{\sqrt{i} \in [0,1]}(2^{-j})/2$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

for all $c \in X_j$ and all j.

Let X_j be the set of all coefficients of \tilde{P}_n and all b(n), for $n \leq j$. Let $X := \bigcup_j X_j$. Fix an X-quasicentral approximate unit (e_n) for A such that $e_{n+1}e_n = e_n$ for all n. By going to a subsequence, assure that

$$\|[e_{j}, c]\| < g_{\sqrt{1} \upharpoonright [0,1]}(2^{-j})/2$$
for all $c \in X_{j}$ and all j .
Let $f_{j} := (e_{j+1} - e_{j})^{1/2}$ (with $e_{-1} := 0$).
1. For all $n \leq j$, $\tilde{P}_{n}(f_{j}\tilde{b}_{j}f_{j}) \approx_{2^{-j}} \tilde{f}_{j}P_{n}(\tilde{b}_{j})f_{j} \approx_{2^{-j}} \tilde{P}_{n}(\tilde{b}_{j})f_{j}^{2}$.
 $g_{j} \neq 0$, $\chi = G_{j} \neq G_{j} \neq G_{j} \neq G_{j} \neq G_{j}$

Let X_j be the set of all coefficients of \tilde{P}_n and all b(n), for $n \leq j$. Let $X := \bigcup_j X_j$. Fix an X-quasicentral approximate unit (e_n) for A such that $e_{n+1}e_n = e_n$ for all n. By going to a subsequence, assure that

$$\|[e_j, c]\| < g_{\sqrt{\cdot} \upharpoonright [0,1]}(2^{-j})/2$$

Let X_j be the set of all coefficients of \tilde{P}_n and all b(n), for $n \leq j$. Let $X := \bigcup_j X_j$. Fix an X-quasicentral approximate unit (e_n) for A such that $e_{n+1}e_n = e_n$ for all n. By going to a subsequence, assure that $f \in C_j \in [$

$$\|[e_j, c]\| < g_{\sqrt{\cdot} \upharpoonright [0,1]}(2^{-j})/2$$

for all
$$c \in X_j$$
 and all j .
Let $f_j := (e_{j+1} - e_j)^{1/2}$ (with $e_{-1} := 0$).
1. For all $n \leq j$, $\tilde{P}_n(f_j\tilde{b}_jf_j) \approx_{2^{-j}} \tilde{f}_jP_n(\tilde{b}_j)f_j \approx_{2^{-j}} \tilde{P}_n(\tilde{b}_j)f_j^2$.
2) $\sum_j f_j^2 = 1$ (the infinite sum strictly converges).
3. For $(a_j) \in \ell_{\infty}(A)$ the sum $\sum_j f_ja_jf_j$ strictly converges and satisfies $\|\sum_i f_ja_jf_j\| \leq \sup_j \|a_j\|$.
4. $\|\pi(\sum_j f_ja_jf_j)\| \leq \lim_{n \to \infty} \|\sum_{j \geq n} f_ja_jf_j\|$.
5. If moreover $|||a_j|| - ||a_jf_j^2||| \to 0$, then
 $\|\pi(\sum_j a_jf_j^2)\| \geq \limsup_j \|a_jf_j^2\|$. $\pi(\sum_j a_jf_j^2)\| = \lim_{n \to \infty} \|\sum_j a_jf_j^2\|$.

PF(5)Asiume A S B (H/ \$; EH, 11 \$; 11 =1 ti eri Fix $|| a; f; \tilde{s}; || \sim ||a; || \sim ||f; \tilde{s}; || \sim ||f|$ [Z Gh Fh S;] Z / G; f; S/ Work - $\sum_{\substack{I \neq j}} \hat{G}_{I_{I}} \hat{G}_{I_{I}}$ Ch+, Ch = Ch it [k-l/7/ $f_{k}f_{l}=0$ (a+61) > (a) - (6) $\|a_{3} \| \leq \|q_{7} \| \| \| \| \| \| \| \|$ $|| a_j f_j s_j| \approx || a_j ||$ $\|(f_{i}^{2})\| < 1$ $||q; f; 3, H \leq ||q; ||||f; 3; ||$

 $w_{0} = k = s v_{1} || q_{1} || <$ $f' M \| \sum_{j \leq n} f_j Q_j f_j \| \leq K$ mrei - - 1 f. (, Û, $\left| \begin{array}{c} u \\ G \\ \end{array} \right|$ $s_{o_{f}} \| \leq f_{i} q_{f} f_{i} \| \leq \|A\| \cdot \|B\| \| \|C\| \leq m c \leq \|a_{i}\|$ MCX (19;11 $\|A\| = \|AA^{\star}\| = \|\overline{\xi}, \overline{\xi}, \overline{0}\|$ \leq / - -1/- $||C||^2 = ||C^{*}C|| =$ \leq /

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● のへで

Finally, replace (e_i) with a subsequence such that

$$|\|f_j \tilde{P}_n(\tilde{b}_j)f_j\| - r_n| < \frac{1}{j}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ □ > ◆ ○ > ◆ □ > ● □ >

for all $n \leq j$. Then $b := \pi(\sum_{j} f_{j} \tilde{b}_{j} f_{j})$ is in $(\mathcal{M}(A)/A)_{1}$. Finally, replace (e_j) with a subsequence such that

$$|\|f_j \tilde{P}_n(\tilde{b}_j)f_j\| - r_n| < \frac{1}{j}$$

for all
$$n \leq j$$
.
Then $b := \pi(\sum_j f_j \tilde{b}_j f_j)$ is in $(\mathcal{M}(A)/A)_1$ and satisfies
 $\|P_n(b)\| = \|P_n(\sum_j f_j b_j f_j)\| = \|\sum_j f_j P_n(b_j) f_j\| = r_j$.

Therefore b realizes the type t.