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Class 1, January 11, 2021
The set-theoretic universe

Von Neumann's cumulative hierarchy V,, for a € OR, is defined
by transfinite recursion on ordinals:

Vo :=0, Voy1 :=P(V,), and V3 = Ua<5 V,, if Bis a limit
ordinal.

Virtually all of mathematics takes place in V110 (w is the least
infinite ordinal).

However, the structure of V,,, for some very large a, profoundly
affects the structure of V1.

(Think analytic number theory, only a bit more drastic.)



Prerequisites

H: ¢5(I) for some I

B(H) — a Banach algebra with involution
Abstract C*-algebra: complex Banach algebra with an involution
that satisfies the C*-equality, ||aa*|| = ||a]|°.

Concrete C*-algebra: norm-closed, self-adjoint subalgebra of B(H).

*



Prerequisites

H: ¢5(I) for some I

B(H) — a Banach algebra with involution
Abstract C*-algebra: complex Banach algebra with an involution
that satisfies the C*-equality, ||aa*|| = | a]|°.

Concrete C*-algebra: norm-closed, self-adjoint subalgebra of B(H).

*

Thm 1.10.1 (GNS) Every abstract C*-algebra A is isomorphic to a
concrete C*-algebra.



Thm 1.3.1 (Gelfand—Naimark) Everabe/ian C*-algebra is

iIsomorphic to

C(X)={f: X =>C|f isct

(L’) { — C|f is ctns} \( _@(/06
for some compact Hausdorff space X.

Thm 1.3.2 The category of unital abelian C*-algebras is
contravariantly equivalent to the category of compact Hausdorff

spaces. ( (ﬂ{/ )}( ((,/
X<
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Lemma 1.2.10 Every algebraic *~-homomorphism between
C*-algebras is contractive (i.e., 1-Lipshitz).

A(K/(f/_é/ =/ 0((55(/(4 %////S/



Lemma 1.2.10 Every algebraic *~-homomorphism between
C*-algebras is contractive (i.e., 1-Lipshitz).

Coro 1.2.11 Every injective algebraic *-homomorphism & between
C*-algebras is an isometry.



Convention

A B,C,... - C*-algebras

a,b,c,... - elements of C*-algebras

B < A means ‘B is a C*-subalgebra of A’



Taxonomy of operators (§1.4)

Def 1.4.1 Some a € A is (assuming A is unital in (3), (5), (7))
1. normal if aa* = a*a;

self-adjoint if a = a*;

projection if a°> = a* = a;

unitary if aa* = a*a=1;

isometry if a*a = 1;

AN

partial isometry if both aa* and a*a are projections, called the
range projection and the source projection, respectively, of a

(see Exercise 1.11.19);

7. coisometry if aa* = 1;

8. contraction if ||a|| < 1.



Continuous functional calculus

{/{l K{H/ = {Q GA(/L/// & o C/E/J

Def The unitization of A, A, is defined as follows. & [,L// ]
A={a+ )\]a € A, \ € C}, with +, * defined naturally.
(a+A)(b+p)=(a+ Ab+ pa+ Au)
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Def The unitization of A, /Z\, is defined as follows.

A={a+ \Mae A M\ecC}, with+, * defined naturally
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The spectrum of a € A: [/ L/%‘(

sp(a) = {\ € C: a— Al is not invertible in A}.
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Continuous functional calculus

Def The unitization of A, /Z\, is defined as follows.
A={a+ \Mae A \ecC}, with+, * defined naturally
(a+A)(b+p)=(a+ Ab+ pa+ Au)

|a+ All = supypj<1 llab + Ab||.

The spectrum of a € A:

sp(a) = {\ € C: a— Al is not invertible in Al.

Fact. If B< A, 1g =14, and b € B, then spg(b) = sp4(b).

Def C*(S): the C*-algebra generated by (a set of operators) S.
C*(a) = C*({a}), etc.



Continuous functional calculus

(oC ) C/Ué /I{C/Jcé/ét
v

Go(X) = {f € C(X)| lim f(x) = 0}.

X—>0Q




Continuous functional calculus

G(X)={fe CX)| lim F() =0}
Ot -;C,_Q'fz

Thm 1.4.2 (Continuous functional calculus) Ifa € A is normal

then

ﬁ e
and the natural lsomorphlsm sends idg,( ) to a. Q
If A is unital, then C*(a,1) = C(sp(a)).

Coro If a is normal and f € C(sp(a)), then we can define
f(a) € C*(a,1) (and f(a) € C*(a) if f € Co(sp(a) \ {0}).

exra)  Spw = 4/



A useful triviality / (4(//(5

Lemma If a is normal and f € C(sp(a)) then |[f(a)|| = ||f ||, in
particular f(a) = 0 if and only if f(\) = 0 for all X € sp(a).

Coro Assume a is@orma/D

1. a is self-adjoint (i.e., a = a*) iff sp(a) C R.
2. a s a projection (i.e., f;_i_lgz) iff sp(a) € {0,1}.

P

3. ais a unitary (i.e., aa* —aa—l)lffsp( ) C T (the unit

o )

circle in C).



A useful triviality

Lemma [If a is normal and f € C(sp(a)) then ||f(a)|| = ||f]|co, in
particular f(a) = 0 if and only if f(\) =0 for all A € sp(a).

Coro Assume a is normal.
1. a is self-adjoint (i.e., a = a*) iff sp(a) C R.
2. ais a projection (i.e., a= a* = a®) iffsp(a) C {0,1}.

3. ais a unitary (i.e., aa* = a*a=1) iffsp(a) C T (the unit
circle in C).

Coro If ||a— a*|| < e then there b € C*(a) such that b= b* and
Ib—al <e. —x
é d_—+&
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A useful triviality

Lemma [If a is normal and f € C(sp(a)) then ||f(a)|| = ||f]|co, in
particular f(a) = 0 if and only if f(\) =0 for all A € sp(a).

Coro Assume a is normal.
1. a is self-adjoint (i.e., a = a*) iff sp(a) C R.
2. ais a projection (i.e., a= a* = a®) iffsp(a) C {0,1}.

3. ais a unitary (i.e., aa* = a*a=1) iffsp(a) C T (the unit
circle in C).

Coro If ||a— a*|| < e then there b € C*(a) such that b= b* and
|b— a|| <e.

Exercise. (Ve > 0)(3 > 0) such that for all a, if
[max([la — a*||, ||a — a2||) < d]then there is a projection p € C*(a)
with [la — p]] <e. -




Positivity

Def (see §1.6) Some a € A is positive if it satisfies any of the
following equivalent conditions.

1. a= b*b for some b € A. (&f!g);é
2. a=a* and sp(a) C [0,0). " "

4



Positivity

Def (see §1.6) Some a € A is positive if it satisfies any of the
following equivalent conditions.

1. a= b*b for some b € A.
2. a=a" and sp(a) C [0, c0).
Let As; = {a € Ala=a*}.
Exercise. A= Ags+ iAss. Asa = AL — AL
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Def (see §1.6) Some a € A is positive if it satisfies any of the
following equivalent conditions.

1. a= b*b for some b € A.

2. a=a" and sp(a) C [0, c0).
Let As; = {a € Ala=a*}.
Exercise. A= Ags+ iAss. Asa = AL — AL
Order As; by a < b < b — a is positive.
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Positivity

Def (see §1.6) Some a € A is positive if it satisfies any of the
following equivalent conditions.

1. a= b*b for some b € A.
2. a=a* and sp(a) C [0, c0).

Let As; = {a € Ala=a*}.
Exercise. A= Ass+ iAss. Asa = AL — AL
Order As; by a < b < b — a is positive.

Lemma [fa < b then cac* < cbc* for all c.

If0 < a < b then ||a|| < ||b|| and ||ac|| < ||bc|| for all c.
— —

((a,[/ — (X Stl(a) (a Ms/wu//




Polar decomposition

We define |a| = (a*a)'/2.

Thm 1.1.3 For every a in B(H) there exists a partial isometry
v € B(H) such that a = v|a| = |a*|v.

——
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Polar decomposition

We define |a| = (a*a)l/?.

Thm 1.1.3 For every a in B(H) there exists a partial isometry
v € B(H) such that a = v|a| = |a*|v.

Example [In the algebra of compact operators,
IC(H) = {a € B(H)|a is compact} there is an operator with no
polar decomposition in IC(H).



Polar decomposition

We define |a| = (a*a)l/?.

Thm 1.1.3 For every a in B(H) there exists a partial isometry
v € B(H) such that a = v|a| = |a*|v.
TT———

Example [In the algebra of compact operators,

IC(H) = {a € B(H)|a is compact} there is an operator with no
polar decomposition in IC(H).

Exercise. For every a and every € > 0 there is x € C*(a) such that
— —
|x]| <1 and |a—x]al|| <e.

(Hint: First prove that for every f € Cp(sp(a) \ {0}) we have
uf(|a]) € C*(a).)

— =
[ =0




Some notation

A; ={aeAlla|| <1}
A+ = {a € Asa\a > O}
Ari={ac A a| =1}



Approximate units

Def 1.6.7 An approximate unit in A is a net (e) : A € \) of
positive contractions such that limy ||a — eyal| = 0 for all a € A.

Prop 1.6.8 Every C*-algebra A has an approximate unit. If A is
separable then it has a sequential approximate unit.

We'll sketch the proof.



Approximate units

Def 1.6.7 An approximate unit in A is a net (e) : A € \) of
positive contractions such that limy ||a — eya|| = 0 for all a € A.

Prop 1.6.8 Every C*-algebra A has an approximate unit. If A is
separable then it has a sequential approximate unit.

We'll sketch the proof.
(1) If ||a|| < 1 then (1 — a) is invertible.

_, of
((/Q) /:ZQM

n=e



Approximate units

Def 1.6.7 An approximate unit in A is a net (e) : A € \) of
positive contractions such that limy ||a — eya|| = 0 for all a € A.

Prop 1.6.8 Every C*-algebra A has an approximate unit. If A is
separable then it has a sequential approximate unit.

We'll sketch the proof.
(1) If ||a|| < 1 then (1 — a) is invertible. (2)
(?///\ = {a € A,l||la|]| < 1} is directed under <.

—




Approximate units

Def 1.6.7 An approximate unit in A is a net (e) : A € \) of
positive contractions such that limy ||a — eya|| = 0 for all a € A.

Prop 1.6.8 Every C*-algebra A has an approximate unit. If A is
separable then it has a sequential approximate unit.

We'll sketch the proof.

(1) If ||a|| < 1 then (1 — a) is invertible. (2)
N={ae A,l|la|]| <1} is directed under <.

AN— A, :aw (1—a)"!—1is an order-isomorphism.

biap on Wb .—:@H)/'Jc/

/4'7[" Cltch,‘ c &/ =D(I%£ 7'°) 5166/\ t[a( /C[ﬁf






|deals and quotients

An ideal in a C*-algebra will be a two-sided, norm—closed,

ideal unless otherwise specified.

Lemma 2.5.2 Every quotient of a C*-algebra is a C*-algebra.

—_—

(It is true, but not obvious, that the C*-equality
holds in the quotient.)

—

T <14 [ (et =)™

—

— \
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Topologies on B(H). von Neumann algebras

Out of the uncountably many important topologies on B(H), we'll
need the following two.

Strong operator topology (SOT) in B(H): induced by the family of
seminorms a +— ||a&||, for £ in H. This is the topology of pointwise
convergence on H.

Weak operator topology (WOT): induced by the family of
seminorms a %\(a{]n)[ for £ and 7 in H

(Recall that [|£[| = (€]¢)/? and (Eln) = L2 o #lx + i)
\l
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Out of the uncountably many important topologies on B(H), we'll
need the following two.

Strong operator topology (SOT) in B(H): induced by the family of
seminorms a +— ||a&||, for £ in H. This is the topology of pointwise
convergence on H.

Weak operator topology (WOT): induced by the family of
seminorms a — (a&|n), for £ and n in H.

(Recall that [|¢]| = (£]€)*2 and (£]n) = 3 370 Zllx + i/nl|.)

Def 3.1.2 A von Neumann algebra is a strongly closed, unital

C*-subalgebra of B(H). A
(H) roq =) C



Topologies on B(H). von Neumann algebras

Out of the uncountably many important topologies on B(H), we'll
need the following two.

Strong operator topology (SOT) in B(H): induced by the family of
seminorms a +— ||a&||, for £ in H. This is the topology of pointwise
convergence on H.

Weak operator topology (WOT): induced by the family of
seminorms a — (a&|n), for £ and n in H.

(Recall that [|€]| = (¢]¢)*/2 and (&]n) = § 270 #lIx + #n]].)

Def 3.1.2 A von Neumann algebra is a strongly closed, unital
C*-subalgebra of B(H).

Lemma 3.1.3 Suppose M is a von Neumann algebra and a), for
A € A, is an increasing net in My which is bounded above by some
b€ M. Then there exists a € M, such that

SOT-limy ay = sup, a) = a.

— - — C(CD/‘])




Massive C*-algebras (uItraproducts asymptotic sequence
algebras, ultrapredtets, coronas. . .)

The structure of separable C*-algebras and *-homomorphisms
between them is often better understood when they are embedded
into a massive C*-algebra.




Massive C*-algebras (ultraproducts, asymptotic sequence
g y
algebras, ultraproducts, coronas. .. )

The structure of separable C*-algebras and *-homomorphisms
between them is often better understood when they are embedded
into a massive C*-algebra.

There is no formal definition of a ‘massive C*-algebra’ (but we
know one when we see it). Massive C*-algebras are constructed
from (a sequence of) separable C*-algebras (and possihly
ultrafilters on N) in a canonical way. Some of their basic properties
are sensitive to the choice of the axioms of set theory.




Multiplier algebras

Def 2.5.5 An ideal J in a C*-algebra A is essential if for every

a€ A\ {0} we have aJ # {0}. 7
— | o ~
Example y -_—_L_(O ,j Q@ i

If Y is a compact Hausdorff space and X C Y is dense and locally
compact, then J = {f € C(Y)|f(y) =0forall y € Y\ X} is an
essential ideal of C(Y).

Note that J = Co(X), where

Co(X) = {f € C(X)| lim f(x) = O}.

X—00
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Multiplier algebras

Def 2.5.5 An ideal J in a C*-algebra A is essential if for every
a€ A\ {0} we have aJ # {0}.

Example

If Y is a compact Hausdorff space and X C Y is dense and locally
compact, then J ={f € C(Y)|f(y) =0forall y € Y\ X} is an
essential ideal of C(Y)

Note that J = Co(X), where @

Co(X) = {f € C(X)| lim f(x) = 0}.
Here, Y is a compactification of X.
We will define the non-commutative analog of the Cech-Stone

compactification, 8X.

(BX is the compact Hausdorff space that contains X as a dense subspace and has the property that every bounded

continuous f: X — [0, 1] has a continuous extension : Y — C.)



(I'll write B < C for ‘B is a C*-subalgebra of C'.)
Suppose A < B(H). The idealizer of A is

M= {be B(H): bAC A Ab C A}.
Fact. This implies M is a C*-algebra and A is an ideal in M. It is

essential if A is nondegenerate, i.e., if
At = {b € B(H)|bA = Ab = {0}} is trivial.

~ ﬁl’lnl’L( D4
Exercise. Prove that if A =/Cy(X)/then M = C(5X).




(I'll write B < C for ‘B is a C*-subalgebra of C'.)
Suppose A < B(H). The idealizer of A is

M= {be B(H): bAC A Ab C A}.

Fact. This implies M is a C*-algebra and A is an ideal in M. It is

essential if A is nondegenerate, i.e., if
At = {b € B(H)|bA = Ab = {0}} is trivial.

Exercise. Prove that if A= Cy(X) then M = C(5X).

It is not obvious that M depends only on A, and not on the way A

is embedded into B(H).

There are (at least) three routes towards-proving this,”a
A: strict completion,




Weak topology induced by a family of seminorms; filters

In non-metrizable topological spaces, one can define convergence

in terms or in terms of filters. Following the tradition in
—_— . .

operator algebras, my book uses nets, but in one respect the filters

are more convenient. , 4 Y / e )(}

Def  Given a set X, some F C P(X) is a filter on X if the
following holds. ~—

1. YeFand Z DY implies Z € F.
2. YeFandZ € F impliesYNZ € F. — )(

3. If (Z)/_\g_é_.F[ then F is a Er’oper fl/Eir.




Weak topology induced by a family of seminorms

Suppose that X is a topological vector space, N is a family of
seminorms on X, and F is a filter on X.

Def § —x
1. F converges to x € X if for all p € N and all ¢ > 0 we have
W € Xlp(x —y) <e} € F.

2. F is Cauchy if for all p € ) €N and alle >0 we have Y € F
such that ,o(x —y)<eforallx andy in Y.

L

3. X is complete (with respect to the topology induced by N') if

every Cauchy filter on X converges.
—_—

—_—




Weak topology induced by a family of seminorms

Suppose that X is a topological vector space, N is a family of
seminorms on X, and F is a filter on X.

Def

1. F converges to x € X if for all p € N and all ¢ > 0 we have
{y e Xlp(x —y) <e} e F.

2. F is Cauchy if for all p € N and all € > 0 we have Y € F
such that p(x —y) < e forall x and y in Y.

3. X is complete (with respect to the topology induced by N') if
every Cauchy filter on X converges.

The completion of X with respect to N is defined in a natural
way—see e.g., Gabriel Nagy's lecture notes
(https://www.math.ksu.edu/ nagy/func-an-F07-S08.html, lecture
TVS IV.).



Strict topology
Def 13.1.1 Suppose A < M. To every h € A we associate two
seminorms on M, Ap(b) := | hb|| and pn(b) :=||bh he weak
topology induced by these seminorms is called t @
topology, or just the strict topology if A is clear from the context.
A (/Vll.(Lﬁ/ — s
b =

—_—




Strict topology

Def 13.1.1 Suppose A < M. To every h € A we associate two
seminorms on M, \p(b) := ||hb|| and pu(b) := ||bh||. The weak
topology induced by these seminorms is called the A-strict
topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion M(A) of A in the strict topology

Is equipped with a unital C*-algebra structure such that A is an
essential ideal in M(A).



Strict topology

Def 13.1.1 Suppose A < M. To every h € A we associate two
seminorms on M, \p(b) := ||hb|| and pu(b) := ||bh||. The weak
topology induced by these seminorms is called the A-strict
topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion M(A) of A in the strict topology
Is equipped with a unital C*-algebra structure such that A is an

essential ideal in M(A).

Proof: The algebraic operations on M(A) are defined in a natural
way. %/ P

To define the norm, let £ be an approximate unit of A. If F is a

bounded Cauchy filter in A, let || F|| # supecesupycr infrey |leb].

?—-q/‘/_‘

C———
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Strict topology

Def 13.1.1 Suppose A < M. To every h € A we associate two
seminorms on M, \p(b) := ||hb|| and pu(b) := ||bh||. The weak
topology induced by these seminorms is called the A-strict
topology, or just the strict topology if A is clear from the context.

Lemma 13.1.5 The completion M(A) of A in the strict topology

Is equipped with a unital C*-algebra structure such that A is an
essential ideal in M(A).

Proof: The algebraic operations on M(A) are defined in a natural
way.

To define the norm, let £ be an approximate unit of A. If Fis a
bounded Cauchy filter in A, let || F|| = supecge supycrinfrey |leb].

Def 13.1.6  M(A) is the multiplier algebra of A.
T leenl lell = [\







Example 13.2.4
1. If X is a locally compact Hausdorff space then

M(G(X)) = C(5X).

2. /\/l(lq H)) B(H
3. If By, for n € N, are_unital C*-algebras, then
M(@n B”) = Hn B”'
e

M, €/




Lemma 13.1.9 If N is a von Neumann algebra and A C N is a
C*-algebra such that AA NN = {O} then N is A- strlct/y complete.

N (Lr = (@4//
{, (é/ ”/ (la //
662

+ 6/\/@ 6/4(




Lemma 13.1.9 If N is a von Neumann algebra and A C N is a
C*-algebra such that A~ NN = {0} then N is A-strictly complete.

Prop 13.2.1 Suppose 7: A — B(H) is .f faithful
representation. Then 7 has a unique extefision to a representation
7: M(A) — B(H), and 7[M(A)] is equal to the idealizer of z[A]
in B(H). 7




Lemma 13.1.9 If N is a von Neumann algebra and A C N is a
C*-algebra such that A~ NN = {0} then N is A-strictly complete.

Prop 13.2.1 Suppose m: A — B(H) is a nondegenerate faithful
representation. Then m has a unique extension to a representation
7: M(A) — B(H), and 7[M(A)] is equal to the idealizer of m[A]
in B(H).

Coro 13.2.2 M(A) is canonically isomorphic to the idealizer of the
image of A under any nondegenerate faithful representation m
of A.



Lemma 13.1.9 If N is a von Neumann algebra and A C N is a
C*-algebra such that A~ NN = {0} then N is A-strictly complete.

Prop 13.2.1 Suppose m: A — B(H) is a nondegenerate faithful
representation. Then m has a unique extension to a representation
7: M(A) — B(H), and 7[M(A)] is equal to the idealizer of m[A]
in B(H).

Coro 13.2.2 M(A) is canonically isomorphic to the idealizer of the
image of A under any nondegenerate faithful representation m
of A.



Coronas

Def 13.3.1 The corona of a nonunital C*-algebra A is the quotient
Q(A) := M(A)/A.
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Def 13.3.1 The corona of a nonunital C*-algebra A is the quotient
Q(A) := M(A)/A.

Example
1. Q(K(H)) (B(H)/K(H)) is the Calkin algebra.



Coronas

Def 13.3.1 The corona of a nonunital C*-algebra A is the quotient
Q(A) := M(A)/A.

Example
1. Q(K(H)) (B(H)/K(H)) is the Calkin algebra.

2. If X is a locally compact Hausdorff space, then
Q(Co(X)) = C(BX)/Co(X) = C(BX \ X).



Coronas

Def 13.3.1 The corona of a nonunital C*-algebra A is the quotient
Q(A) := M(A)/A.

Example

1. Q(K(H)) (B(H)/K(H)) is the Calkin algebra.
2. If X is a locally compact Hausdorff space, then
Q(Co(X)) = C(BX)/Co(X) = C(BX\ X).
3. If J € N is infinite, the corona of @, .; M,(C) is isomorphic

to [[ ey Ma(C)/ D ey Ma(C).



Coronas

Def 13.3.1 The corona of a nonunital C*-algebra A is the quotient
Q(A) := M(A)/A.

Example

1. Q(K(H)) (B(H)/K(H)) is the Calkin algebra.
2. If X is a locally compact Hausdorff space, then
Q(Co(X)) = C(BX)/Co(X) = C(BX\ X).
3. If J € N is infinite, the corona of @, .; M,(C) is isomorphic

to [[ ey Ma(C)/ D ey Ma(C).

Exercise. How many nonisomorphic algebras as in (??) can you
find?



Def Proj(A) is the poset of projections in A
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Def Proj(A) is the poset of projections in A
Fact. Proj(A) C A.. p < qiff pg = p.
Fact. Proj(B(H)) is a lattice.

Prop (Weaver) The poset Proj(Q(H)) is not a lattice.
(For a proof see Proposition 13.3.3.)



