Massive C^{*}-algebras

Ilijas Farah

Winter 2021

For convenience, references will be given to my 'Combinatorial set theory and C*-algebras' (Springer Monographs in Mathematics, 2019—pdf ebook available upon request) whenever possible. Saeed Ghasemi kindly agreed to run tutorials for this course (saeed.ghas@gmail.com).

Class 1, January 11, 2021
 The set-theoretic universe

Von Neumann's cumulative hierarchy V_{α}, for $\alpha \in \mathrm{OR}$, is defined by transfinite recursion on ordinals:
$\frac{V_{0}}{\text { ordinal. }}$. $\quad V_{\alpha+1}:=\mathcal{P}\left(V_{\alpha}\right)$, and $V_{\beta}:=\bigcup_{\alpha<\beta} V_{\alpha}$ if β is a limit

Class 1, January 11, 2021
 The set-theoretic universe

Von Neumann's cumulative hierarchy V_{α}, for $\alpha \in \mathrm{OR}$, is defined by transfinite recursion on ordinals:
$V_{0}:=\emptyset, V_{\alpha+1}:=\mathcal{P}\left(V_{\alpha}\right)$, and $V_{\beta}:=\bigcup_{\alpha<\beta} V_{\alpha}$ if β is a limit ordinal.
Virtually all of mathematics takes place in $V_{\omega+10}$ (ω is the least infinite ordinal).

Class 1, January 11, 2021 The set-theoretic universe

Von Neumann's cumulative hierarchy V_{α}, for $\alpha \in \mathrm{OR}$, is defined by transfinite recursion on ordinals:
$V_{0}:=\emptyset, V_{\alpha+1}:=\mathcal{P}\left(V_{\alpha}\right)$, and $V_{\beta}:=\bigcup_{\alpha<\beta} V_{\alpha}$ if β is a limit ordinal.
Virtually all of mathematics takes place in $V_{\omega+10}$ (ω is the least infinite ordinal).
However, the structure of V_{α}, for some very large α, profoundly affects the structure of $V_{\omega+1}$.
(Think analytic number theory, only a bit more drastic.)

Prerequisites

$H: \ell_{2}(\mathbb{I})$ for some \mathbb{I}
$\mathcal{B}(H)$ - a Banach algebra with involution *.
Abstract C^{*}-algebra: complex Banach algebra with an involution that satisfies the C^{*}-equality, $\left\|a a^{*}\right\|=\|a\|^{2}$.
Concrete C^{*}-algebra: norm-closed, self-adjoint subalgebra of $\mathcal{B}(H)$.

Prerequisites

$H: \ell_{2}(\mathbb{I})$ for some \mathbb{I}
$\mathcal{B}(H)$ - a Banach algebra with involution *.
Abstract C^{*}-algebra: complex Banach algebra with an involution that satisfies the C^{*}-equality, $\left\|a a^{*}\right\|=\|a\|^{2}$.
Concrete C^{*}-algebra: norm-closed, self-adjoint subalgebra of $\mathcal{B}(H)$.
Thm 1.10.1 (GNS) Every abstract C*-algebra A is isomorphic to a concrete C^{*}-algebra.

The 1.3.1 (Gelfand-Naimark) Every unital abelian C^{*}-algebra is isomorphic to

$$
\underline{C(X)}=\{f: X \rightarrow \mathbb{C} \mid f \text { is ctn }\} \quad\|f\|_{\infty}
$$

for some compact Hausdorff space X.
Chm 1.3.2 The category of unital abelian C*-algebras is contravariantly equivalent to the category of compact Hausdorff spaces.

$$
C(x) \rightarrow C(\xi)
$$

Lemma 1.2.10 Every algebraic *-homomorphism between C^{*}-algebras is contractive (i.e., 1-Lipshitz).

$$
d(x, \zeta) \leq 1 \Rightarrow d(\phi(x), \phi(x)) \leq 1
$$

Lemma 1.2.10 Every algebraic*-homomorphism between C^{*}-algebras is contractive (i.e., 1-Lipshitz).

Coro 1.2.11 Every injective algebraic *-homomorphism Φ between C^{*}-algebras is an isometry.

Convention
A, B, C, \ldots - C*-algebras
a, b, c, \ldots - elements of C^{*}-algebras
$B \leq A$ means ' B is a C^{*}-subalgebra of A '

Taxonomy of operators (§1.4)

Def 1.4.1 Some $a \in A$ is (assuming A is unital in (3), (5), (7))

1. normal if $a a^{*}=a^{*} a$;
2. self-adjoint if $a=a^{*}$;
3. projection if $a^{2}=a^{*}=a$;
4. unitary if $a a^{*}=a^{*} a=1$;
5. isometry if $a^{*} a=1$;
6. partial isometry if both aa* and $a^{*} a$ are projections, called the range projection and the source projection, respectively, of a (see Exercise 1.11.19);
7. coisometry if $a a^{*}=1$;
8. contraction if $\|a\| \leq 1$.

Continuous functional calculus

$H \quad K(H)=\{a \in \mathbb{B}(H) \mid a$ is c/cti
Def The unitization of A, A, is defined as follows. $\tilde{A}=\{a+\lambda \mid a \in A, \lambda \in \mathbb{C}\}$, with,$+{ }^{*}$ defined naturally. $(a+\lambda)(b+\mu)=(a+\lambda b+\mu a+\lambda \mu)$

Continuous functional calculus

Def The unitization of A, \tilde{A}, is defined as follows. $\tilde{A}=\{a+\lambda \mid a \in A, \lambda \in \mathbb{C}\}$, with + , * defined naturally.
$(a+\lambda)(b+\mu)=(a+\lambda b+\mu a+\lambda \mu)$
$\|a+\lambda\|=\sup _{\|b\| \leq 1}\|a b+\lambda b\|$.

Continuous functional calculus

Def The unitization of A, \tilde{A}, is defined as follows. $\tilde{A}=\{a+\lambda \mid a \in A, \lambda \in \mathbb{C}\}$, with,$+{ }^{*}$ defined naturally.
$(a+\lambda)(b+\mu)=(a+\lambda b+\mu a+\lambda \mu)$
$\|a+\lambda\|=\sup _{\|b\| \leq 1}\|a b+\lambda b\|$.
The spectrum of $a \in A$:

$$
\operatorname{sp}(a)=\{\lambda \in \mathbb{C}: a-\lambda / \text { is not invertible in } \tilde{A}\} .
$$

Fact. If $B \leq A$, and $b \in B$, then $\operatorname{sp}_{B}(b)=\operatorname{sp}_{A}(b)$.

Continuous functional calculus

Def The unitization of A, \tilde{A}, is defined as follows. $\tilde{A}=\{a+\lambda \mid a \in A, \lambda \in \mathbb{C}\}$, with + , * defined naturally. $(a+\lambda)(b+\mu)=(a+\lambda b+\mu a+\lambda \mu)$
$\|a+\lambda\|=\sup _{\|b\| \leq 1}\|a b+\lambda b\|$.
The spectrum of $a \in A$:

$$
\operatorname{sp}(a)=\{\lambda \in \mathbb{C}: a-\lambda / \text { is not invertible in } \tilde{A}\} .
$$

Fact. If $B \leq A, 1_{B}=1_{A}$, and $b \in B$, then $\mathrm{sp}_{B}(b)=\mathrm{sp}_{A}(b)$.
Def $\mathrm{C}^{*}(S)$: the C^{*}-algebra generated by (a set of operators) S. $\mathrm{C}^{*}(a)=\mathrm{C}^{*}(\{a\})$, etc.

Continuous functional calculus

Continuous functional calculus

$$
C_{0}(X)=\left\{f \in C(X) \mid \lim _{x \rightarrow \infty} f(x)=0\right\} .
$$

$$
a^{x} a=a a^{x}
$$

Thy 1.4.2 (Continuous functional calculus) If $a \in A$ is normal then

$$
\mathrm{C}^{*}(a) \cong C_{0}(\operatorname{sp}(\{\backslash\{0\})
$$

and the natural isomorphism sends $\operatorname{id}_{\mathrm{sp}(A)}$ to a. If A is unital, then $\mathrm{C}^{*}(a, 1) \cong C(\operatorname{sp}(a))$.

Coo If a is normal and $f \in C(\operatorname{sp}(a))$, then we can define $\underline{f(a)} \in \underline{\underline{C^{*}}(a, 1)}$ (and $f(a) \in C^{*}(a)$ if $f \in C_{0}(\operatorname{sp}(a) \backslash\{0\})$.

$$
\exp (a) \quad \operatorname{sp}(a) \leq \mathbb{R} \quad|a|
$$

A useful triviality

$\operatorname{Sog}_{x \in \neq \lambda}\{f(x) \mid\}$
Lemma If a is normal and $f \in C(\operatorname{sp}(a))$ then $\|f(a)\|=\|f\|_{\infty}$, in particular $f(a)=0$ if and only if $f(\lambda)=0$ for all $\lambda \in \operatorname{sp}(a)$.

Coo Assume a is normal.

1. a is self-adjoint (ie., $a=a^{*}$) iff $\operatorname{sp}(a) \subseteq \mathbb{R}$.
2. a is a projection (ie., $a=a^{*}=\bar{a}^{2}$) iff $\mathrm{sp}(a) \subseteq\{0,1\}$.
3. a is a unitary (ie., $\underset{\text { a }}{ }{ }^{*}=a^{*} a=1$) ff $\operatorname{sp}(a) \subseteq \mathbb{T}$ (the unit
circle in \mathbb{C}).

A useful triviality

Lemma If a is normal and $f \in C(\operatorname{sp}(a))$ then $\|f(a)\|=\|f\|_{\infty}$, in particular $f(a)=0$ if and only if $f(\lambda)=0$ for all $\lambda \in \operatorname{sp}(a)$.

Corot Assume a is normal.

1. a is self-adjoint (ie., $a=a^{*}$) iff $\operatorname{sp}(a) \subseteq \mathbb{R}$.
2. a is a projection (ie., $a=a^{*}=a^{2}$) iff $\operatorname{sp}(a) \subseteq\{0,1\}$.
3. a is a unitary (ie., $a a^{*}=a^{*} a=1$) iff $\operatorname{sp}(a) \subseteq \mathbb{T}$ (the unit circle in \mathbb{C}).

Cor If $\left\|a-a^{*}\right\|<\varepsilon$ then there $b \in \mathrm{C}^{*}(a)$ such that $b=b^{*}$ and $\|b-a\|<\varepsilon$.

$$
S=\frac{a+a^{*}}{2}
$$

A useful triviality

Lemma If a is normal and $f \in C(\operatorname{sp}(a))$ then $\|f(a)\|=\|f\|_{\infty}$, in particular $f(a)=0$ if and only if $f(\lambda)=0$ for all $\lambda \in \operatorname{sp}(a)$.

Coro Assume a is normal.

1. a is self-adjoint (i.e., $a=a^{*}$) iff $\operatorname{sp}(a) \subseteq \mathbb{R}$.
2. a is a projection (i.e., $a=a^{*}=a^{2}$) iff $\operatorname{sp}(a) \subseteq\{0,1\}$.
3. a is a unitary (i.e., $a a^{*}=a^{*} a=1$) iff $\operatorname{sp}(a) \subseteq \mathbb{T}$ (the unit circle in \mathbb{C}).

Coro If $\left\|a-a^{*}\right\|<\varepsilon$ then there $b \in \mathrm{C}^{*}(a)$ such that $b=b^{*}$ and $\|b-a\|<\varepsilon$.

Exercise. $(\forall \varepsilon \geq 0)(\exists \delta>0)$ such that for all a, if $\max \left(\left\|a-a^{*}\right\|,\left\|a-a^{2}\right\|\right)<\delta$ then there is a projection $p \in \mathrm{C}^{*}(a)$ with $\|a-p\|<\varepsilon$.

Positivity

Def (see §1.6) Some $a \in A$ is positive if it satisfies any of the following equivalent conditions.

$$
\begin{aligned}
& \text { 1. } a=b^{*} b \text { for some } b \in A \text {. } \\
& \text { 2. } a=a^{*} \text { and } \operatorname{sp}(a) \subseteq[0, \infty) .
\end{aligned}
$$

Positivity

Def (see $\S 1.6$) Some $a \in A$ is positive if it satisfies any of the following equivalent conditions.

1. $a=b^{*} b$ for some $b \in A$.
2. $a=a^{*}$ and $\operatorname{sp}(a) \subseteq[0, \infty)$.

Let $A_{\text {sa }}=\left\{a \in A \mid a=a^{*}\right\}$.
Exercise. $A=A_{\mathrm{sa}}+i A_{\mathrm{sa}} . \underline{A_{\mathrm{sa}}=A_{+}-A_{+}}$

$$
\begin{aligned}
& \text { e. } A=A_{\text {sa }}+i A_{\text {sa }} \cdot \frac{A_{\text {sa }}=A_{+}-A_{+}}{2}+\frac{1}{2 i}\left(i\left(a-a^{*}\right)\right)
\end{aligned}
$$

Positivity

Def (see §1.6) Some $a \in A$ is positive if it satisfies any of the following equivalent conditions.

1. $a=b^{*} b$ for some $b \in A$.
2. $a=a^{*}$ and $\operatorname{sp}(a) \subseteq[0, \infty)$.

Let $A_{\mathrm{sa}}=\left\{a \in A \mid a=a^{*}\right\}$.
Exercise. $A=A_{\text {sa }}+i A_{\text {sa }} . A_{\text {sa }}=A_{+}-A_{+}$.
Order $A_{\text {sa }}$ by $a \leq b \Leftrightarrow b-a$ is positive.

Positivity

Def (see §1.6) Some $a \in A$ is positive if it satisfies any of the following equivalent conditions.

1. $a=b^{*} b$ for some $b \in A$.
2. $a=a^{*}$ and $\operatorname{sp}(a) \subseteq[0, \infty)$.

Let $A_{\mathrm{sa}}=\left\{a \in A \mid a=a^{*}\right\}$.
Exercise. $A=A_{\text {sa }}+i A_{\text {sa }} . A_{\text {sa }}=A_{+}-A_{+}$.
Order $A_{\text {sa }}$ by $a \leq b \Leftrightarrow b-a$ is positive.
Lemma If $a \leq b$ then $c a c^{*} \leq c b c^{*}$ for all c.

$$
\begin{aligned}
b-a=d^{*} d \quad c(b-a) c^{*} & =c d^{*} d c^{*} \\
& =\left(d c^{*}\right)^{k} d c^{*}
\end{aligned}
$$

Positivity

Def (see §1.6) Some $a \in A$ is positive if it satisfies any of the following equivalent conditions.

1. $a=b^{*} b$ for some $b \in A$.
2. $a=a^{*}$ and $\operatorname{sp}(a) \subseteq[0, \infty)$.

Let $A_{\mathrm{sa}}=\left\{a \in A \mid a=a^{*}\right\}$.
Exercise. $A=A_{\text {sa }}+i A_{\text {sa }} . A_{\text {sa }}=A_{+}-A_{+}$.
Order $A_{\text {sa }}$ by $a \leq b \Leftrightarrow b-a$ is positive.
Lemma If $a \leq b$ then $c a c^{*} \leq c b c^{*}$ for all c. If $0 \leq a \leq b$ then $\|a\| \leq\|b\|$ and $\|a c\| \leq\|b c\|$ for all c.

$$
\|a\|=\ln a x \operatorname{sp}(a) \quad\left(a \quad n \cdot / m_{1} l\right)
$$

Polar decomposition

We define $|a|=\left(a^{*} a\right)^{1 / 2}$.
Chm 1.1.3 For every a in $\mathcal{B (H)}$ there exists a partial isometry $v \in \mathcal{B}(H)$ such that $a=\overline{v|a|}=\left|a^{*}\right| v$.

Polar decomposition

We define $|a|=\left(a^{*} a\right)^{1 / 2}$.
Thm 1.1.3 For every a in $\mathcal{B}(H)$ there exists a partial isometry $v \in \mathcal{B}(H)$ such that $a=v|a|=\left|a^{*}\right| v$.

Example In the algebra of compact operators, $\mathcal{K}(H)=\{a \in \mathcal{B}(H) \mid a$ is compact $\}$ there is an operator with no polar decomposition in $\mathcal{K}(H)$.

Polar decomposition

We define $|a|=\left(a^{*} a\right)^{1 / 2}$.
Chm 1.1.3 For every a in $\mathcal{B}(H)$ there exists a partial isometry $v \in \mathcal{B}(H)$ such that $a=v|a|=\left|a^{*}\right| v$.

Example In the algebra of compact operators, $\mathcal{K}(H)=\{a \in \mathcal{B}(H) \mid a$ is compact $\}$ there is an operator with no polar decomposition in $\mathcal{K}(H)$.

Exercise. For every a and every $\varepsilon>0$ there is $x \in \mathrm{C}^{*}(a)$ such that $\|x\| \leq 1$ and $\|a-x|a|\|<\varepsilon$.
(Hint: First prove that for every $f \in C_{0}(\operatorname{sp}(a) \backslash\{0\})$ we have $\prod_{u=U}^{u f(|a|) \in \mathrm{C}^{*}(a)}$.

Some notation

$$
\begin{aligned}
& A_{1}=\{a \in A \mid\|a\| \leq 1\} \\
& A_{+}=\left\{a \in A_{\text {sa }} \mid a \geq 0\right\} \\
& A_{+, 1}=\left\{a \in A_{+}:\|a\|=1\right\}
\end{aligned}
$$

Approximate units

Def 1.6.7 An approximate unit in A is a net $\left(e_{\lambda}: \lambda \in \Lambda\right)$ of positive contractions such that $\lim _{\lambda}\left\|a-e_{\lambda} a\right\|=0$ for all $a \in A$.

Prop 1.6.8 Every C^{*}-algebra A has an approximate unit. If A is separable then it has a sequential approximate unit.

We'll sketch the proof.

Approximate units

Def 1.6.7 An approximate unit in A is a net $\left(e_{\lambda}: \lambda \in \Lambda\right)$ of positive contractions such that $\lim _{\lambda}\left\|a-e_{\lambda} a\right\|=0$ for all $a \in A$.

Prop 1.6.8 Every C^{*}-algebra A has an approximate unit. If A is separable then it has a sequential approximate unit.

We'll sketch the proof.
(1) If $\|a\|<1$ then $(1-a)$ is invertible.

$$
(1-a)^{-1}=\sum_{n=0}^{\infty} a^{n}
$$

Approximate units

Def 1.6.7 An approximate unit in A is a net $\left(e_{\lambda}: \lambda \in \Lambda\right)$ of positive contractions such that $\lim _{\lambda}\left\|a-e_{\lambda} a\right\|=0$ for all $a \in A$.

Prop 1.6.8 Every C^{*}-algebra A has an approximate unit. If A is separable then it has a sequential approximate unit.

We'll sketch the proof.
(1) If $\|a\|<1$ then $(1-a)$ is invertible. (2)
$\left(2 / \Lambda=\left\{a \in A_{+} \mid\|a\| \leq 1\right\}\right.$ is directed under \leq.

Approximate units

Def 1.6.7 An approximate unit in A is a net $\left(e_{\lambda}: \lambda \in \Lambda\right)$ of positive contractions such that $\lim _{\lambda}\left\|a-e_{\lambda} a\right\|=0$ for all $a \in A$.

Prop 1.6.8 Every C^{*}-algebra A has an approximate unit. If A is separable then it has a sequential approximate unit.

We'll sketch the proof.
(1) If $\|a\|<1$ then $(1-a)$ is invertible. (2)
$\Lambda=\left\{a \in A_{+} \mid\|a\|<1\right\}$ is directed under \leq.
$\Lambda \rightarrow A_{+}: a \mapsto(1-a)^{-1}-1$ is an order-isomorphism.
$\psi: A_{+} \rightarrow \Lambda \quad \psi(b)=(b+1)^{-1}+1$
At check: $a \in A \Rightarrow(\forall \varepsilon .20) \exists e \in \wedge\|a-e a\|_{\{ }$

$$
\frac{a>0}{\|f(\varepsilon) a-a\|<r \underset{\varepsilon}{A} \quad e=f(b) \quad \uparrow}
$$

Ideals and quotients

An ideal in a C* -algebra will be a two-sided, norm-closed, ideal unless otherwise specified.
$J=0 *$
Lemma 2.5.2 Every quotient of a C^{*}-algebra is a C^{*}-algebra. (It is true, but not obvious, that the C^{*}-equality holds in the quotient.)

Topologies on $\mathcal{B}(H)$. von Neumann algebras

Out of the uncountably many important topologies on $\mathcal{B}(H)$, we'll need the following two.
Strong operator topology (SOT) in $\mathcal{B}(H)$: induced by the family of seminorms $a \mapsto\|a \xi\|$, for ξ in H. This is the topology of pointwise convergence on H.
Weak operator topology (WOT): induced by the family of seminorms $a \mapsto \mid(a \xi \mid \eta)$, for ξ and η in H.
(Recall that $\|\xi\|_{2}=(\xi \mid \xi)^{1 / 2}$ and $(\xi \mid \eta)=\frac{1}{4} \sum_{j=0}^{3} i^{j}\left\|x+i^{j} \eta\right\|_{i}$)

Topologies on $\mathcal{B}(H)$. vo Neumann algebras

Out of the uncountable many important topologies on $\mathcal{B}(H)$, we'll need the following two.
Strong operator topology (SOT) in $\mathcal{B}(H)$: induced by the family of seminorms $a \mapsto\|a \xi\|$, for ξ in H. This is the topology of pointwise convergence on H.
Weak operator topology (WOT): induced by the family of seminorms $a \mapsto(a \xi \mid \eta)$, for ξ and η in H.
(Recall that $\|\xi\|=(\xi \mid \xi)^{1 / 2}$ and $(\xi \mid \eta)=\frac{1}{4} \sum_{j=0}^{3} i^{j}\left\|x+i^{j} \eta\right\|$.)
Def 3.1.2 A van Neumann algebra is a strongly closed, unital C^{*}-subalgebra of $\mathcal{B}(H)$.

Topologies on $\mathcal{B}(H)$. vo Neumann algebras

Out of the uncountable many important topologies on $\mathcal{B}(H)$, we'll need the following two.
Strong operator topology (SOT) in $\mathcal{B}(H)$: induced by the family of seminorms $a \mapsto\|a \xi\|$, for ξ in H. This is the topology of pointwise convergence on H.
Weak operator topology (WOT): induced by the family of seminorms $a \mapsto(a \xi \mid \eta)$, for ξ and η in H.
(Recall that $\|\xi\|=(\xi \mid \xi)^{1 / 2}$ and $(\xi \mid \eta)=\frac{1}{4} \sum_{j=0}^{3} i^{j}\left\|x+i^{j} \eta\right\|$.)
Def 3.1.2 A van Neumann algebra is a strongly closed, unital C^{*}-subalgebra of $\mathcal{B}(H)$.

Lemma 3.1.3 Suppose M is a vol Neumann algebra and a_{λ}, for $\lambda \in \Lambda$, is an increasing net in M_{+}which is bounded above by some $b \in M_{+}$. Then there exists $a \in M_{+}$such that SOT- $-\lim _{\lambda} a_{\lambda}=\sup _{\lambda} a_{\lambda}=a$.

Massive C*-algebras (ultraproducts, asymptotic sequence algebras, ultraproducts, coronas...) ouers

The structure of separable C*-algebras and *-homomorphisms between them is often better understood when they are embedded into a massive C^{*}-algebra.

Massive C*-algebras (ultraproducts, asymptotic sequence algebras, ultraproducts, coronas...)

The structure of separable C*-algebras and *-homomorphisms between them is often better understood when they are embedded into a massive C^{*}-algebra.
There is no formal definition of a 'massive C*-algebra' (but we know one when we see it). Massive C^{*}-algebras are constructed from (a sequence of) separable C^{*}-algebras (and possibly ultrafilters on \mathbb{N}) in a canonical way. Some of their basic properties are sensitive to the choice of the axioms of set theory.

Multiplier algebras

Def 2.5.5 An ideal J in a C^{*}-algebra A is essential if for every $a \in A \backslash\{0\}$ we have $a J \neq\{0\}$.

Example

$$
\begin{gathered}
y=[0,1] \quad f(0)=0 \\
x=(0,1]
\end{gathered}
$$

If Y is a compact Hausdorff space and $X \subseteq Y$ is dense and locally compact, then $J=\{f \in C(Y) \mid f(y)=0$ for all $y \in Y \backslash X\}$ is an essential ideal of $C(\bar{Y})$.
Note that $J \cong C_{0}(X)$, where

$$
C_{0}(X)=\left\{f \in C(X) \mid \lim _{x \rightarrow \infty} f(x)=0\right\}
$$

Multiplier algebras

Def 2.5.5 An ideal J in a C^{*}-algebra A is essential if for every $a \in A \backslash\{0\}$ we have $a J \neq\{0\}$.

Example

If Y is a compact Hausdorff space and $X \subseteq Y$ is dense and locally compact, then $J=\{f \in C(Y) \mid f(y)=0$ for all $y \in Y \backslash X\}$ is an essential ideal of $C(Y)$.
Note that $J \cong C_{0}(X)$, where

$$
C_{0}(X)=\left\{f \in C(X) \mid \lim _{x \rightarrow \infty} f(x)=0\right\}
$$

Here, Y is a compactification of X.
We will define the non-commutative analog of the Čech-Stone compactification, βX.
(βX is the compact Hausdorff space that contains X as a dense subspace and has the property that every bounded continuous $f: X \rightarrow[0,1]$ has a continuous extension $\tilde{f}: Y \rightarrow \mathbb{C}$.)
(I'll write $B \leq C$ for ' B is a C^{*}-subalgebra of C^{\prime}.)
Suppose $A \leq \mathcal{B}(H)$. The idealizer of A is

$$
M=\{b \in \mathcal{B}(H): b A \subseteq A, A b \subseteq A\} .
$$

Fact. This implies M is a C^{*}-algebra and A is an ideal in M. It is essential if A is nondegenerate, i.e., if
$A^{\perp}=\{b \in \mathcal{B}(H) \mid b A=A b=\{0\}\}$ is trivial.
凤 annililotor
Exercise. Prove that if $A \cong C_{0}(X)$ then $M \cong C(\beta X)$.
(I'll write $B \leq C$ for ' B is a C^{*}-subalgebra of C^{\prime}.)
Suppose $A \leq \mathcal{B}(H)$. The idealizer of A is

$$
M=\{b \in \mathcal{B}(H): b A \subseteq A, A b \subseteq A\}
$$

Fact. This implies M is a C^{*}-algebra and A is an ideal in M. It is essential if A is nondegenerate, i.e., if
$A^{\perp}=\{b \in \mathcal{B}(H) \mid b A=A b=\{0\}\}$ is trivial.
Exercise. Prove that if $A \cong C_{0}(X)$ then $M \cong C(\beta X)$.
It is not obvious that M depends only on A, and not on the way A is embedded into $\mathcal{B}(H)$.
There are (at least) three routes towards proving this, and constructing the muttiplieralgebra of A: strict completion, pultipliers, and Hilbert modules.

Weak topology induced by a family of seminorms; filters

In non-metrizable topological spaces, one can define convergence in terms of nets in terms of filters. Following the tradition in operator algebras, my book uses nets, but in one respect the filters are more convenient.

$$
"\langle Y| Y \leq x \mid
$$

Def Given a set X, some $\mathcal{F} \subseteq \mathcal{P}(X)$ is a filter on X if the following holds.

1. $Y \in \mathcal{F}$ and $Z \supseteq Y$ implies $Z \in \mathcal{F}$.
2. $Y \in \mathcal{F}$ and $Z \in \mathcal{F}$ implies $Y \cap Z \in \mathcal{F}$.
3. If $\emptyset \notin \mathcal{F}_{1}$ then \mathcal{F} is a proper filter.

Weak topology induced by a family of seminorms

Suppose that X is a topological vector space, \mathcal{N} is a family of seminorms on X, and \mathcal{F} is a filter on X.

Def

$$
\mathcal{F} \rightarrow x
$$

1. \mathcal{F} converges to $x \in X$ if for all $\rho \in \mathcal{N}$ and all $\varepsilon \geq 0$ we have $\{y \in X \mid \rho(x-y)<\varepsilon\} \in \mathcal{F}$.
2. $\overline{\mathcal{F} \text { is Cauchy if for all } \rho \in \mathcal{N}}$ and all $\varepsilon>0$ we have $\underline{Y \in \mathcal{F}}$ such that $\rho(x-y)<\overline{\varepsilon \text { for }}$ all x and y in Y.
3. X is complete (with respect to the topology induced by \mathcal{N}) if every Cauchy filter on X converges.

Weak topology induced by a family of seminorms

Suppose that X is a topological vector space, \mathcal{N} is a family of seminorms on X, and \mathcal{F} is a filter on X.

Def

1. \mathcal{F} converges to $x \in X$ if for all $\rho \in \mathcal{N}$ and all $\varepsilon>0$ we have $\{y \in X \mid \rho(x-y)<\varepsilon\} \in \mathcal{F}$.
2. \mathcal{F} is Cauchy if for all $\rho \in \mathcal{N}$ and all $\varepsilon>0$ we have $Y \in \mathcal{F}$ such that $\rho(x-y)<\varepsilon$ for all x and y in Y.
3. X is complete (with respect to the topology induced by \mathcal{N}) if every Cauchy filter on X converges.

The completion of X with respect to \mathcal{N} is defined in a natural way—see e.g., Gabriel Nagy's lecture notes (https://www.math.ksu.edu/ nagy/func-an-F07-S08.html, lecture TVS IV.).

Strict topology

Def 13.1.1 Suppose $A \leq M$. To every $h \in A$ we associate two seminorms on $M, \lambda_{h} \overline{(b):=}\|h b\|$ and $\overline{\rho_{h}(b)}:=\|b h\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

$$
\text { A unital }=\frac{\text { norm }}{\underline{h=1}}
$$

Strict topology

Def 13.1.1 Suppose $A \leq M$. To every $h \in A$ we associate two seminorms on $M, \lambda_{h}(b):=\|h b\|$ and $\rho_{h}(b):=\|b h\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion $\mathcal{M}(A)$ of A in the strict topology is equipped with a unital C^{*}-algebra structure such that A is an essential ideal in $\mathcal{M}(A)$.

Strict topology

Def 13.1.1 Suppose $A \leq M$. To every $h \in A$ we associate two seminorms on $M, \lambda_{h}(b):=\|h b\|$ and $\rho_{h}(b):=\|b h\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion $\mathcal{M}(A)$ of A in the strict topology is equipped with a unital C^{*}-algebra structure such that A is an essential ideal in $\mathcal{M}(A)$.
Proof: The algebraic operations on $\mathcal{M}(A)$ are defined in a natural way.

To define the norm, let \mathcal{E} be an approximate unit of A. If \mathcal{F} is a bounded Cauchy filter in A, let $\|\mathcal{F}\|=\sup _{e \in \mathcal{E}} \sup _{Y \in \mathcal{F}} \inf _{b \in Y}\|e b\|$.

$$
A \subset M(A)
$$

$$
a \longrightarrow
$$

Strict topology

Def 13.1.1 Suppose $A \leq M$. To every $h \in A$ we associate two seminorms on $M, \lambda_{h}(b):=\|h b\|$ and $\rho_{h}(b):=\|b h\|$. The weak topology induced by these seminorms is called the A-strict topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion $\mathcal{M}(A)$ of A in the strict topology is equipped with a unital C^{*}-algebra structure such that A is an essential ideal in $\mathcal{M}(A)$.
Proof: The algebraic operations on $\mathcal{M}(A)$ are defined in a natural way.
To define the norm, let \mathcal{E} be an approximate unit of A. If \mathcal{F} is a bounded Cauchy filter in A, let $\|\mathcal{F}\|=\sup _{e \in \mathcal{E}} \sup _{Y \in \mathcal{F}} \inf _{b \in Y}\|e b\|$.
Def 13.1.6 $\mathcal{M}(A)$ is the multiplier algebra of A.
$\{a \in A l \quad \| a l l \leq K\}$

$$
\begin{array}{lll}
\delta_{1} \sim f_{2} & \forall \rho & \forall \varepsilon \\
\exists x_{1} \in F_{1} & \forall x_{2} \in F_{2} \\
& \forall a_{1} \in x_{1} & \forall a_{2} \in x_{1} \\
& \left\{\rho\left(a_{1}-a_{1}\right)<\varepsilon\right)
\end{array}
$$

Example 13.2.4

1. If X is a locally compact Hausdorff space then $\mathcal{M}\left(\underline{C_{0}(X)}\right) \cong C(\beta X)$.
2. $\mathcal{M}(\mathcal{K}(H)) \cong \mathcal{B}(H)$.
\rightarrow. If B_{n}, for $n \in \mathbb{N}$, are unital C^{*}-algebras, then

$$
\overline{\mathcal{M}\left(\bigoplus_{n} B_{n}\right)} \cong \prod_{n} B_{n}
$$

$M_{n}(\mathbb{C})$

$$
N=B(H)
$$

Lemma 13.1.9 If N is a vol Neumann algebra and $A \subseteq N$ is a C^{*}-algebra such that $A^{\perp} \cap N=\{0\}$ then N is A-strictly complete.

Lemma 13.1.9 If N is a von Neumann algebra and $A \subseteq N$ is a C^{*}-algebra such that $A^{\perp} \cap N=\{0\}$ then N is A-strictly complete.

Prop 13.2.1 Suppose $\pi: A \rightarrow \mathcal{B}(H)$ is hondegenerate faithful representation. Then π has a unique extension to a representation $\tilde{\pi}: \mathcal{M}(A) \rightarrow \mathcal{B}(H)$, and $\tilde{\pi}[\mathcal{M}(A)]$ is equal to the idealizer of $\pi[A]$ in $\mathcal{B}(H)$.

Lemma 13.1.9 If N is a von Neumann algebra and $A \subseteq N$ is a C^{*}-algebra such that $A^{\perp} \cap N=\{0\}$ then N is A-strictly complete.

Prop 13.2.1 Suppose $\pi: A \rightarrow \mathcal{B}(H)$ is a nondegenerate faithful representation. Then π has a unique extension to a representation $\tilde{\pi}: \mathcal{M}(A) \rightarrow \mathcal{B}(H)$, and $\tilde{\pi}[\mathcal{M}(A)]$ is equal to the idealizer of $\pi[A]$ in $\mathcal{B}(H)$.

Coro 13.2.2 $\mathcal{M}(A)$ is canonically isomorphic to the idealizer of the image of A under any nondegenerate faithful representation π of A.

Lemma 13.1.9 If N is a von Neumann algebra and $A \subseteq N$ is a C^{*}-algebra such that $A^{\perp} \cap N=\{0\}$ then N is A-strictly complete.

Prop 13.2.1 Suppose $\pi: A \rightarrow \mathcal{B}(H)$ is a nondegenerate faithful representation. Then π has a unique extension to a representation $\tilde{\pi}: \mathcal{M}(A) \rightarrow \mathcal{B}(H)$, and $\tilde{\pi}[\mathcal{M}(A)]$ is equal to the idealizer of $\pi[A]$ in $\mathcal{B}(H)$.

Coro 13.2.2 $\mathcal{M}(A)$ is canonically isomorphic to the idealizer of the image of A under any nondegenerate faithful representation π of A.

Coronas

Def 13.3.1 The corona of a nonunital C^{*}-algebra A is the quotient $\mathcal{Q}(A):=\mathcal{M}(A) / A$.

Coronas

Def 13.3.1 The corona of a nonunital C^{*}-algebra A is the quotient $\mathcal{Q}(A):=\mathcal{M}(A) / A$.

Example

1. $\mathcal{Q}(\mathcal{K}(H))(\mathcal{B}(H) / \mathcal{K}(H))$ is the Calkin algebra.

Coronas

Def 13.3.1 The corona of a nonunital C^{*}-algebra A is the quotient $\mathcal{Q}(A):=\mathcal{M}(A) / A$.

Example

1. $\mathcal{Q}(\mathcal{K}(H))(\mathcal{B}(H) / \mathcal{K}(H))$ is the Calkin algebra.
2. If X is a locally compact Hausdorff space, then $\mathcal{Q}\left(C_{0}(X)\right) \cong C(\beta X) / C_{0}(X) \cong C(\beta X \backslash X)$.

Coronas

Def 13.3.1 The corona of a nonunital C^{*}-algebra A is the quotient $\mathcal{Q}(A):=\mathcal{M}(A) / A$.

Example

1. $\mathcal{Q}(\mathcal{K}(H))(\mathcal{B}(H) / \mathcal{K}(H))$ is the Calkin algebra.
2. If X is a locally compact Hausdorff space, then $\mathcal{Q}\left(C_{0}(X)\right) \cong C(\beta X) / C_{0}(X) \cong C(\beta X \backslash X)$.
3. If $\mathbb{J} \subseteq \mathbb{N}$ is infinite, the corona of $\bigoplus_{n \in \mathbb{J}} M_{n}(\mathbb{C})$ is isomorphic to $\prod_{n \in \mathbb{J}} M_{n}(\mathbb{C}) / \bigoplus_{n \in \mathbb{J}} M_{n}(\mathbb{C})$.

Coronas

Def 13.3.1 The corona of a nonunital C^{*}-algebra A is the quotient $\mathcal{Q}(A):=\mathcal{M}(A) / A$.

Example

1. $\mathcal{Q}(\mathcal{K}(H))(\mathcal{B}(H) / \mathcal{K}(H))$ is the Calkin algebra.
2. If X is a locally compact Hausdorff space, then $\mathcal{Q}\left(C_{0}(X)\right) \cong C(\beta X) / C_{0}(X) \cong C(\beta X \backslash X)$.
3. If $\mathbb{J} \subseteq \mathbb{N}$ is infinite, the corona of $\bigoplus_{n \in \mathbb{J}} M_{n}(\mathbb{C})$ is isomorphic to $\prod_{n \in \mathbb{J}} M_{n}(\mathbb{C}) / \bigoplus_{n \in \mathbb{J}} M_{n}(\mathbb{C})$.

Exercise. How many nonisomorphic algebras as in (??) can you find?

Def $\operatorname{Proj}(A)$ is the poset of projections in A

Def $\operatorname{Proj}(A)$ is the poset of projections in A
Fact. $\operatorname{Proj}(A) \subseteq A_{+} . p \leq q$ iff $p q=p$.

Def $\operatorname{Proj}(A)$ is the poset of projections in A
Fact. $\operatorname{Proj}(A) \subseteq A_{+} . p \leq q$ iff $p q=p$.
Fact. $\operatorname{Proj}(\mathcal{B}(H))$ is a lattice.

Def $\operatorname{Proj}(A)$ is the poset of projections in A
Fact. $\operatorname{Proj}(A) \subseteq A_{+} . p \leq q$ iff $p q=p$.
Fact. $\operatorname{Proj}(\mathcal{B}(H))$ is a lattice.
Prop (Weaver) The poset $\operatorname{Proj}(\mathcal{Q}(H))$ is not a lattice.
(For a proof see Proposition 13.3.3.)

