Introduction to tropical geometry: theory and applications
 Lecture 2

Fatemeh Mohammadi
(Ghent University)
Winter School on Geometric Constraint Systems

January18, 2021

Summary of Lecture 1

- The study of tropical geometry has been motivated by applications.
- It is considered a combinatorial shadow of algebraic geometry.
- A degree 3 curve with genus 1
- The degree and genus of tropical planar curves

Tropical genus

Let f be a polynomial of degree d and \mathcal{S} the induced dual subdivision of $d \Delta$.

- The genus of $V(f)$ is the number of interior vertices of \mathcal{S}.

Summary of Lecture 1

- Goal: to provide a simple model of algebraic geometry
- Let C and C^{\prime} be two algebraic planar curves of degree d and d^{\prime}.
- Classical Bézout's theorem: C and C^{\prime} intersect in $d d^{\prime}$ points.

Tropical Bézout's theorem

trop (C) and trop $\left(C^{\prime}\right)$ intersect in $d d^{\prime}$ points (up to multiplicity).

- The multiplicity of an intersection point p is the area of the parallelogram dual to p in the dual subdivision of $C \cup C^{\prime}$.

Summary of Lecture 1

- Goal: to provide a simple model of algebraic geometry
- Let C and C^{\prime} be two algebraic planar curves of degree d and d^{\prime}.
- Classical Bézout's theorem: C and C^{\prime} intersect in $d d^{\prime}$ points.

Tropical Bézout's theorem

$\operatorname{trop}(C)$ and $\operatorname{trop}\left(C^{\prime}\right)$ intersect in $d^{\prime} d^{\prime}$ points (up to multiplicity).

- The multiplicity of an intersection point p is the area of the parallelogram dual to p in the dual subdivision of $C \cup C^{\prime}$.

Main references

- A bit of tropical geometry

Erwan Brugallé and Kristin Shaw

- A First Expedition to tropical geometry

Book by Johannes Rau

- Introduction to Tropical geometry

Book by Diane Maclagan and Bernd Sturmfels

- Essentials of tropical combinatorics

Book by Michael Joswig

Outline

- Lecture 2: Tropical varieties as polyhedral complexes

What is tropical geometry about?

- We can think of it as a new type of algebraic geometry.
- Goal: To understand the solution space of a system of polynomials?
- We work over tropical semifield $\overline{\mathbb{R}}=(\mathbb{R} \cup\{\infty\}, \oplus, \odot)$

$$
x \oplus y=\text { minimum of } x \text { and } y \quad \text { and } \quad x \odot y=x+y
$$

- Given a degree 3 polynomial f in 2 variables we compute $V(f)$:
- over real numbers \mathbb{R}
- over complex numbers \mathbb{C}
- and the variety of $\operatorname{trop}(f)$ over tropical numbers $\overline{\mathbb{R}}$

Tropical hypersurfaces

- Tropical polynomials with coefficients in $\overline{\mathbb{R}}$.

$$
f=\oplus a_{u \odot} x^{u}=\oplus a_{u \odot} x^{u_{1}} \odot \cdots \odot x^{u_{n}}=\min \left\{a_{u}+u_{1} x_{1}+\cdots+u_{n} x_{n}\right\}
$$

$V(f)=\left\{\mathbf{w} \in \overline{\mathbb{R}}^{n}: f(\mathbf{w})=\infty\right.$ or the \min in $f(\mathbf{w})$ is achieved at least twice $\}$.

- $f=x \oplus y \oplus 0=\min \{x, y, 0\}$

Fundamental Theorem

- What we have seen so far:
- tropical polynomials whose coefficients live in $\overline{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$.
- More generally:
- tropicalization of arbitrary polynomials
- coefficients live in an arbitrary field K with a valuation val : $K \rightarrow \overline{\mathbb{R}}$
- For every $f=\sum a_{u} x^{u}=\sum a_{u} x^{u_{1}} \cdots x^{u_{n}}$:

We define: $\quad \operatorname{trop}(f)=\oplus \operatorname{val}\left(a_{u}\right) \odot x^{u}=\min \left\{v a l\left(a_{u}\right)+x \cdot u\right\}$.

- Example: Trivial valuation: val $\left(a_{u}\right)=0$
- $V(\operatorname{trop}(f))=\left\{\mathbf{w} \in \overline{\mathbb{R}}^{n}: \operatorname{trop}(f)(\mathbf{w})=\infty \quad\right.$ or the min in $\operatorname{trop}(f)(\mathbf{w})$ is achieved at least twice $\}$.
- Fundamental Theorem (under mild conditions on K)
- solutions of tropical equations = tropicalization of the solutions
- $V(\operatorname{trop}(f))=\operatorname{trop}(V(f))$

Tropicalizations of a variety

- Let $f_{1}, \ldots, f_{s} \in K\left[x_{1}, \ldots, x_{n}\right]$ and $/$ their generating ideal
- The variety of $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ is the set of common solutions of f_{1}, \ldots, f_{s}.

$$
V(I)=\bigcap_{f \in I} V(f)=V\left(f_{1}\right) \cap \cdots \cap V\left(f_{s}\right)
$$

Question

How to compute the tropicalization of $V(I)$?

- The tropicalization of the ideal I is $\operatorname{trop}(I)=\langle\operatorname{trop}(g): g \in I\rangle$.
- The tropicalization of the variety $V(I)$

$$
\operatorname{trop}(V(I))=\bigcap_{f \in \operatorname{trop}(I)} V(f) \subset \overline{\mathbb{R}}^{n}
$$

Example: Tropicalization of a variety

- $\operatorname{trop}(I)=\langle\operatorname{trop}(g): g \in I\rangle \quad$ and $\quad \operatorname{trop}(V(I))=\bigcap_{f \in \operatorname{trop}(I)} V(f)$
- Example: Let $g=x-3 y+5$ and $I=\langle g\rangle$. Then $\operatorname{trop}(g)=x \oplus y \oplus 0$.
- $\operatorname{trop} V(I)=V(\operatorname{trop}(g))$ is a tropical line.
- Note: $\operatorname{trop}(I)=\langle\operatorname{trop}(f): f \in I\rangle$ is not generated by $\operatorname{trop}(g)$.
- $x g=x^{2}-3 x y+5 x$ and $3 y g=3 x y-9 y^{2}+15 y$.
- $\operatorname{trop}(x g)=x^{2} \oplus(x \odot y) \oplus x$ and trop $(3 y g)=(x \odot y) \oplus y^{2} \oplus y$.
- $h:=x g+3 y g=x^{2}+5 x-9 y^{2}+15 y$ and $\operatorname{trop}(h)=x^{2} \oplus x \oplus y^{2} \oplus y$
- $\operatorname{trop}(h)$ cannot be written as any combination of trop (g).
- Tropical varieties have nicer combinatorial structures than ideals.

Structure theorem

Theorem (Bieri-Groves, Cartwright-Payne)

Let $X=V(I)$ be an irreducible variety with $\operatorname{dim}(X)=d$. Then $\operatorname{trop}(X)$ is the support of an \mathbb{R}-rational polyhedral complex of dimension d which is:

- pure, balanced and connected through codimension one.

A crash course on polyhedral geometry

- A polyhedron in \mathbb{R}^{n} is the intersection of finitely many half-spaces.
- Given the rational vector $a \in \mathbb{Q}^{n}$ and $b \in \mathbb{R}$, the hyperplane

$$
\mathcal{H}=\{x: x \cdot a=b\} \subset \mathbb{R}^{n}
$$

divides \mathbb{R}^{n} in two half-spaces

$$
\mathcal{H}^{+}=\{x: x \cdot a \geq b\} \quad \text { and } \quad \mathcal{H}^{-}=\{x: x \cdot a \leq b\} .
$$

A crash course on polyhedral geometry

- A polyhedron in \mathbb{R}^{n} is the intersection of finitely many half-spaces.
- Given the rational vector $a \in \mathbb{Q}^{n}$ and $b \in \mathbb{R}$, the hyperplane

$$
\mathcal{H}=\{x: x \cdot a=b\} \subset \mathbb{R}^{n}
$$

divides \mathbb{R}^{n} in two half-spaces

$$
\mathcal{H}^{+}=\{x: x \cdot a \geq b\} \quad \text { and } \quad \mathcal{H}^{-}=\{x: x \cdot a \leq b\} .
$$

Polyhedral Cone

Cone

Faces of polyhedra

- Let $P \subseteq \mathbb{R}^{n}$ be the intersection of half-spaces $\mathcal{H}_{1}^{+}, \ldots, \mathcal{H}_{k}^{+}$.
- For any hyperplane \mathcal{H} with $P \subseteq \mathcal{H}^{+}, P \cap \mathcal{H}^{+}$is called a face of P.
- How many faces does this polytope have?
- What is the maximum dimension of its faces?

Polyhedral cones and fans

- Polyhedral cone: the positive hull of a finite subset of \mathbb{R}^{n} as

$$
C=\operatorname{pos}\left(v_{1}, \ldots, v_{s}\right)=\left\{\sum_{i=1}^{s} t_{i} v_{i}: t_{i} \geq 0\right\}
$$

Polyhedral Cone

Cone

Polyhedral cones and fans

- Polyhedral cone: the positive hull of a finite subset of \mathbb{R}^{n} as

$$
C=\operatorname{pos}\left(v_{1}, \ldots, v_{s}\right)=\left\{\sum_{i=1}^{s} t_{i} v_{i}: t_{i} \geq 0\right\}
$$

Polyhedral Fan

Polyhedral Fan

Not a Polyhedral Fan

- Polyhedral fan: A collection \mathcal{F} of polyhedral cones in \mathbb{R}^{n} such that the intersection of any two cones is a face of each.

Polyhedral complex

- A polyhedral complex is a collection of polyhedra in \mathbb{R}^{n} such that the intersection of any two polyhedra is a face of both.

Polyhedral Fan

Polyhedral Fan

Not a Polyhedral Fan

- Support set: The set of points of \mathbb{R}^{n} contained in a polyhedral complex.
- Pure complex: all its maximal polyhedra have the same dimension.

Balanced polyhedral fan

- Consider a weighted 1-dim rational polyhedral fan $\mathcal{F} \subseteq \mathbb{R}^{n}$ with rays $\rho_{1}, \ldots \rho_{k}$ weighted by m_{1}, \ldots, m_{k}.

Balanced polyhedral fan

- Consider a weighted 1-dim rational polyhedral fan $\mathcal{F} \subseteq \mathbb{R}^{n}$ with rays $\rho_{1}, \ldots \rho_{k}$ weighted by m_{1}, \ldots, m_{k}.

- Assume that p_{i} is the first rational point on each ray ρ_{i}.

Balanced polyhedral fan

- Consider a weighted 1-dim rational polyhedral fan $\mathcal{F} \subseteq \mathbb{R}^{n}$ with rays $\rho_{1}, \ldots \rho_{k}$ weighted by m_{1}, \ldots, m_{k}.

- Assume that p_{i} is the first rational point on each ray ρ_{i}.
- Then \mathcal{F} is balanced if $m_{1} p_{1}+\cdots+m_{k} p_{k}$ is the zero vector in \mathbb{R}^{n}.

Balanced polyhedral fan

- Consider a weighted 1-dim rational polyhedral fan $\mathcal{F} \subseteq \mathbb{R}^{n}$ with rays $\rho_{1}, \ldots \rho_{k}$ weighted by m_{1}, \ldots, m_{k}.

- Assume that p_{i} is the first rational point on each ray ρ_{i}.
- Then \mathcal{F} is balanced if $m_{1} p_{1}+\cdots+m_{k} p_{k}$ is the zero vector in \mathbb{R}^{n}.
- $6(-1,3)+7(3,1)+10(-1,0)+5(-1,-5)=(0,0)$

Balanced polyhedral fan

- Consider a weighted 1-dim rational polyhedral fan $\mathcal{F} \subseteq \mathbb{R}^{n}$ with rays $\rho_{1}, \ldots \rho_{k}$ weighted by m_{1}, \ldots, m_{k}.

- Assume that p_{i} is the first rational point on each ray ρ_{i}.
- Then \mathcal{F} is balanced if $m_{1} p_{1}+\cdots+m_{k} p_{k}$ is the zero vector in \mathbb{R}^{n}.
- $6(-1,3)+7(3,1)+10(-1,0)+5(-1,-5)=(0,0)$
- What multiplicity makes this fan balanced?

Balanced polyhedral fan

- Consider a weighted 1-dim rational polyhedral fan $\mathcal{F} \subseteq \mathbb{R}^{n}$ with rays $\rho_{1}, \ldots \rho_{k}$ weighted by m_{1}, \ldots, m_{k}.

- Assume that p_{i} is the first rational point on each ray ρ_{i}.
- Then \mathcal{F} is balanced if $m_{1} p_{1}+\cdots+m_{k} p_{k}$ is the zero vector in \mathbb{R}^{n}.
- $6(-1,3)+7(3,1)+10(-1,0)+5(-1,-5)=(0,0)$
- What multiplicity makes this fan balanced? $3 .(-1)+2.3+5 .(-1)+2.1=0$.

Connected through codimension 1

- A polyhedral complex P of dim d is connected through codimension 1 if for any two d-dim polyhedra C and D in P there is a sequence of d-dim polyhedra $C=P_{0}, P_{1}, \ldots, P_{k}=D$ such that

$$
\operatorname{dim}\left(P_{i} \cap P_{i+1}\right)=d-1 \quad \text { for all } i
$$

Connected through codimension 1

- A polyhedral complex P of dim d is connected through codimension 1 if for any two d-dim polyhedra C and D in P there is a sequence of d-dim polyhedra $C=P_{0}, P_{1}, \ldots, P_{k}=D$ such that

$$
\operatorname{dim}\left(P_{i} \cap P_{i+1}\right)=d-1 \quad \text { for all } i
$$

- This property is frequently used in tropical algorithms.

Connected through codimension 1

- A polyhedral complex P of dim d is connected through codimension 1 if for any two d-dim polyhedra C and D in P there is a sequence of d-dim polyhedra $C=P_{0}, P_{1}, \ldots, P_{k}=D$ such that

$$
\operatorname{dim}\left(P_{i} \cap P_{i+1}\right)=d-1 \quad \text { for all } i
$$

- This property is frequently used in tropical algorithms.

Structure theorem

Theorem

For any irreducible variety $X=V(I)$ of dimension d, its tropicalization $\operatorname{trop}(X)$ is the support of an \mathbb{R}-rational polyhedral complex of dimension d which is:

- pure, balanced and connected through codimension one.

Realizability question

Question

Given a polyhedral complex Σ satisfying the conclusion of the structure theorem, is there an irreducible variety (over some field) s.t. $\Sigma=\operatorname{trop}(X)$?

- Relates to realizability of matroids
- Next lecture: Tropical linear spaces and tropicalized linear spaces

Fundamental theorem

- $\operatorname{trop}(I)=\langle\operatorname{trop}(g): g \in I\rangle \quad$ and $\quad \operatorname{trop}(V(I))=\bigcap_{f \in \operatorname{trop}(I)} V(f)$

Theorem (Kapranov, Speyer-Sturmfels, Payne, Driasma)
Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$. Under some mild conditions on K we have:

$$
\operatorname{trop}(V(I))=\operatorname{closure}\left\{\left(\operatorname{val}\left(a_{1}\right), \ldots, \operatorname{val}\left(a_{n}\right)\right): a=\left(a_{1}, \ldots, a_{n}\right) \in V(I)\right\}
$$

- Given $f \in K\left[x_{1}, \ldots, x_{n}\right]$, the solution space of the tropical polynomial $\operatorname{trop}(f)$ is equal to the tropicalization of the solution space of f.
- solutions of tropical equations = tropicalization of the solutions

Algebraic Geometry over which fields?

- Given a field K, a valuation val : $K \rightarrow \overline{\mathbb{R}}$ is a map s.t. for all $a, b \in K$:
- val $(a b)=v a l(a)+v a l(b)$
- val $(a+b) \geq \min (v a l(a), \operatorname{val}(b))$
- val $(a+b)=\min (v a l(a), v a l(b))$ if $v a l(a) \neq \operatorname{val}(b)$.
- $\operatorname{val}(a)=\infty$ if and only if $a=0$.
- Trivial valuation over any field:

$$
\operatorname{val}(a)=0 \text { for all } a \neq 0
$$

- Puiseux series: $K=\mathbb{C}\{\{t\}\}=\cup_{n \geq 0} \mathbb{C}\left(\left(t^{\frac{1}{n}}\right)\right)$.

$$
\operatorname{val}(a)=\text { the minimum exponent of } t \text { in } a \text {. }
$$

- $\operatorname{val}\left(-t^{3 / 5}+2 t^{2}+8 t^{9 / 2}+\cdots\right)=3 / 5$.
- $\operatorname{val}\left(4+t^{1 / 5}+6 t^{3}+\cdots\right)=$?

Tropicalization of polynomials

- Let K be a field with a valuation val.
- Let $f=\sum a_{u} x^{u}$ be a polynomial in $K\left[x_{1}, \ldots, x_{n}\right]$ where $x^{u}=x_{1}^{u_{1}} \cdots x_{n}^{u_{n}}$

We define: $\quad \operatorname{trop}(f)=\oplus v a l\left(a_{u}\right){ }_{\odot} x^{u}=\min \left\{v a l\left(a_{u}\right)+x \cdot u\right\}$.

- Trivial valuation: $\operatorname{trop}\left(x^{3}+x y^{4}+3 y^{6}\right)=\min \{3 x, x+4 y, 6 y\}$
- Puiseux series: $f=\left(-3+t+t^{5 / 2}\right) x^{3}+\left(t^{3 / 2}+t^{4}\right) y-5$. $\operatorname{trop}(f)=0{ }_{\odot} x^{3}+3 / 2{ }_{\odot} y+0=\min \{3 x, 3 / 2+y, 0\}$
- Example: $f=-t^{2} x+(1+t) y+3 x y+t^{1 / 2}$

$$
\operatorname{trop}(f)=2_{\odot} x \oplus 0_{\odot} y+0_{\odot} x \odot y+1 / 2=\min \{2+x, y, x+y, 1 / 2\}
$$

Fundamental theorem of tropical algebraic geometry

- $\operatorname{trop}(I)=\langle\operatorname{trop}(g): g \in I\rangle \quad$ and $\quad \operatorname{trop}(V(I))=\bigcap_{f \in \operatorname{trop}(I)} V(f)$

Theorem (Kapranov, Speyer-Sturmfels, Payne, Driasma)

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$. Under some mild conditions on K we have:

$$
\operatorname{trop}(V(I))=\operatorname{closure}\left\{\left(\operatorname{val}\left(a_{1}\right), \ldots, \operatorname{val}\left(a_{n}\right)\right): a=\left(a_{1}, \ldots, a_{n}\right) \in V(I)\right\}
$$

- Condition: K is algebraically closed with a non-trivial valuation.
- If not, then take a field extension of K with a non-trivial valuation.
- Consider the valuations induced by Puiseux series.
- Let $I=\left\langle x-t, y-t^{3}\right\rangle$.
- The variety of I is the single point $V(I)=\left\{\left(t, t^{3}\right)\right\}$.
- $\left\{\left(\operatorname{val}(t), \operatorname{val}\left(t^{3}\right)\right)\right\}=\{(1,3)\}$ which is equal to its closure.
- $\operatorname{trop}(V(I))=V(x+1) \cap V(y+3)=\{(1,3)\}$

Example of the fundamental theorem

- Let $I=\langle x+y-1\rangle \subset \mathbb{C}[x, y]$. Then $V(I)=\{(a, 1-a): a \in \mathbb{C}\}$.

- To compute the tropicalization of $V(I)$ over \mathbb{C} using valuations:
- We first consider the valued field extension $\mathbb{C}\{\{t\}\}$.

$$
\operatorname{val}(a)>0 \quad \operatorname{val}(a)<0 \quad \operatorname{val}(a)=0
$$

Example of the fundamental theorem

- $\operatorname{trop}(V(I))=\operatorname{closure}\{(\operatorname{val}(a), \operatorname{val}(1-a)): a \in \mathbb{C}\{\{t\}\}\}$.

- If $\operatorname{val}(a)>0$, then $\operatorname{val}(1-a)=\min \{\operatorname{val}(a), 1\}=0$
- If $\operatorname{val}(a)<0$, then $\operatorname{val}(1-a)=\min \{\operatorname{val}(a), 1\}=\operatorname{val}(a)$
- If $\operatorname{val}(a)=0$
- If $a=1+t a^{\prime}$, then $\operatorname{val}(1-a)=\operatorname{val}\left(t a^{\prime}\right)>0$
- If $a=c+t a^{\prime}$, then $\operatorname{val}(1-a)=v a l\left(1-c-t a^{\prime}\right) \geq 0$

Example of the fundamental theorem

- $\operatorname{trop}(V(I))=\operatorname{closure}\{(\operatorname{val}(a), \operatorname{val}(1-a)): a \in \mathbb{C}\{\{t\}\}\}$.

- If $\operatorname{val}(a)>0$, then $\operatorname{val}(1-a)=\min \{\operatorname{val}(a), 1\}=0$
- If $\operatorname{val}(a)<0$, then $\operatorname{val}(1-a)=\min \{\operatorname{val}(a), 1\}=\operatorname{val}(a)$
- If $\operatorname{val}(a)=0$
- If $a=1+t a^{\prime}$, then $\operatorname{val}(1-a)=v a l\left(t a^{\prime}\right)>0$
- If $a=c+t a^{\prime}$, then $\operatorname{val}(1-a)=v a l\left(1-c-t a^{\prime}\right) \geq 0$

Example of the fundamental theorem

- $\operatorname{trop}(V(I))=\operatorname{closure}\{(\operatorname{val}(a), \operatorname{val}(1-a)): a \in \mathbb{C}\{\{t\}\}\}$.

- If $\operatorname{val}(a)>0$, then $\operatorname{val}(1-a)=\min \{\operatorname{val}(a), 1\}=0$
- If $\operatorname{val}(a)<0$, then $\operatorname{val}(1-a)=\min \{\operatorname{val}(a), 1\}=\operatorname{val}(a)$
- If $\operatorname{val}(a)=0$
- If $a=1+t a^{\prime}$, then $\operatorname{val}(1-a)=v a l\left(t a^{\prime}\right)>0$
- If $a=c+t a^{\prime}$, then $\operatorname{val}(1-a)=v a l\left(1-c-t a^{\prime}\right) \geq 0$

Example of the fundamental theorem

- $\operatorname{trop}(V(I))=\operatorname{closure}\{(\operatorname{val}(a), \operatorname{val}(1-a)): a \in \mathbb{C}\{\{t\}\}$.

- If $\operatorname{val}(a)>0$, then $\operatorname{val}(1-a)=\min \{\operatorname{val}(a), 1\}=0$
- If $\operatorname{val}(a)<0$, then $\operatorname{val}(1-a)=\min \{\operatorname{val}(a), 1\}=\operatorname{val}(a)$
- If $\operatorname{val}(a)=0$
- If $a=1+t a^{\prime}$, then $\operatorname{val}(1-a)=v a l\left(t a^{\prime}\right)>0$
- If $a=c+t a^{\prime}$, then $\operatorname{val}(1-a)=v a l\left(1-c-t a^{\prime}\right) \geq 0$

Example of the fundamental theorem

- $\operatorname{trop}(V(I))=\operatorname{closure}\{(\operatorname{val}(a), \operatorname{val}(1-a)): a \in \mathbb{C}\{\{t\}\}$.

- If $\operatorname{val}(a)>0$, then $\operatorname{val}(1-a)=\min \{\operatorname{val}(a), 1\}=0$
- If $\operatorname{val}(a)<0$, then $\operatorname{val}(1-a)=\min \{\operatorname{val}(a), 1\}=\operatorname{val}(a)$
- If $\operatorname{val}(a)=0$
- If $a=1+t a^{\prime}$, then $\operatorname{val}(1-a)=v a l\left(t a^{\prime}\right)>0$
- If $a=c+t a^{\prime}$, then $\operatorname{val}(1-a)=v a l\left(1-c-t a^{\prime}\right) \geq 0$

