Introduction to tropical geometry: theory and applications Lecture 2

Fatemeh Mohammadi (Ghent University) Winter School on Geometric Constraint Systems

January18, 2021

Fatemeh Mohammadi

Tropical Geometry

Summary of Lecture 1

- The study of tropical geometry has been motivated by **applications**.
- It is considered a combinatorial shadow of algebraic geometry.
 - A degree 3 curve with genus 1
 - The degree and genus of tropical planar curves

Tropical genus

Let *f* be a polynomial of degree *d* and *S* the induced dual subdivision of $d\Delta$.

• The genus of V(f) is the number of interior vertices of S.

Summary of Lecture 1

- Goal: to provide a simple model of algebraic geometry
- Let C and C' be two algebraic planar curves of degree d and d'.
- Classical Bézout's theorem: C and C' intersect in dd' points.

Tropical Bézout's theorem

trop(C) and trop(C') intersect in dd' points (up to multiplicity).

The multiplicity of an intersection point *p* is the area of the parallelogram dual to *p* in the dual subdivision of *C* ∪ *C'*.

Summary of Lecture 1

- Goal: to provide a simple model of algebraic geometry
- Let C and C' be two algebraic planar curves of degree d and d'.
- Classical Bézout's theorem: C and C' intersect in dd' points.

Tropical Bézout's theorem

trop(C) and trop(C') intersect in dd' points (up to multiplicity).

The multiplicity of an intersection point *p* is the area of the parallelogram dual to *p* in the dual subdivision of *C* ∪ *C'*.

Main references

• A bit of tropical geometry

Erwan Brugallé and Kristin Shaw

• A First Expedition to tropical geometry

Book by Johannes Rau

Introduction to Tropical geometry

Book by Diane Maclagan and Bernd Sturmfels

• Essentials of tropical combinatorics

Book by Michael Joswig

Outline

• Lecture 2: Tropical varieties as polyhedral complexes

What is tropical geometry about?

- We can think of it as a new type of algebraic geometry.
- Goal: To understand the solution space of a system of polynomials?
- We work over tropical semifield $\overline{\mathbb{R}} = (\mathbb{R} \cup \{\infty\}, \oplus, \odot)$

 $x \oplus y =$ minimum of x and y and $x \odot y = x + y$

• Given a degree 3 polynomial f in 2 variables we compute V(f):

- $\bullet~$ over real numbers $\mathbb R$
- $\bullet~$ over complex numbers $\mathbb C$
- and the variety of trop(f) over tropical numbers $\overline{\mathbb{R}}$

Tropical hypersurfaces

• Tropical polynomials with coefficients in $\overline{\mathbb{R}}$.

$$f = \oplus a_{u} \odot x^{u} = \oplus a_{u} \odot x^{u_1} \odot \cdots \odot x^{u_n} = \min\{a_u + u_1 x_1 + \cdots + u_n x_n\}$$

 $V(f) = {\mathbf{w} \in \overline{\mathbb{R}}^n : f(\mathbf{w}) = \infty \text{ or the min in } f(\mathbf{w}) \text{ is achieved at least twice}}.$

• $f = x \oplus y \oplus 0 = \min\{x, y, 0\}$

• What we have seen so far:

• tropical polynomials whose coefficients live in $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$.

• More generally:

• tropicalization of arbitrary polynomials

- coefficients live in an arbitrary field K with a valuation val : $K \to \overline{\mathbb{R}}$
- For every $f = \sum a_u x^u = \sum a_u x^{u_1} \cdots x^{u_n}$:

We define: $\operatorname{trop}(f) = \oplus \operatorname{val}(a_u) \odot x^u = \min\{\operatorname{val}(a_u) + x \cdot u\}.$

- **Example:** Trivial valuation: $val(a_u) = 0$
- V(trop(f)) = {w ∈ ℝⁿ : trop(f)(w) = ∞ or the min in trop(f)(w) is achieved at least twice}.

• Fundamental Theorem (under mild conditions on K)

- solutions of tropical equations = tropicalization of the solutions
- $V(\operatorname{trop}(f)) = \operatorname{trop}(V(f))$

Tropicalizations of a variety

- Let $f_1, \ldots, f_s \in K[x_1, \ldots, x_n]$ and *I* their generating ideal
- The variety of $I = \langle f_1, \ldots, f_s \rangle$ is the set of common solutions of f_1, \ldots, f_s .

$$V(I) = \bigcap_{f \in I} V(f) = V(f_1) \cap \cdots \cap V(f_s)$$

Question

How to compute the tropicalization of V(I)?

- The tropicalization of the ideal *I* is $trop(I) = \langle trop(g) : g \in I \rangle$.
- The tropicalization of the variety V(I)

$$\operatorname{trop}(V(I)) = \bigcap_{f \in \operatorname{trop}(I)} V(f) \subset \overline{\mathbb{R}}^n$$

Example: Tropicalization of a variety

- trop(I) = \langle trop(g) : $g \in I \rangle$ and trop(V(I)) = $\bigcap_{f \in \text{trop}(I)} V(f)$
- **Example:** Let g = x 3y + 5 and $I = \langle g \rangle$. Then trop $(g) = x \oplus y \oplus 0$.
- trop V(I) = V(trop(g)) is a tropical line.
- Note: $trop(I) = \langle trop(f) : f \in I \rangle$ is not generated by trop(g).
- $xg = x^2 3xy + 5x$ and $3yg = 3xy 9y^2 + 15y$.
- trop(xg) = $x^2 \oplus (x \odot y) \oplus x$ and trop(3yg) = ($x \odot y$) $\oplus y^2 \oplus y$.
- $h := xg + 3yg = x^2 + 5x 9y^2 + 15y$ and $trop(h) = x^2 \oplus x \oplus y^2 \oplus y$
- trop(h) cannot be written as any combination of trop(g).
- Tropical varieties have nicer combinatorial structures than ideals.

Structure theorem

Theorem (Bieri-Groves, Cartwright-Payne)

Let X = V(I) be an irreducible variety with dim(X) = d. Then trop(X) is the support of an \mathbb{R} -rational polyhedral complex of dimension d which is:

• pure, balanced and connected through codimension one.

A crash course on polyhedral geometry

- A **polyhedron** in \mathbb{R}^n is the intersection of finitely many half-spaces.
- Given the rational vector $a \in \mathbb{Q}^n$ and $b \in \mathbb{R}$, the hyperplane

$$\mathcal{H} = \{ \boldsymbol{x} : \boldsymbol{x} \cdot \boldsymbol{a} = \boldsymbol{b} \} \subset \mathbb{R}^n$$

divides \mathbb{R}^n in two half-spaces

 $\mathcal{H}^+ = \{ x : x \cdot a \ge b \}$ and $\mathcal{H}^- = \{ x : x \cdot a \le b \}.$

A crash course on polyhedral geometry

- A **polyhedron** in \mathbb{R}^n is the intersection of finitely many half-spaces.
- Given the rational vector $a \in \mathbb{Q}^n$ and $b \in \mathbb{R}$, the hyperplane

$$\mathcal{H} = \{ x : x \cdot a = b \} \subset \mathbb{R}^r$$

divides \mathbb{R}^n in two half-spaces

$$\mathcal{H}^+ = \{ x : x \cdot a \ge b \}$$
 and $\mathcal{H}^- = \{ x : x \cdot a \le b \}.$

Faces of polyhedra

- Let $P \subseteq \mathbb{R}^n$ be the intersection of half-spaces $\mathcal{H}_1^+, \ldots, \mathcal{H}_k^+$.
- For any hyperplane \mathcal{H} with $P \subseteq \mathcal{H}^+$, $P \cap \mathcal{H}^+$ is called a **face** of *P*.
- How many faces does this polytope have?
- What is the maximum dimension of its faces?

Polyhedral cones and fans

• **Polyhedral cone**: the positive hull of a finite subset of \mathbb{R}^n as

$$C = \mathsf{pos}(v_1, \ldots, v_s) = \{\sum_{i=1}^s t_i v_i : t_i \ge 0\}$$

Polyhedral cones and fans

• **Polyhedral cone**: the positive hull of a finite subset of \mathbb{R}^n as

$$C = \mathsf{pos}(v_1, \ldots, v_s) = \{\sum_{i=1}^s t_i v_i : t_i \ge 0\}$$

● **Polyhedral fan**: A collection *F* of polyhedral cones in ℝⁿ such that the intersection of any two cones is a face of each.

Fatemeh Mohammadi

Polyhedral complex

● A polyhedral complex is a collection of polyhedra in ℝⁿ such that the intersection of any two polyhedra is a face of both.

- Support set: The set of points of \mathbb{R}^n contained in a polyhedral complex.
- Pure complex: all its maximal polyhedra have the same dimension.

• Consider a weighted 1-dim rational polyhedral fan $\mathcal{F} \subseteq \mathbb{R}^n$ with rays ρ_1, \ldots, ρ_k weighted by m_1, \ldots, m_k .

• Assume that p_i is the first rational point on each ray ρ_i .

- Assume that p_i is the first rational point on each ray ρ_i .
- Then \mathcal{F} is **balanced** if $m_1p_1 + \cdots + m_kp_k$ is the zero vector in \mathbb{R}^n .

- Assume that p_i is the first rational point on each ray ρ_i .
- Then \mathcal{F} is **balanced** if $m_1p_1 + \cdots + m_kp_k$ is the zero vector in \mathbb{R}^n .
- 6(-1,3) + 7(3,1) + 10(-1,0) + 5(-1,-5) = (0,0)

- Assume that p_i is the first rational point on each ray ρ_i .
- Then \mathcal{F} is **balanced** if $m_1p_1 + \cdots + m_kp_k$ is the zero vector in \mathbb{R}^n .
- 6(-1,3) + 7(3,1) + 10(-1,0) + 5(-1,-5) = (0,0)
- What multiplicity makes this fan balanced?

- Assume that p_i is the first rational point on each ray ρ_i .
- Then \mathcal{F} is **balanced** if $m_1p_1 + \cdots + m_kp_k$ is the zero vector in \mathbb{R}^n .
- 6(-1,3) + 7(3,1) + 10(-1,0) + 5(-1,-5) = (0,0)
- What multiplicity makes this fan balanced? 3(-1) + 2.3 + 5(-1) + 2.1 = 0.

Connected through codimension 1

A polyhedral complex *P* of dim *d* is connected through codimension 1 if for any two *d*-dim polyhedra *C* and *D* in *P* there is a sequence of *d*-dim polyhedra *C* = *P*₀, *P*₁,..., *P*_k = *D* such that

$$\dim(P_i \cap P_{i+1}) = d - 1 \quad \text{for all } i$$

Connected through codimension 1

A polyhedral complex *P* of dim *d* is connected through codimension 1 if for any two *d*-dim polyhedra *C* and *D* in *P* there is a sequence of *d*-dim polyhedra *C* = *P*₀, *P*₁,..., *P_k* = *D* such that

$$\dim(P_i \cap P_{i+1}) = d - 1 \quad \text{for all } i$$

• This property is frequently used in tropical algorithms.

Fatemeh Mohammadi

Connected through codimension 1

A polyhedral complex *P* of dim *d* is connected through codimension 1 if for any two *d*-dim polyhedra *C* and *D* in *P* there is a sequence of *d*-dim polyhedra *C* = *P*₀, *P*₁,..., *P_k* = *D* such that

 $\dim(P_i \cap P_{i+1}) = d - 1 \quad \text{for all } i$

This property is frequently used in tropical algorithms.

Fatemeh Mohammadi

Tropical Geometry

Structure theorem

Theorem

For any irreducible variety X = V(I) of dimension *d*, its tropicalization trop(*X*) is the support of an \mathbb{R} -rational polyhedral complex of dimension *d* which is:

• pure, balanced and connected through codimension one.

Fatemeh Mohammadi

Tropical Geometry

Realizability question

Question

Given a polyhedral complex Σ satisfying the conclusion of the structure theorem, is there an irreducible variety (over some field) s.t. $\Sigma = \text{trop}(X)$?

- Relates to realizability of matroids
- Next lecture: Tropical linear spaces and tropicalized linear spaces

• trop(I) = \langle trop(g) : $g \in I \rangle$ and trop(V(I)) = $\bigcap_{f \in \text{trop}(I)} V(f)$

Theorem (Kapranov, Speyer-Sturmfels, Payne, Driasma) Let $I \subset K[x_1, ..., x_n]$. Under some mild conditions on K we have:

 $trop(V(I)) = closure\{(val(a_1), \dots, val(a_n)): a = (a_1, \dots, a_n) \in V(I)\}$

- Given $f \in K[x_1, ..., x_n]$, the solution space of the tropical polynomial trop(*f*) **is equal to** the tropicalization of the solution space of *f*.
- solutions of tropical equations = tropicalization of the solutions

Algebraic Geometry over which fields?

• Given a field *K*, a valuation val : $K \to \overline{\mathbb{R}}$ is a map s.t. for all $a, b \in K$:

•
$$val(ab) = val(a) + val(b)$$

•
$$val(a+b) \ge min(val(a), val(b))$$

- val(a+b) = min(val(a), val(b)) if $val(a) \neq val(b)$.
- $val(a) = \infty$ if and only if a = 0.
- Trivial valuation over any field:

$$val(a) = 0$$
 for all $a \neq 0$.

• Puiseux series: $K = \mathbb{C}\{\{t\}\} = \bigcup_{n \ge 0} \mathbb{C}((t^{\frac{1}{n}})).$

val(a) = the minimum exponent of t in a.

•
$$val(-t^{3/5} + 2t^2 + 8t^{9/2} + \cdots) = 3/5.$$

• $val(4 + t^{1/5} + 6t^3 + \cdots) = ?$

Fatemeh Mohammadi

- Let *K* be a field with a valuation *val*.
- Let $f = \sum a_u x^u$ be a polynomial in $K[x_1, \ldots, x_n]$ where $x^u = x_1^{u_1} \cdots x_n^{u_n}$

We define: $\operatorname{trop}(f) = \oplus \operatorname{val}(a_u) \odot x^u = \min\{\operatorname{val}(a_u) + x \cdot u\}.$

- Trivial valuation: $trop(x^3 + xy^4 + 3y^6) = min\{3x, x + 4y, 6y\}$
- Puiseux series: $f = (-3 + t + t^{5/2})x^3 + (t^{3/2} + t^4)y 5$.

 $trop(f) = 0_{\odot}x^{3} + 3/2_{\odot}y + 0 = \min\{3x, 3/2 + y, 0\}$

• Example: $f = -t^2x + (1 + t)y + 3xy + t^{1/2}$

$$trop(f) = 2_{\odot}x \oplus 0_{\odot}y + 0_{\odot}x_{\odot}y + 1/2 = \min\{2 + x, y, x + y, 1/2\}$$

Fundamental theorem of tropical algebraic geometry

• trop(
$$I$$
) = \langle trop(g) : $g \in I \rangle$ and trop($V(I)$) = $\bigcap_{f \in \text{trop}(I)} V(f)$

Theorem (Kapranov, Speyer-Sturmfels, Payne, Driasma) Let $I \subset K[x_1, ..., x_n]$. Under some mild conditions on K we have:

 $trop(V(I)) = closure\{(val(a_1), \dots, val(a_n)): a = (a_1, \dots, a_n) \in V(I)\}$

- Condition: *K* is algebraically closed with a non-trivial valuation.
- If not, then take a field extension of *K* with a non-trivial valuation.
- Consider the valuations induced by Puiseux series.
- Let $I = \langle x t, y t^3 \rangle$.
- The variety of *I* is the single point $V(I) = \{(t, t^3)\}$.
- $\{(val(t), val(t^3))\} = \{(1, 3)\}$ which is equal to its closure.
- trop(V(I)) = $V(x + 1) \cap V(y + 3) = \{(1,3)\}$

- To compute the tropicalization of V(I) over \mathbb{C} using valuations:
 - We first consider the valued field extension $\mathbb{C}\{\{t\}\}$.

$$val(a) > 0$$
 $val(a) < 0$ $val(a) = 0$

• If
$$a = 1 + ta'$$
, then $val(1 - a) = val(ta') > 0$

• If
$$a = 1 + ta'$$
, then $val(1 - a) = val(ta') > 0$

• If val(a) < 0, then $val(1 - a) = min\{val(a), 1\} = val(a)$

• If
$$a = 1 + ta'$$
, then $val(1 - a) = val(ta') > 0$

- If val(a) > 0, then $val(1 a) = \min\{val(a), 1\} = 0$
- If val(a) < 0, then $val(1 a) = min\{val(a), 1\} = val(a)$

• If
$$a = 1 + ta'$$
, then $val(1 - a) = val(ta') > 0$

- If val(a) > 0, then $val(1 a) = \min\{val(a), 1\} = 0$
- If val(a) < 0, then $val(1 a) = min\{val(a), 1\} = val(a)$

• If
$$a = 1 + ta'$$
, then $val(1 - a) = val(ta') > 0$