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Summary of Lecture 1

The study of tropical geometry has been motivated by applications.

It is considered a combinatorial shadow of algebraic geometry.

A degree 3 curve with genus 1
The degree and genus of tropical planar curves

Tropical genus
Let f be a polynomial of degree d and S the induced dual subdivision of d∆.

The genus of V (f ) is the number of interior vertices of S.
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Summary of Lecture 1

Goal: to provide a simple model of algebraic geometry

Let C and C′ be two algebraic planar curves of degree d and d ′.

Classical Bézout’s theorem: C and C′ intersect in dd ′ points.

Tropical Bézout’s theorem
trop(C) and trop(C′) intersect in dd ′ points (up to multiplicity).

The multiplicity of an intersection point p is the area of the
parallelogram dual to p in the dual subdivision of C ∪ C′.
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Main references

A bit of tropical geometry

Erwan Brugallé and Kristin Shaw

A First Expedition to tropical geometry

Book by Johannes Rau

Introduction to Tropical geometry

Book by Diane Maclagan and Bernd Sturmfels

Essentials of tropical combinatorics

Book by Michael Joswig
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Outline

Lecture 2: Tropical varieties as polyhedral complexes
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What is tropical geometry about?

We can think of it as a new type of algebraic geometry.

Goal: To understand the solution space of a system of polynomials?

We work over tropical semifield R = (R ∪ {∞},⊕,�)

x ⊕ y = minimum of x and y and x � y = x + y

Given a degree 3 polynomial f in 2 variables we compute V (f ):

over real numbers R
over complex numbers C
and the variety of trop(f ) over tropical numbers R
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Tropical hypersurfaces

Tropical polynomials with coefficients in R.

f = ⊕au�xu = ⊕au�xu1� · · ·�xun = min{au + u1x1 + · · ·+ unxn}

V (f ) = {w ∈ Rn
: f (w) =∞ or the min in f (w) is achieved at least twice}.

f = x ⊕ y ⊕ 0 = min{x , y ,0}

x = y < 0, x = 0 < y , y = 0 < x

Also, V (f ) contains (0,∞) and (∞,0)
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Fundamental Theorem

What we have seen so far:

tropical polynomials whose coefficients live in R = R ∪ {∞}.

More generally:

tropicalization of arbitrary polynomials
coefficients live in an arbitrary field K with a valuation val : K → R
For every f =

∑
auxu =

∑
auxu1 · · · xun :

We define: trop(f ) = ⊕val(au)�xu = min{val(au) + x · u}.

Example: Trivial valuation: val(au) = 0
V (trop(f )) = {w ∈ Rn

: trop(f )(w) =∞ or
the min in trop(f )(w) is achieved at least twice}.

Fundamental Theorem (under mild conditions on K )

solutions of tropical equations = tropicalization of the solutions
V (trop(f )) = trop(V (f ))

Fatemeh Mohammadi Tropical Geometry January18, 2021 8 / 25



Tropicalizations of a variety

Let f1, . . . , fs ∈ K [x1, . . . , xn] and I their generating ideal

The variety of I = 〈f1, . . . , fs〉 is the set of common solutions of f1, . . . , fs.

V (I) =
⋂
f∈I

V (f ) = V (f1) ∩ · · · ∩ V (fs)

Question
How to compute the tropicalization of V (I)?

The tropicalization of the ideal I is trop(I) = 〈trop(g) : g ∈ I〉.

The tropicalization of the variety V (I)

trop(V (I)) =
⋂

f∈trop(I)

V (f ) ⊂ Rn
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Example: Tropicalization of a variety

trop(I) = 〈trop(g) : g ∈ I〉 and trop(V (I)) =
⋂

f∈trop(I) V (f )

Example: Let g = x − 3y + 5 and I = 〈g〉. Then trop(g) = x ⊕ y ⊕ 0.

tropV (I) = V (trop(g)) is a tropical line.

Note: trop(I) = 〈trop(f ) : f ∈ I〉 is not generated by trop(g).

xg = x2 − 3xy + 5x and 3yg = 3xy − 9y2 + 15y .

trop(xg) = x2 ⊕ (x � y)⊕ x and trop(3yg) = (x � y)⊕ y2 ⊕ y .

h := xg + 3yg = x2 + 5x − 9y2 + 15y and trop(h) = x2 ⊕ x ⊕ y2 ⊕ y

trop(h) cannot be written as any combination of trop(g).

Tropical varieties have nicer combinatorial structures than ideals.
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Structure theorem

Theorem (Bieri-Groves, Cartwright-Payne)
Let X = V (I) be an irreducible variety with dim(X ) = d . Then trop(X ) is the
support of an R-rational polyhedral complex of dimension d which is:

pure, balanced and connected through codimension one.
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A crash course on polyhedral geometry

A polyhedron in Rn is the intersection of finitely many half-spaces.

Given the rational vector a ∈ Qn and b ∈ R, the hyperplane

H = {x : x · a = b} ⊂ Rn

divides Rn in two half-spaces

H+ = {x : x · a ≥ b} and H− = {x : x · a ≤ b}.
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Faces of polyhedra

Let P ⊆ Rn be the intersection of half-spaces H+
1 , . . . ,H

+
k .

For any hyperplane H with P ⊆ H+, P ∩H+ is called a face of P.

How many faces does this polytope have?

What is the maximum dimension of its faces?
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Polyhedral cones and fans

Polyhedral cone: the positive hull of a finite subset of Rn as

C = pos(v1, . . . , vs) = {
s∑

i=1

tivi : ti ≥ 0}

ConePolyhedral Cone

Polyhedral fan: A collection F of polyhedral cones in Rn such that the
intersection of any two cones is a face of each.
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Polyhedral complex

A polyhedral complex is a collection of polyhedra in Rn such that the
intersection of any two polyhedra is a face of both.

Polyhedral Fan Polyhedral Fan Not a Polyhedral Fan 

Support set: The set of points of Rn contained in a polyhedral complex.

Pure complex: all its maximal polyhedra have the same dimension.
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Balanced polyhedral fan

Consider a weighted 1-dim rational polyhedral fan F ⊆ Rn with rays
ρ1, . . . ρk weighted by m1, . . . ,mk .

7

10

6

5

Assume that pi is the first rational point on each ray ρi .

Then F is balanced if m1p1 + · · ·+ mk pk is the zero vector in Rn.

6(−1,3) + 7(3,1) + 10(−1,0) + 5(−1,−5) = (0,0)

What multiplicity makes this fan balanced? 3.(−1)+ 2.3+ 5.(−1)+ 2.1 = 0.
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Connected through codimension 1

A polyhedral complex P of dim d is connected through codimension 1
if for any two d-dim polyhedra C and D in P there is a sequence of
d-dim polyhedra C = P0,P1, . . . ,Pk = D such that

dim(Pi ∩ Pi+1) = d − 1 for all i

This property is frequently used in tropical algorithms.
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Structure theorem

Theorem
For any irreducible variety X = V (I) of dimension d , its tropicalization trop(X )
is the support of an R-rational polyhedral complex of dimension d which is:

pure, balanced and connected through codimension one.
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Realizability question

Question
Given a polyhedral complex Σ satisfying the conclusion of the structure
theorem, is there an irreducible variety (over some field) s.t. Σ =trop(X )?

Relates to realizability of matroids

Next lecture: Tropical linear spaces and tropicalized linear spaces
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Fundamental theorem

trop(I) = 〈trop(g) : g ∈ I〉 and trop(V (I)) =
⋂

f∈trop(I) V (f )

Theorem (Kapranov, Speyer-Sturmfels, Payne, Driasma)
Let I ⊂ K [x1, . . . , xn]. Under some mild conditions on K we have:

trop(V (I)) = closure{(val(a1), . . . , val(an)) : a = (a1, . . . ,an) ∈ V (I)}

Given f ∈ K [x1, . . . , xn], the solution space of the tropical polynomial
trop(f ) is equal to the tropicalization of the solution space of f .

solutions of tropical equations = tropicalization of the solutions
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Algebraic Geometry over which fields?

Given a field K , a valuation val : K → R is a map s.t. for all a,b ∈ K :

val(ab) = val(a) + val(b)
val(a + b) ≥ min(val(a), val(b))
val(a + b) = min(val(a), val(b)) if val(a) 6= val(b).
val(a) =∞ if and only if a = 0.

Trivial valuation over any field:

val(a) = 0 for all a 6= 0.

Puiseux series: K = C{{t}} = ∪n≥0C((t
1
n )).

val(a) = the minimum exponent of t in a.

val(−t3/5 + 2t2 + 8t9/2 + · · · ) = 3/5.
val(4 + t1/5 + 6t3 + · · · ) =?
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Tropicalization of polynomials

Let K be a field with a valuation val .

Let f =
∑

auxu be a polynomial in K [x1, . . . , xn] where xu = xu1
1 · · · x

un
n

We define: trop(f ) = ⊕val(au)�xu = min{val(au) + x · u}.

Trivial valuation: trop(x3 + xy4 + 3y6) =min{3x , x + 4y ,6y}

Puiseux series: f = (−3 + t + t5/2)x3 + (t3/2 + t4)y − 5.

trop(f ) = 0�x3 + 3/2�y + 0 = min{3x ,3/2 + y ,0}

Example: f = −t2x + (1 + t)y + 3xy + t1/2

trop(f ) = 2�x ⊕ 0�y + 0�x�y + 1/2 = min{2 + x , y , x + y ,1/2}
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Fundamental theorem of tropical algebraic geometry

trop(I) = 〈trop(g) : g ∈ I〉 and trop(V (I)) =
⋂

f∈trop(I) V (f )

Theorem (Kapranov, Speyer-Sturmfels, Payne, Driasma)
Let I ⊂ K [x1, . . . , xn]. Under some mild conditions on K we have:

trop(V (I)) = closure{(val(a1), . . . , val(an)) : a = (a1, . . . ,an) ∈ V (I)}

Condition: K is algebraically closed with a non-trivial valuation.

If not, then take a field extension of K with a non-trivial valuation.

Consider the valuations induced by Puiseux series.

Let I = 〈x − t , y − t3〉.

The variety of I is the single point V (I) = {(t , t3)}.

{(val(t), val(t3))} = {(1,3)} which is equal to its closure.

trop(V (I)) = V (x + 1) ∩ V (y + 3) = {(1,3)}
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Example of the fundamental theorem

Let I = 〈x + y − 1〉 ⊂ C[x , y ]. Then V (I) = {(a,1− a) : a ∈ C}.

To compute the tropicalization of V (I) over C using valuations:

We first consider the valued field extension C{{t}}.

val(a) > 0 val(a) < 0 val(a) = 0
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Example of the fundamental theorem

trop(V (I)) = closure{(val(a), val(1− a)) : a ∈ C{{t}}}.

If val(a) > 0, then val(1− a) = min{val(a),1} = 0
If val(a) < 0, then val(1− a) = min{val(a),1} = val(a)

If val(a) = 0
If a = 1 + ta′, then val(1− a) = val(ta′) > 0
If a = c + ta′, then val(1− a) = val(1− c − ta′) ≥ 0
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