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Class 1, January 11, 2021
The set-theoretic universe

Von Neumann’s cumulative hierarchy V↵, for ↵ 2 OR, is defined
by transfinite recursion on ordinals:
V0 := ;, V↵+1 := P(V↵), and V� :=

S
↵<� V↵ if � is a limit

ordinal.

Virtually all of mathematics takes place in V!+10 (! is the least
infinite ordinal).
However, the structure of V↵, for some very large ↵, profoundly
a↵ects the structure of V!+1.
(Think analytic number theory, only a bit more drastic.)
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Prerequisites

H: `2(I) for some I
B(H) — a Banach algebra with involution ⇤.
Abstract C⇤

-algebra: complex Banach algebra with an involution
that satisfies the C⇤-equality, kaa⇤k = kak2.
Concrete C⇤-algebra: norm-closed, self-adjoint subalgebra of B(H).

Thm 1.10.1 (GNS) Every abstract C⇤
-algebra A is isomorphic to a

concrete C⇤
-algebra.
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Thm 1.3.1 (Gelfand–Naimark) Every unital abelian C⇤
-algebra is

isomorphic to

C (X ) = {f : X ! C|f is ctns}

for some compact Hausdor↵ space X .

Thm 1.3.2 The category of unital abelian C⇤
-algebras is

contravariantly equivalent to the category of compact Hausdor↵

spaces.
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Lemma 1.2.10 Every algebraic
⇤
-homomorphism between

C⇤
-algebras is contractive (i.e., 1-Lipshitz).

Coro 1.2.11 Every injective algebraic
⇤
-homomorphism � between

C⇤
-algebras is an isometry.
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Convention
A,B ,C , . . . - C⇤-algebras
a, b, c , . . . - elements of C⇤-algebras
B  A means ‘B is a C⇤-subalgebra of A’



Taxonomy of operators (§1.4)

Def 1.4.1 Some a 2 A is (assuming A is unital in (3), (5), (7))

1. normal if aa
⇤ = a

⇤
a;

2. self-adjoint if a = a
⇤
;

3. projection if a
2 = a

⇤ = a;

4. unitary if aa
⇤ = a

⇤
a = 1;

5. isometry if a
⇤
a = 1;

6. partial isometry if both aa
⇤
and a

⇤
a are projections, called the

range projection and the source projection, respectively, of a

(see Exercise 1.11.19);

7. coisometry if aa
⇤ = 1;

8. contraction if kak  1.



Continuous functional calculus

Def The unitization of A, Ã, is defined as follows.

Ã = {a+ �|a 2 A,� 2 C}, with +,
⇤
defined naturally.

(a+ �)(b + µ) = (a+ �b + µa+ �µ)

ka+ �k = supkbk1 kab + �bk.

The spectrum of a 2 A:

sp(a) = {� 2 C : a� �I is not invertible in Ã}.

Fact. If B  A, 1B = 1A, and b 2 B , then spB(b) = spA(b).

Def C⇤(S): the C⇤
-algebra generated by (a set of operators) S .

C⇤(a) = C⇤({a}), etc.
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Continuous functional calculus

C0(X ) = {f 2 C (X )| lim
x!1

f (x) = 0}.

Thm 1.4.2 (Continuous functional calculus) If a 2 A is normal

then

C⇤(a) ⇠= C0(sp(a) \ {0})

and the natural isomorphism sends idsp(A) to a.

If A is unital, then C⇤(a, 1) ⇠= C (sp(a)).

Coro If a is normal and f 2 C (sp(a)), then we can define

f (a) 2 C⇤(a, 1) (and f (a) 2 C⇤(a) if f 2 C0(sp(a) \ {0}).
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A useful triviality

Lemma If a is normal and f 2 C (sp(a)) then kf (a)k = kf k1, in

particular f (a) = 0 if and only if f (�) = 0 for all � 2 sp(a).

Coro Assume a is normal.

1. a is self-adjoint (i.e., a = a
⇤
) i↵ sp(a) ✓ R.

2. a is a projection (i.e., a = a
⇤ = a

2
) i↵ sp(a) ✓ {0, 1}.

3. a is a unitary (i.e., aa
⇤ = a

⇤
a = 1) i↵ sp(a) ✓ T (the unit

circle in C).

Coro If ka� a
⇤k < " then there b 2 C⇤(a) such that b = b

⇤
and

kb � ak < ".

Exercise. (8" > 0)(9� > 0) such that for all a, if
max(ka� a

⇤k, ka� a
2k) < � then there is a projection p 2 C⇤(a)

with ka� pk < ".
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Positivity

Def (see §1.6) Some a 2 A is positive if it satisfies any of the

following equivalent conditions.

1. a = b
⇤
b for some b 2 A.

2. a = a
⇤
and sp(a) ✓ [0,1).

Let Asa = {a 2 A|a = a
⇤}.

Exercise. A = Asa + iAsa. Asa = A+ � A+.

Order Asa by a  b , b � a is positive.

Lemma If a  b then cac
⇤  cbc

⇤
for all c .

If 0  a  b then kak  kbk and kack  kbck for all c .
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Polar decomposition

We define |a| = (a⇤a)1/2.

Thm 1.1.3 For every a in B(H) there exists a partial isometry

v 2 B(H) such that a = v |a| = |a⇤|v .

Example In the algebra of compact operators,

K(H) = {a 2 B(H)|a is compact} there is an operator with no

polar decomposition in K(H).

Exercise. For every a and every " > 0 there is x 2 C⇤(a) such that
kxk  1 and ka� x |a|k < ".
(Hint: First prove that for every f 2 C0(sp(a) \ {0}) we have
uf (|a|) 2 C⇤(a).)
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Some notation

A1 = {a 2 A|kak  1}.
A+ = {a 2 Asa|a � 0}.
A+,1 = {a 2 A+ : kak = 1}



Approximate units

Def 1.6.7 An approximate unit in A is a net (e� : � 2 ⇤) of
positive contractions such that lim� ka� e�ak = 0 for all a 2 A.

Prop 1.6.8 Every C⇤
-algebra A has an approximate unit. If A is

separable then it has a sequential approximate unit.

We’ll sketch the proof.

(1) If kak < 1 then (1� a) is invertible. (2)
⇤ = {a 2 A+|kak < 1} is directed under .
⇤ ! A+ : a 7! (1� a)�1 � 1 is an order-isomorphism.
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Ideals and quotients

An ideal in a C⇤-algebra will be a two-sided, norm-closed,
self-adjoint ideal unless otherwise specified.

Lemma 2.5.2 Every quotient of a C⇤
-algebra is a C⇤

-algebra.

(It is true, but not obvious, that the C⇤-equality
holds in the quotient.)

7 0 t
T

JOA lllaat.IT
RCHlklHTCdhin 19412



Topologies on B(H). von Neumann algebras

Out of the uncountably many important topologies on B(H), we’ll
need the following two.
Strong operator topology (SOT) in B(H): induced by the family of
seminorms a 7! ka⇠k, for ⇠ in H. This is the topology of pointwise
convergence on H.
Weak operator topology (WOT): induced by the family of
seminorms a 7! (a⇠|⌘), for ⇠ and ⌘ in H.
(Recall that k⇠k = (⇠|⇠)1/2 and (⇠|⌘) = 1

4

P
3

j=0
i
jkx + i

j⌘k.)

Def 3.1.2 A von Neumann algebra is a strongly closed, unital

C⇤
-subalgebra of B(H).

Lemma 3.1.3 Suppose M is a von Neumann algebra and a�, for

� 2 ⇤, is an increasing net in M+ which is bounded above by some

b 2 M+. Then there exists a 2 M+ such that

SOT-lim� a� = sup� a� = a.
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Massive C⇤-algebras (ultraproducts, asymptotic sequence
algebras, ultraproducts, coronas. . . )

The structure of separable C⇤-algebras and ⇤-homomorphisms
between them is often better understood when they are embedded
into a massive C⇤-algebra.

There is no formal definition of a ‘massive C⇤-algebra’ (but we
know one when we see it). Massive C⇤-algebras are constructed
from (a sequence of) separable C⇤-algebras (and possibly
ultrafilters on N) in a canonical way. Some of their basic properties
are sensitive to the choice of the axioms of set theory.
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Multiplier algebras

Def 2.5.5 An ideal J in a C⇤
-algebra A is essential if for every

a 2 A \ {0} we have aJ 6= {0}.

Example
If Y is a compact Hausdor↵ space and X ✓ Y is dense and locally
compact, then J = {f 2 C (Y )|f (y) = 0 for all y 2 Y \ X} is an
essential ideal of C (Y ).

Note that J ⇠= C0(X ), where

C0(X ) = {f 2 C (X )| lim
x!1

f (x) = 0}.

Here, Y is a compactification of X .
We will define the non-commutative analog of the Čech–Stone
compactification, �X .
(�X is the compact Hausdor↵ space that contains X as a dense subspace and has the property that every bounded

continuous f : X ! [0, 1] has a continuous extension f̃ : Y ! C.)
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(I’ll write B  C for ‘B is a C⇤-subalgebra of C ’.)
Suppose A  B(H). The idealizer of A is

M = {b 2 B(H) : bA ✓ A,Ab ✓ A}.

Fact. This implies M is a C⇤-algebra and A is an ideal in M. It is

essential if A is nondegenerate, i.e., if
A
? = {b 2 B(H)|bA = Ab = {0}} is trivial.

Exercise. Prove that if A ⇠= C0(X ) then M ⇠= C (�X ).

It is not obvious that M depends only on A, and not on the way A

is embedded into B(H).
There are (at least) three routes towards proving this, and
constructing the multiplier algebra of A: strict completion,
multipliers, and Hilbert modules.

Ilsa la cAS

a annihilator
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Suppose A  B(H). The idealizer of A is

M = {b 2 B(H) : bA ✓ A,Ab ✓ A}.

Fact. This implies M is a C⇤-algebra and A is an ideal in M. It is

essential if A is nondegenerate, i.e., if
A
? = {b 2 B(H)|bA = Ab = {0}} is trivial.

Exercise. Prove that if A ⇠= C0(X ) then M ⇠= C (�X ).

It is not obvious that M depends only on A, and not on the way A

is embedded into B(H).
There are (at least) three routes towards proving this, and
constructing the multiplier algebra of A: strict completion,
multipliers, and Hilbert modules.
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Weak topology induced by a family of seminorms; filters

In non-metrizable topological spaces, one can define convergence
in terms of nets or in terms of filters. Following the tradition in
operator algebras, my book uses nets, but in one respect the filters
are more convenient.

Def Given a set X , some F ✓ P(X ) is a filter on X if the

following holds.

1. Y 2 F and Z ◆ Y implies Z 2 F .

2. Y 2 F and Z 2 F implies Y \ Z 2 F .

3. If ; /2 F , then F is a proper filter.
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Weak topology induced by a family of seminorms

Suppose that X is a topological vector space, N is a family of
seminorms on X , and F is a filter on X .

Def

1. F converges to x 2 X if for all ⇢ 2 N and all " > 0 we have

{y 2 X |⇢(x � y) < "} 2 F .

2. F is Cauchy if for all ⇢ 2 N and all " > 0 we have Y 2 F
such that ⇢(x � y) < " for all x and y in Y .

3. X is complete (with respect to the topology induced by N ) if

every Cauchy filter on X converges.

The completion of X with respect to N is defined in a natural
way—see e.g., Gabriel Nagy’s lecture notes
(https://www.math.ksu.edu/ nagy/func-an-F07-S08.html, lecture
TVS IV.).
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Strict topology

Def 13.1.1 Suppose A  M. To every h 2 A we associate two

seminorms on M, �h(b) := khbk and ⇢h(b) := kbhk. The weak

topology induced by these seminorms is called the A-strict

topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion M(A) of A in the strict topology

is equipped with a unital C⇤
-algebra structure such that A is an

essential ideal in M(A).

Proof: The algebraic operations on M(A) are defined in a natural
way.
To define the norm, let E be an approximate unit of A. If F is a
bounded Cauchy filter in A, let kFk = supe2E supY2F infb2Y kebk.

Def 13.1.6 M(A) is the multiplier algebra of A.
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Example 13.2.4

1. If X is a locally compact Hausdor↵ space then

M(C0(X )) ⇠= C (�X ).

2. M(K(H)) ⇠= B(H).

3. If Bn, for n 2 N, are unital C⇤
-algebras, then

M(
L

n Bn) ⇠=
Q

n Bn.
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Lemma 13.1.9 If N is a von Neumann algebra and A ✓ N is a

C⇤
-algebra such that A

? \N = {0} then N is A-strictly complete.

Prop 13.2.1 Suppose ⇡ : A ! B(H) is a nondegenerate faithful

representation. Then ⇡ has a unique extension to a representation

⇡̃ : M(A) ! B(H), and ⇡̃[M(A)] is equal to the idealizer of ⇡[A]
in B(H).

Coro 13.2.2 M(A) is canonically isomorphic to the idealizer of the

image of A under any nondegenerate faithful representation ⇡
of A.
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Coronas

Def 13.3.1 The corona of a nonunital C⇤
-algebra A is the quotient

Q(A) := M(A)/A.

Example

1. Q(K(H)) (B(H)/K(H)) is the Calkin algebra.

2. If X is a locally compact Hausdor↵ space, then
Q(C0(X )) ⇠= C (�X )/C0(X ) ⇠= C (�X \ X ).

3. If J ✓ N is infinite, the corona of
L

n2JMn(C) is isomorphic
to

Q
n2JMn(C)/

L
n2JMn(C).

Exercise. How many nonisomorphic algebras as in (??) can you
find?
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Def Proj(A) is the poset of projections in A

Fact. Proj(A) ✓ A+. p  q i↵ pq = p.

Fact. Proj(B(H)) is a lattice.

Prop (Weaver) The poset Proj(Q(H)) is not a lattice.

(For a proof see Proposition 13.3.3.)
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