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A gem in Distance Geometry

I Heron’s theorem

I Heron lived around
year 0

I Hang out at Alexandria’s
library

a

c

b

A =
√
s(s− a)(s− b)(s− c)

I A = area of triangle
I s = 1

2
(a+ b+ c)

Useful to measure areas of agricultural land
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Subsection 1

Proof of Heron’s theorem
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Heron’s theorem: Proof [M. Edwards, high school student, 2007]

A. 2α+ 2β + 2γ = 2π ⇒ α+ β + γ = π

r + ix = ueiα

r + iy = veiβ

r + iz = weiγ

⇒ (r+ ix)(r+ iy)(r+ iz) = (uvw)ei(α+β+γ) =

uvw eiπ = −uvw ∈ R

⇒ Im((r + ix)(r + iy)(r + iz)) = 0

⇒ r2(x+ y+ z) = xyz ⇒ r =
√

xyz
x+y+z

B. s = 1
2 (a+ b+ c) = x+ y + z

s− a = x+ y + z − y − z = x

s− b = x+ y + z − x− z = y

s− c = x+ y + z − x− y = z

A =
1

2
(ra+ rb+ rc) = r

a+ b+ c

2
= rs =

√
s(s− a)(s− b)(s− c)
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Metric spaces representability
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Representing metric spaces inRn

I Given metric space (X, d) with dist. matrixD = (dij), embed
X in a Euclidean space with same dist. matrix

I Consider i-th row xi = (di1, . . . , din) ofD

I Embed i ∈ X by vector UD(i) = xi ∈ Rn

define UD : {1, . . . , n} → Rn s.t. UD(i) = xi

I Thm.: (UD, `∞) is a metric space with dist. matrixD
i.e. ∀i, j ≤ n ‖xi − xj‖∞ = dij

I UD is called Universal Isometric Embedding (UIE)
also known as Fréchet’s embedding

I Practical issue: embedding is high-dimensional (Rn)

[Kuratowski 1935]

7 / 131



Proof
I Consider i, j ∈ X with distance d(i, j) = dij
I Then

‖xi − xj‖∞ = max
k≤n
|dik − djk| ≤ max

k≤n
|dij| = dij

ineq. ≤ above from triangular inequalities in metric space:

dik ≤ dij + djk ∧ djk ≤ dij + dik

⇒ dik − djk ≤ dij ∧ djk − dik ≤ dij
⇒ |dik − djk| ≤ dij

If valid ∀i, j then valid formax

I max |dik − djk| over k ≤ n achieved when k ∈ {i, j}

⇒ ‖xi − xj‖∞ = dij
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Subsection 1

Missing distances
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UIE from incomplete metrics

I If your metric space is missing some distances
I Get incomplete distance matrixD
I Cannot define vectors UD(i) in UIE
I Note:D defines a graph

1

4

2

3
D =


0 1

√
2 1

1 0 1 ?√
2 1 0 1

1 ? 1 0


I Complete this graph with shortest paths: d24 = 2
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Floyd-Warshall algorithm 1/2

I Given n× n partial matrixD computes
all shortest path lengths

I For each triplet u, v, z of vertices in the graph, test:
when going u→ v, is it convenient to pass through z?

I If so, then change the path length
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Floyd-Warshall algorithm 2/2
# initialization
for u ≤ n, v ≤ n do
if duv =? then
duv ←∞

end if
end for
# main loop
for z ≤ n do
for u ≤ n do
for v ≤ n do
if duv > duz + dzv then
duv ← duz + dzv

end if
end for

end for
end for
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Subsection 2

Noisy distances
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Schoenberg’s theorem

I [I. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la
définition axiomatique d’une classe d’espaces distanciés
vectoriellement applicable sur l’espace de Hilbert”, Ann. Math.,
1935]

I Question:
When is a given matrix a Euclidean Distance Matrix (EDM)?

Thm.
D = (dij) is an EDM iff 1

2
(d2

1i + d2
1j − d2

ij | 2 ≤ i, j ≤ n) is
PSD of rankK
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Gram in function of EDM
I x = (x1, . . . , xn) ⊆ RK , written as n×K matrix
I matrixG = xx> = (xi · xj) is theGram matrix of x

Lemma: G � 0 and eachM � 0 is a Gram matrix of some x
I Useful variant of Schoenberg’s theorem

Relates EDMs and Gram matrices

G = −1

2
JD2J (?)

I whereD2 = (d2
ij) and

J = In − 1
n
11> =


1− 1

n
− 1
n
· · · − 1

n

− 1
n

1− 1
n
· · · − 1

n...
... . . . ...

− 1
n

− 1
n
· · · 1− 1

n
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Multidimensional scaling (MDS)

I Often get approximate EDMs D̃ from raw data
(dissimilarities, discrepancies, di�erences)

I G̃ = −1
2
JD̃2J is an approximate Grammatrix

I Approximate Gram⇒ spectral decomposition P Λ̃P> has Λ̃ 6≥ 0

I Let Λ closest PSD diagonal matrix to Λ̃:
zero the negative components of Λ̃

I x = P
√

Λ is an “approximate embedding” of D̃
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Classic MDS: Main result

1. Prove lemma: matrix is Gram iff it is PSD
2. Prove thatG = −1

2
JD2J
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Proof of lemma
I Gram ⊆ PSD

I x is an n×K real matrix
I G = xx> its Grammatrix
I For each y ∈ Rn we have

yGy> = y(xx>)y> = (yx)(x>y>) = (yx)(yx)
>

= ‖yx‖22 ≥ 0

I ⇒ G � 0

I PSD ⊆ Gram
I LetG � 0 be n× n
I Spectral decomposition:G = PΛP>

(P orthogonal, Λ ≥ 0 diagonal)

I Λ ≥ 0⇒
√

Λ exists
I G = PΛP> = (P

√
Λ)(
√

Λ
>
P>) = (P

√
Λ)(P

√
Λ)
>

I Let x = P
√

Λ, thenG is the Grammatrix of x
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Schoenberg’s theorem proof (1/2)
I Assume zero centroidWLOG (can translate x as needed)
I Expand: d2ij = ‖xi − xj‖22 = (xi − xj)(xi − xj) = xixi + xjxj − 2xixj (∗)
I Aim at “inverting” (∗) to express xixj in function of d2ij

I Sum (∗) over i:
∑
i d

2
ij =

∑
i xixi + nxjxj − 2xj���:

0 by zero centroid∑
i xi

I Similarly for j and divide by n, get:

1

n

∑
i≤n

d2ij =
1

n

∑
i≤n

xixi + xjxj (†)

1

n

∑
j≤n

d2ij = xixi +
1

n

∑
j≤n

xjxj (‡)

I Sum (†) over j, get:

1

n

∑
i,j

d2ij = n
1

n

∑
i

xixi +
∑
j

xjxj = 2
∑
i

xixi

I Divide by n, get:
1

n2

∑
i,j

d2ij =
2

n

∑
i

xixi (∗∗)
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Schoenberg’s theorem proof (2/2)
I Rearrange (∗), (†), (‡) as follows:

2xixj = xixi + xjxj − d2ij (1)

xixi =
1

n

∑
j

d2ij −
1

n

∑
j

xjxj (2)

xjxj =
1

n

∑
i

d2ij −
1

n

∑
i

xixi (3)

I Replace LHS of Eq. (2)-(3) in RHS of Eq. (1), get

2xixj =
1

n

∑
k

d2ik +
1

n

∑
k

d2kj − d
2
ij −

2

n

∑
k

xkxk

I By (∗∗) replace 2
n

∑
i
xixi with 1

n2

∑
i,j
d2ij , get

2xixj =
1

n

∑
k

(d2ik + d2kj)− d
2
ij −

1

n2

∑
h,k

d2hk (?)

expressing xixj in function ofD (showing (?) ≡ (2G = −JD2J) is messy but easy)
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Subsection 3

Principal Component Analysis
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Principal Component Analysis (PCA)

I Given an approximate distance matrixD
I find x = MDS(D)

I However, you want x = P
√

Λ inK dimensions
but rank(Λ) > K

I Only keepK largest components of Λ
zero the rest

I Get embedding in desired (lower) dimension
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Example 1/3
Mathematical genealogy skeleton
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Example 2/3
A partial view

Euler Thibaut Pfaff Lagrange Laplace Möbius Gudermann Dirksen Gauss
Kästner 10 1 1 9 8 2 2 2 2
Euler 11 9 1 3 10 12 12 8

Thibaut 2 10 10 3 1 1 3
Pfaff 8 8 1 3 3 1

Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Möbius 4 4 2

Gudermann 2 4
Dirksen 4

D =



0 10 1 1 9 8 2 2 2 2
10 0 11 9 1 3 10 12 12 8
1 11 0 2 10 10 3 1 1 3
1 9 2 0 8 8 1 3 3 1
9 1 10 8 0 2 9 11 11 7
8 3 10 8 2 0 9 11 11 7
2 10 3 1 9 9 0 4 4 2
2 12 1 3 11 11 4 0 2 4
2 12 1 3 11 11 4 2 0 4
2 8 3 1 7 7 2 4 4 0
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Example 3/3

In 2D In 3D
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Subsection 4

Summary: Isomap
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Isomap for DG
1. LetD′ be the (square) weighted adjacency matrix ofG

2. CompleteD′ to approximate EDM D̃

3. Perform PCA on D̃ givenK dimensions

(a) Let B̃ = −(1/2)JD̃J , where J = I − (1/n)11>

(b) Find eigenval/vectsΛ, P so B̃ = P>ΛP

(c) Keep≤ K largest nonneg. eigenv. ofΛ to get Λ̃

(d) Let x̃ = P>
√

Λ̃

Vary Step 2 to generate Isomap heuristics
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Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm onG
(classic Isomap)

B. Find a spanning tree (SPT) ofG and compute a random
realization in x̄ ∈ RK , use its sqEDM

C. and more. . .

[Liberti et al., SEA 17]
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The Distance Geometry Problem (DGP)
GivenK ∈ N andG = (V,E, d) with d : E → R+, find
x : V → RK s.t.

∀{i, j} ∈ E ‖xi − xj‖2
2 = d2

ij

Defn.
x is a realization ofG inRK

Given a weighted graph , draw it so edges are drawn as segments

with lengths=weights
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Subsection 1

Applications
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Some applications

I clock synchronization (K = 1)
I sensor network localization (K = 2)
I molecular structure from distance data (K = 3)
I autonomous underwater vehicles (K = 3)
I distance matrix completion (whateverK)
I finding graph embeddings
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Clock synchronization

From [Singer,Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial measurements
of their time di�erences

I K = 1

I V : timestamps
I {u, v} ∈ E if known time difference between u, v
I d: values of the time differences

Used in time synchronization of distributed networks
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Clock synchronization
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Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to locate a set of
geographically distributed objects using measurements of the

distances between some object pairs

I K = 2

I V : (mobile) sensors
I {u, v} ∈ E iff distance between u, v is measured
I d: distance values

Used whenever GPS not viable (e.g. underwater)
duv ∝∼ battery consumption in P2P communication betw. u, v
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Sensor network localization
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Molecular structure from distance data
From [Liberti et al., SIAM Rev., 2014]

I K = 3

I V : atoms
I {u, v} ∈ E iff distance between u, v is known
I d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances/ 5.5measured approximately by NMR
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Graph embeddings

I Relational knowledge best represented by graphs
I We have fast algorithms for clustering vectors
I Task: represent a graph inRn

I “Graph embeddings” and “distance geometry”: almost
synonyms

I Used in Natural Language Processing (NLP)
obtain “word vectors” & “concept vectors”
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Subsection 2

Complexity
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Complexity

I DGP1 with d : E → Q+ is inNP
I if instance YES ∃ realization x ∈ Rn×1
I if some component xi 6∈ Q translate x so xi ∈ Q
I consider some other xj
I let ` = |sh. path p : i→ j| =

∑
{u,v}∈p

(−1)suvduv ∈ Q

for some suv ∈ {0, 1}
I then xj = xi ± `→ xj ∈ Q
I ⇒ verification of

∀{i, j} ∈ E |xi − xj | = dij

in polytime
I DGPK may not be inNP forK > 1

don’t know how to check ‖xi − xj‖2 = dij in polytime for x 6∈ QnK
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Hardness
Partition isNP-hard
Given a = (a1, . . . , an) ∈ Nn, ∃ I ⊆ {1, . . . , n} s.t.

∑
i∈I

ai =
∑
i 6∈I

ai ?

I Reduce Partition to DGP1

I a −→ cycleC
V (C) = {1, . . . , n},E(C) = {{1, 2}, . . . , {n, 1}}

I For i < n let di,i+1 = ai
dn,n+1 = dn1 = an

I E.g. for a = (1, 4, 1, 3, 3), get cycle graph:

[Saxe, 1979] 41 / 131



Partition is YES⇒DGP1 is YES

I Given: I ⊂ {1, . . . , n} s.t.
∑
i∈I
ai =

∑
i 6∈I
ai

I Construct: realization x ofC inR
1. x1 = 0 // start

2. induction step: suppose xi known
if i ∈ I

let xi+1 = xi + di,i+1 // go right

else
let xi+1 = xi − di,i+1 // go left

I Correctness proof: by the same induction
but careful when i = n: have to show xn+1 = x1
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Partition is YES⇒DGP1 is YES

(1) =
∑
i∈I

(xi+1 − xi) =
∑
i∈I

di,i+1 =

=
∑
i∈I

ai =
∑
i 6∈I

ai =

=
∑
i 6∈I

di,i+1 =
∑
i 6∈I

(xi − xi+1) = (2)

(1) = (2)⇒
∑
i∈I

(xi+1 − xi) =
∑
i 6∈I

(xi − xi+1)⇒
∑
i≤n

(xi+1 − xi) = 0

⇒ (xn+1 − xn) + (xn − xn−1) + · · ·+ (x3 − x2) + (x2 − x1) = 0

⇒ xn+1 = x1
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Partition is NO⇒DGP1 is NO
I By contradiction: suppose DGP1 is YES, x realization ofC
I F = {{u, v} ∈ E(C) | xu ≤ xv},

E(C) r F = {{u, v} ∈ E(C) | xu > xv}
I Trace x1, . . . , xn: follow edges in F (→) and inE(C) r F (←)

∑
{u,v}∈F

(xv − xu) =
∑

{u,v}6∈F
(xu − xv)

∑
{u,v}∈F

|xu − xv| =
∑

{u,v}6∈F
|xu − xv|

∑
{u,v}∈F

duv =
∑

{u,v}6∈F
duv

I Let J = {i < n | {i, i+ 1} ∈ F} ∪ {n | {n, 1} ∈ F}

⇒
∑
i∈J

ai =
∑
i 6∈J

ai

I So J solves Partition instance, contradiction
I ⇒DGP is NP-hard, DGP1 is NP-complete
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Subsection 3

Number of solutions
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Number of solutions

I (G,K): DGP instance

I X̃ ⊆ RKn: set of solutions
I Congruence: composition of translations, rotations, reflections

I C = set of congruences inRK

I x ∼ y means ∃ρ ∈ C (y = ρx):
distances in x are preserved in y through ρ

I ⇒ if |X̃| > 0, |X̃| = 2ℵ0
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Number of solutions modulo congruences

I Congruence is an equivalence relation∼ on X̃
(reflexive, symmetric, transitive)

I Partitions X̃ into equivalence classes

I X = X̃/∼: sets of representatives of equivalence classes

I Focus on |X| rather than |X̃|
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Rigidity, flexibility and |X|

I infeasible⇔ |X| = 0

I rigid graph⇔ |X| < ℵ0

I globally rigid graph⇔ |X| = 1

I flexible graph⇔ |X| = 2ℵ0

I |X| = ℵ0: impossible byMilnor’s theorem
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Milnor’s theorem implies |X| 6= ℵ0

I System S of polynomial equations of degree 2

∀i ≤ m pi(x1, . . . , xnK) = 0

I LetX be the set of x ∈ RnK satisfying S

I Number of connected components ofX isO(3nK)
[Milnor 1964]

I Assume |X| is countable; thenG cannot be flexible
⇒ each incongruent rlz is in a separate component
⇒ byMilnor’s theorem, there’s finitely many of them
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Examples
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Short introduction toMP 1/3
I Formal language to describe optimization problems
I Sentences are called formulations

min f(x)
∀i ≤ m gi(x) ≤ 0
∀j ∈ Z xj ∈ Z

 [P ]

I f, g: represented by expression language

I Formulation entities:
set param dec. var obj constr
Z m x f(x) gi(x) ≤ 0

xj ∈ Z
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Short introduction toMP 2/3

I Syntax highlights:
I no explicit open sets: use≤,≥,= not<,>, 6=
I no vars in quantifiers (e.g.

∑
i∈I
xi=1

yi)

I Semantics:
assignment of values to decision variables
I carried out by solver:

solution alg. for MP subclass defined by given math. properties
I requires formulation taxonomy w.r.t. solvers

LP, SOCP, SDP, QP, QCP, QCQP, NLP,
MILP, MIQP, MIQCP, MIQCQP,MINLP
c(MI)QP, c(MI)QCP, c(MI)QCQP, c(MI)NLP,
BLP, BQP, MOP, BLevP, SIP, . . .

I MP shifts focus from algorithmics tomodelling
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Short introduction toMP 3/3
I Solvers can be:

global or local, exact, approximate or heuristic, (worst-case)
polytime or exponential, fast or slow

I Examples:
I LP: simplex alg., interior point method (IPM); CPLEX, GuRoBi,

XPressMP, GLPK, CLP; global, exact, fast, IPM is polytime
I SOCP, SDP: IPM;Mosek, SCS; global, ε-approx., fast, polytime
I QP, QCP, QCQP, NLP: Succ. Quadr. Prog. (SQP), IPM; Snopt,

IPOPT; local, heuristic (ε-approx. if cvx), fast
I BLP, MILP: Cutting plane (CP), Branch-and-Bound (BB); CPLEX,

XPressMP, GLPK; global, exact, slow, exponential
I cMIQP, cMIQCP, cMIQCQP, cMINLP: BB, Outer Approx. (OA),

CP; GuRoBi, BonMin, alphaECP; global, ε-approx., slow, exponential
I MIQP, MIQCP, MIQCQP,MINLP: spatial BB (sBB); Baron,

GuRoBi, Couenne, Antigone; global, ε-approx., slow, exponential
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Subsection 1

Formulations in position variables
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QCP and QCQP

Original DGP system is a QCP:

∀{u, v} ∈ E ‖xu − xv‖2 = d2
uv (4)

Computationally: useless

Reformulate using slack variables, get QCQP:

min
x,s

{ ∑
{u,v}∈E

suv
2
∣∣ ∀{u, v} ∈ E ‖xu − xv‖2 = d2

uv + suv
}

(5)
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Unconstrained NLP

min
x∈RnK

∑
{u,v}∈E

(‖xu − xv‖2 − d2
uv)

2 (6)

Sum of squares, but nonconvex in x (quartic polynomial)

Globally optimal obj. fun. value of (6) is 0 iff x solves (4)

Computational experiments in [Liberti et al., 2006]:
I Solvers from 15 years ago

I randomly generated protein data: ≤ 50 atoms

I cubic crystallographic grids: ≤ 64 atoms
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“Push-and-pull” QCQP

I min
x∈RnK

∑
{u,v}∈E

|‖xu − xv‖2 − d2uv| exactly reformulates (4)

I Relax objective f to concave part, remove constant term, rewritemin−f
asmax f

I Reformulate convex part of obj. fun. to convex constraints

I Exact reformulation

maxx
∑

{u,v}∈E
‖xu − xv‖2

∀{u, v} ∈ E ‖xu − xv‖22 ≤ d2uv

}
(7)

Objective pulls points apart, constraints push them together

Thm.
At a glob. opt. x∗ of a YES instance, all constraints of (7) are active
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Multiplicative Weights Update (MWU) alg.

maxx
∑

{u,v}∈E
‖xu − xv‖2

∀{u, v} ∈ E ‖xu − xv‖22 ≤ d2uv

}
[QCQP]

1. ‖xu − xv‖2
2 = 〈(xu − xv), (xu − xv)〉 = 〈wuv, (xu − xv)〉

fixw ∈ RK , get cNLP
min{

∑
{u,v}∈E

〈wuv, (xu − xv)〉 | ∀{u, v} ∈ E ‖xu − xv‖22 ≤ d2uv}

solve efficiently, get x′ with EDMD′

2. ∀{u, v} ∈ E define ψuv , |D′uv−duv |
max(D′uv ,duv)

relative error betweenD′ and d

3. ∀{u, v} ∈ E updatewuv ← wuv(1− η ψuv)
where η is a constant in (0, 1)

4. repeat for T iterations, record best solution
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MWU relative guarantee
I index quantities by iteration t: (x′)t, wt, ψt

I get distribution ρtuv = wtuv/〈1, wt〉
I

∑
{u,v}∈E

ψtuvρ
t
uv = 〈ψt, ρt〉

weighted relative error between D′ and d at itn t
I can prove that

min
t≤T
〈ψt, ρt〉 ≤ 1

T

(
2 lnm+

3

2
min
{u,v}∈E

∑
t≤T

ψtuv

)

I relative UB to error of MWU output in terms of best
cumulative distance error

[D’Ambrosio et al., DCG 17, Mencarelli et al. EJCO 17]
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Subsection 2

Formulations in matrix variables
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Linearization
Replace nonlinear terms with additional variables:
Back to original system ∀{i, j} ∈ E ‖xi − xj‖2

2 = d2
ij

⇒ ∀{i, j} ∈ E ‖xi‖2
2 + ‖xj‖2

2 − 2xi · xj = d2
ij

⇒
{
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

X = x x>

Note:X = xx>⇔[∀i, j ≤ n Xij = xixj]

⇔


X11 X12 · · · X1n

X12 X22 · · · X2n

...
...

. . .
...

X1n X2n · · · Xnn

 =


x21 x1x2 · · · x1xn
x1x2 x22 · · · x2xn
...

...
. . .

...
xnx1 xnx2 · · · x2n


implies thatX must have rank≤ 1
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Relaxation

Replace nonconvex set with a convex relaxation:

X = x x>

⇒ X − x x> = 0 all eigs.= 0

(relax) ⇒ X − x x> � 0 all eigs.≥ 0

⇒ Schur(X, x) ,

(
IK x>

x X

)
� 0

I If x does not appear elsewhere in formulation
can eliminate it (e.g. choose x = 0)

I ⇒Replace Schur(X, x) � 0 byX � 0
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SDP relaxation

minF •X
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

X � 0

How do we choose F ?

F •X = tr(F>X)
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Some possible objective functions
I For protein conformation:

min
∑
{i,j}∈E

(Xii +Xjj − 2Xij)

with= changed to≥ in constraints (or max and≤)

SDP relaxation of “push-and-pull” QCQP

I [Ye, 2003], application to wireless sensors localization

min tr(X)

tr(X) = tr(P−1ΛP ) = tr(P−1PΛ) = tr(Λ) =
∑

i λi
⇒ hope to minimize rank

I How about “just random”?
[Barvinok, DCG 1995]
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How do you choose?

for want of some better criterion. . .

TEST!

I Download protein files from Protein Data Bank (PDB)
they contain atom realizations

I Mimick a Nuclear Magnetic Resonance experiment
Keep only pairwise distances < 5.5

I Try and reconstruct the protein shape from those weighted graphs

I Quality evaluation of results:

I LDE(x) = max
{i,j}∈E

| ‖xi − xj‖ − dij |

I MDE(x) = 1
|E|

∑
{i,j}∈E

| ‖xi − xj‖ − dij |
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Empirical choice

I Ye very fast but often imprecise

I Random good but nondeterministic

I Push-and-Pull: can relaxXii +Xjj − 2Xij = d2
ij to

Xii +Xjj − 2Xij ≥ d2
ij

easier to satisfy feasibility, useful later on

I Heuristic: add +ηtr(X) to objective, with η � 1
might help minimize solution rank

I min
∑

{i,j}∈E
(Xii +Xjj − 2Xij) + ηtr(X)
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Subsection 3

Diagonal dominance

68 / 131



When SDP solvers hit their size limit

I SDP solver: technological bottleneck
I Can we use an LP solver instead?
I Diagonally Dominant (DD) matrices are PSD
I Not vice versa: inner approximate PSD cone Y � 0

I Idea by A.A. Ahmadi [Ahmadi & Hall 2015]
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Diagonally dominant matrices

n× n symmetric matrixX is DD if

∀i ≤ n Xii ≥
∑
j 6=i

|Xij|.

E.g.


1 0.1 −0.2 0 0.04 0

0.1 1 −0.05 0.1 0 0
−0.2 −0.05 1 0.1 0.01 0

0 0.1 0.1 1 0.2 0.3
0.04 0 0.01 0.2 1 −0.3

0 0 0 0.3 −0.3 1
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Gershgorin’s circle theorem
I LetA be symmetric n× n
I ∀i ≤ n letRi =

∑
j 6=i
|Aij| and Ii = [Aii −Ri, Aii +Ri]

I Then ∀λ eigenvalue ofA ∃i ≤ n s.t. λ ∈ Ii
Proof

I Let λ be an eigenvalue ofAwith eigenvector x

I Normalize x s.t. ∃i ≤ n xi = 1 and ∀j 6= i |xj | ≤ 1
let i = argmaxj |xj |, divide x by sgn(xi)|xi|

I Ax = λx⇒
∑
j 6=i

Aijxj +Aiixi =
∑
j 6=i

Aijxj +Aii = λxi = λ

I Hence
∑
j 6=i

Aijxj = λ−Aii

I Triangle inequality and |xj | ≤ 1 for all j 6= i⇒
|λ−Aii| = |

∑
j 6=i

Aijxj | ≤
∑
j 6=i
|Aij | |xj | ≤

∑
j 6=i
|Aij | = Ri

hence λ ∈ Ii
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DD⇒ PSD

I AssumeA is DD, λ an eigenvalue ofA
I ⇒ ∀i ≤ n Aii ≥

∑
j 6=i |Aij| = Ri

I ⇒ ∀i ≤ n Aii −Ri ≥ 0

I By Gershgorin’s circle theorem λ ≥ 0

I ⇒ A is PSD

72 / 131



DDLinearization

∀i ≤ n Xii ≥
∑
j 6=i

|Xij| (∗)

I linearize | · | by additional matrix var T
⇒ write |X| as T

I ⇒ (∗) becomes
Xii ≥

∑
j 6=i

Tij

I add “sandwich” constraints−T ≤ X ≤ T
I Can easily prove (∗) in caseX ≥ 0 orX ≤ 0:

Xii ≥
∑
j 6=i

Tij ≥
∑
j 6=i

Xij

Xii ≥
∑
j 6=i

Tij ≥
∑
j 6=i

−Xij
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DD Programming (DDP)

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

X is DD

}

⇒


∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

∀i ≤ n
∑
j≤n
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T
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The issue with inner approximations

DDP could be infeasible!
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Exploit push-and-pull

I Enlarge the feasible region
I From

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

I Relax to “pull” constraints

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2
ij

I Then use “push” objective

min
∑
ij∈E

Xii +Xjj − 2Xij
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Hope to achieve LP feasibility
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DDP formulation for the DGP

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2
ij

∀i ≤ n
∑
j≤n
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T
T ≥ 0
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Subsection 4

Dual DD
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Cones
I SetC is a cone if:

∀A,B ∈ C, α, β ≥ 0 αA+ βB ∈ C

I IfC is a cone, the dual cone is

C∗ = {y | ∀x ∈ C 〈x, y〉 ≥ 0}

vectors making acute angles with all elements of C
I IfC ⊂ Sn (set n× n symmetric matrices)

C∗ = {Y | ∀X ∈ C (Y •X ≥ 0)}

I A n× nmatrix coneC is finitely generated byX ⊂ Rn if

X = {x1, . . . , xp}∧ ∀X ∈ C ∃δ ∈ Rp
+X =

∑
`≤p

δ` x`x`
>

80 / 131



Representations ofDD

I ConsiderEii, E+
ij , E

−
ij in Sn

Define E0 = {Eii | i ≤ n}, E1 = {E±ij | i < j}, E = E0 ∪ E1
I Eii = diag(0, . . . , 0, 1i, 0, . . . , 0)

I E+
ij has minor

(
1ii 1ij
1ji 1jj

)
, 0 elsewhere

I E−ij has minor
(

1ii −1ij
−1ji 1jj

)
, 0 elsewhere

I Thm. DD = cone generated by E [Barker & Carlson 1975]

Pf. Rays in E are extreme, all DD matrices generated by E
I Cor. DD finitely gen. by
XDD = {ei | i ≤ n} ∪ {(ei ± ej) | i < j ≤ n}
Pf. Verify Eii = eie

>
i , E

±
ij = (ei ± ej)(ei ± ej)>, where ei is the

i-th std basis element of Rn
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Finitely generated dual cone representation
Thm. IfC finitely gen. byX , then

C∗ = {Y ∈ Sn | ∀x ∈ X (Y • xx> ≥ 0)}
recall C∗ , {Y ∈ Sn | ∀X ∈ C Y •X ≥ 0}

I (⊇) Let Y s.t. ∀x ∈ X (Y • xx> ≥ 0)
I ∀X ∈ C ,X =

∑
x∈X

δxxx
> (by fin. gen.)

I hence Y •X =
∑

x δxY • xx> ≥ 0 (by defn. of Y )
I whence Y ∈ C∗ (by defn. ofC∗)

I (⊆) SupposeZ ∈ C∗ r {Y | ∀x ∈ X (Y • xx> ≥ 0)}
I then ∃X ′ ⊂ X s.t. ∀x ∈ X ′ (Z • xx> < 0)
I consider any Y =

∑
x∈X ′

δxxx
> ∈ C with δ ≥ 0

I thenZ • Y =
∑
x∈X ′

δxZ • xx> < 0 soZ 6∈ C∗

I contradiction⇒C∗ = {Y | ∀x ∈ X (Y • xx> ≥ 0)}
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Dual cone constraints

I Remark:X • vv> = v>Xv

I Use finitely generated dual cone theorem
I Decision variable matrixX
I Constraints:

∀v ∈ X v>Xv ≥ 0

I Cor. PSD ⊂ DD∗
Pf.X ∈ PSD iff ∀v ∈ Rn vXv ≥ 0, so certainly valid ∀v ∈ X

I If |X | polysized, get compact formulation
otherwise use column generation

I |XDD| = |E| = O(n2)
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Dual cone DDP formulation for DGP

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

∀v ∈ XDD v>Xv ≥ 0


I v>Xv ≥ 0 for v ∈ XDD equivalent to:

∀i ≤ n Xii ≥ 0

∀{i, j} 6∈ E Xii +Xjj − 2Xij ≥ 0

∀i < j Xii +Xjj + 2Xij ≥ 0

Note we went back to equality “pull” constraints

Quantifier ∀{i, j} 6∈ E should be ∀i < j but we already have those constraints ∀{i, j} ∈ E
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Properties of the Dual DDP formulation

I SDP relaxes original problem

I DualDDP relaxes SDP
hence also relaxes original problem

I Yields extremely tight obj fun bounds w.r.t. SDP

I Solutions may have large negative rank
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Subsection 5

Dimensional reduction
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Retrieving realizations inRK

I SDP/DDP yield n× n PSDmatrixX∗

I We need n×K realization matrix x∗

I Recall PSD⇔ Gram

I Apply PCA toX∗, keepK largest comps, get x′

I This yields solutions with errors

I Refinement:
Use x′ as starting point for local NLP solver on QCQP
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Subsection 6

Barvinok’s Naive Algorithm
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Concentration of measure

From [Barvinok, 1997]
The value of a “well behaved” function at a random point
of a “big” probability space X is “very close” to the mean
value of the function.

and

In a sense, measure concentration can be considered as an
extension of the law of large numbers.
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Concentration of measure

Given Lipschitz function f : X → R s.t.

∀x, y ∈ X |f(x)− f(y)| ≤ L‖x− y‖2

for someL ≥ 0, there is concentration of measure if ∃ constants c, C
s.t.

∀ε > 0 Px(|f(x)− E(f)| > ε) ≤ c e−Cε
2/L2

where E(·) is w.r.t. given Borel measure µ overX

≡ “discrepancy from mean is unlikely”
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Barvinok’s theorem

Consider:

I for each k ≤ m, manifoldsXk = {x ∈ Rn | x>Qkx = ak}
wherem ≤ poly(n)

I feasibility problem F ≡
[⋂

k≤m Xk
?

6= ∅
]

I SDP relaxation ∀k ≤ m (Qk •X = ak) ∧X � 0with soln. X̄

I Algorithm: T ← factor(X̄); y ∼ Nn(0, 1); x′ ← Ty

Then:

I ∃c > 0, n0 ∈ N such that ∀n ≥ n0

Prob
(
∀k ≤ m dist(x′,Xk) ≤ c

√
‖X̄‖2 lnn

)
≥ 0.9.

91 / 131



Algorithmic application

I x′ is “close” to eachXk: try local descent from x′

I ⇒ Feasible QP solution from an SDP relaxation
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Elements of Barvinok’s formula

Prob
(
∀k ≤ m dist(x′,Xk) ≤ c

√
‖X̄‖2 lnn

)
≥ 0.9.

I
√
‖X̄‖2 arises from T (a factor of X̄)

I
√

lnn arises from concentration of measure
I 0.9 follows by adjusting parameter values in “union bound”
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Application to the DGP

I ∀{i, j} ∈ E Xij = {x | ‖xi − xj‖2
2 = d2

ij}

I DGP can be written as
⋂

{i,j}∈E
Xij

?

6= ∅

I SDP relaxationXii +Xjj − 2Xij = d2
ij ∧X � 0 with

soln. X̄

I Difference with Barvinok: x ∈ RKn, rk(X̄) ≤ K

I IDEA: sample y ∼ NnK(0, 1√
K

)

I Thm. Barvinok’s theorem works in rank K
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Proof structure
I Show that, on average, ∀k ≤ m tr((Ty)

>
Qk(Ty)) = QK • X̄ = ak

I compute multivariate integrals
I bilinear terms disappear because y normally distributed
I decompose multivariate int. to a sum of univariate int.

I Exploit concentration of measure to show errors happen rarely
I a couple of technical lemmata yielding bounds
I ⇒ bound Gaussian measure µ of ε-neighbourhoods of

A−i = {y ∈ Rn×K | Qi(Ty) ≤ Qi • X̄}
A+
i = {y ∈ Rn×K | Qi(Ty) ≥ Qi • X̄}
Ai = {y ∈ Rn×K | Qi(Ty) = Qi • X̄}.

I use “union bound” for measure ofA−i (ε) ∩A+
i (ε)

I showA−i (ε) ∩A+
i (ε) = Ai(ε)

I use “union bound” to measure intersections ofAi(ε)
I appropriate values for some parameters⇒ result
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The heuristic

1. Solve SDP relaxation of DGP, get soln. X̄
use DDP+LP if SDP+IPM too slow

2. a. T = factor(X̄)
b. y ∼ NnK(0, 1√

K
)

c. x′ = Ty

3. Use x′ as starting point for a local NLP solver on formulation

min
x

∑
{i,j}∈E

(
‖xi − xj‖2 − d2

ij

)2

and return improved solution x
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MP formulations for the DGP: Summary

I Try nonconvex formulations in position vars
I Quadratic nonconvex too difficult?
I Solve SDP relaxation
I SDP relaxation too large?
I Solve DDP approximation
I Get n× nmatrix solution, needK × n
I Use PCA or Barvinok’s alg. and refine w/local NLP
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High-dimensional weirdness

DG’s best known result
Proof of Heron’s theorem

Metric spaces representability
Missing distances
Noisy distances
Principal Component Analysis
Summary: Isomap

Distance geometry problem
Applications
Complexity
Number of solutions

MP formulations

Formulations in position variables
Formulations in matrix variables
Diagonal dominance
Dual DD
Dimensional reduction
Barvinok’s Naive Algorithm

High-dimensional weirdness
Random projections
Distance instability
Are these results related?

Graph embeddings for ANN
A clustering task
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Subsection 1

Random projections
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The gist

I LetA be am× n data matrix (columns inRm,m� 1)
I T short & fat, normally sampled componentwise(

· · · · · ·· · · · · ·· · · · · ·

)
︸ ︷︷ ︸

T

( ...
...

...
...

...
...

)
︸ ︷︷ ︸

A

=
(
...

...
...
)

︸ ︷︷ ︸
TA

I Then ∀i < j ‖Ai − Aj‖2 ≈ ‖TAi − TAj‖2 “wahp”

Some more dimensional reduction!
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wahp
“wahp” = “with arbitrarily high probability”
the probability ofEk (depending on some parameter k)

approaches 1 “exponentially fast” as k increases

P(Ek) ≈ 1−O(e−k)
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Johnson-Lindenstrauss Lemma

Thm.
GivenA ⊆ Rm with |A| = n and ε > 0 there is k ∼ O( 1

ε2
lnn) and

a k ×mmatrix T s.t.

∀x, y ∈ A (1− ε)‖x− y‖ ≤ ‖Tx− Ty‖ ≤ (1 + ε)‖x− y‖

If k ×mmatrix T is sampled componentwise fromN(0, 1√
k
), then

P(A and TA are approximately congruent) ≥ 1
n

result follows by probabilistic method

102 / 131



In practice

I P(A and TA are approximately congruent) ≥ 1
n

I re-sampling sufficiently many times gives wahp
I Empirically, sample T very few times (e.g. once will do!)

ET (‖Tx− Ty‖) = ‖x− y‖
probability of error decreases exponentially fast

Surprising fact:
k is independent of the original number of dimensionsm
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Clustering Google images

[L. & Lavor, 2017]
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Clustering without random projections

VHimg = Map[Flatten[ImageData[#]] &, Himg];

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
Out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

Too slow!
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Clustering with random projections

Get["Projection.m"];
VKimg = JohnsonLindenstrauss[VHimg, 0.1];
VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]
Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

From 0.405s CPU time to 0.00232s
Same clustering
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Approximating the identity
I Let n ∈ N and ε ∈ R+ with n� 1 and ε ∈ (0, 1/2)

I Let T be a k × nRandom Projection (RP) matrix with
k = O(ε−2 lnn)

I Look at relations between TT> and Ik and T>T and In
I By [Zhang et al., COLT 13], ∃C ≥ 1/4 s.t. ∀δ

(
n ≥ (k+1) ln(2k/δ)

Cε−2

)
Prob

(∥∥ 1

n
TT> − Ik

∥∥
2
≤ ε
)
≥ 1− δ

I By Thm. 7 in [L. TOP 20], given any fixed x ∈ Rn

Prob(−1ε ≤ T>Tx− Inx ≤ 1ε) ≥ 1− 4e−dCε
2

I Note: T>T only behaves like In for a fixed x
T is k × n, so T>T is n× nwith rank k < n; hence there can be an arbitrary difference
w.r.t. In acting on all vectors inRn
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Projecting formulations
I Can we apply RPs toMP formulations?

I decrease dimension of parameter vectors
I decrease dimension of variable vectors

I Three major difficulties
1. Globally optimal objective function value of projected

formulation must be approximately the same as of original one
2. Must be able to retrieve global optima of original formulation

from those of projected
3. Projecting variables is equivalent to projecting an infinite

(possibly uncountable) number of vectors, JLL does not apply
I Can project LP, SDP, QP

[Vu et al. DAM 19, Vu et al.MOR 19, Vu et al. IPCO 19, D’Ambrosio et al.MPB 20]
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Subsection 2

Distance instability
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Nearest Neighbours
k-Nearest Neighbours (k-NN).Given:

I k ∈ N
I a distance function d : Rn × Rn → R+

I a set X ⊂ Rn
I a point z ∈ Rn r X ,

find the subset Y ⊂ X such that:

(a) |Y| = k

(b) ∀y ∈ Y, x ∈ X (d(z, y) ≤ d(z, x))

I basic problem in data science
I pattern recognition, computational geometry, machine learning, data compression, robotics,

recommender systems, information retrieval, natural language processing and more

I Example: Used in Step 2 of k-means:
assign points to closest centroid

[Cover &Hart 1967]
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With random variables

I Consider 1-NN
I Let ` = |X |
I Distance function family
{dm : Rn × Rn → R+}m

I For eachm:
I random variableZm with some distribution overRn
I for i ≤ `, random variableXm

i with some distrib. overRn
I Xm

i iid w.r.t. i,Zm independent of allXm
i

I Dm
min = min

i≤`
dm(Zm, Xm

i )

I Dm
max = max

i≤`
dm(Zm, Xm

i )
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Distance Instability Theorem

I Let p > 0 be a constant
I If

∃i ≤ ` (dm(Zm, Xm
i ))p converges asm→∞

then, for any ε > 0,

closest and furthest point are at about the same distance

Note “∃i” suffices since ∀mwe haveXm
i iid w.r.t. i

[Beyer et al. 1999]
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Distance Instability Theorem
I Let p > 0 be a constant
I If

∀i ≤ ` lim
m→∞

Var

(
(dm(Zm, Xm

i ))p

E((dm(Zm, Xm
i ))p)

)
= 0

then, for any ε > 0,

lim
m→∞

P(Dm
max ≤ (1 + ε)Dm

min) = 1

Note “∃i” suffices since ∀mwe haveXm
i iid w.r.t. i

[Beyer et al. 1999]
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Preliminary results

I Lemma. {Bm}m seq. of rnd. vars with finite variance and
lim
m→∞

E(Bm) = b ∧ lim
m→∞

Var(Bm) = 0; then

∀ε > 0 lim
m→∞

P(‖Bm − b‖ ≤ ε) = 1

denotedBm →P b

I Slutsky’s theorem. {Bm}m seq. of rnd. vars and g a continuous
function; ifBm →P b and g(b) exists, then g(Bm)→P g(b)

I Corollary. If {Am}m, {Bm}m seq. of rnd. vars. s.t.Am →P a

andBm →P b 6= 0 then Am

Bm
→P

a
b
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Proof
1. µm = E((dm(Zm, Xm

i ))p) independent of i
(since allXm

i iid)

2. Vm =
(dm(Zm,Xm

i ))p

µm
→P 1:

I E(Vm) = 1 (rnd. var. over mean)⇒ limm E(Vm) = 1
I Hypothesis of thm.⇒ limm Var(Vm) = 0
I Lemma⇒ Vm →P 1

3. Vm = (Vm | i ≤ `)→P 1 (by iid)

4. Slutsky’s thm.⇒ min(Vm)→P min(1) = 1
simy formax

5. Corollary⇒ max(Vm)
min(Vm)

→P 1

6. Dmmax
Dmmin

= µm max(Vm)
µm min(Vm)

→P 1

7. Result follows (defn. of→P andDm
max ≥ Dm

min)
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When it applies

I iid random variables from any distribution
I Particular forms of correlation

e.g.Ui ∼ Uniform(0,
√
i),X1 = U1,Xi = Ui + (Xi−1/2) for i > 1

I Variance tending to zero
e.g.Xi ∼ N(0, 1/i)

I Discrete uniform distribution onm-dimensional hypercube
for both data and query

I Computational experiments with k-means:
instability already with n > 15
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Example of k-means inR100
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. . . and when it doesn’t

I Complete linear dependence on all distributions
can be reduced to NN in 1D

I Exact and approximate matching
query point = (or ≈) data point

I Query point in a well-separated cluster in data
I Implicitly low dimensionality

project; but NN must be stable in lower dim.
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Loss of resolution ε forK ≤ 10000
Uniform(0, 1) Normal(0, 1)

Exponential(1)

I Resolution falls exponentially fast

I Hard to tell closest from furthest pt
a fortiori, picking k closest neighb

I Generates algorithmic instability
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Subsection 3

Are these results related?
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Relations between distance instability and JLL?

I On the one hand,
I n-dimensional point cloudX with n� 1
I Distance instability⇒ Dmax ≤ (1 + ε)Dmin

all the useful information within ε
I T a rnd. prj.⇒ ε-congruent TX in k = O(ε−2 ln |X |) dim.

all of the useful information is lost (?)
I On the other hand,

I n-dimensional point cloudX with n� 1
I T = (Tij)with Tij ∼ N (0, 1)⇒ ε-congruent TX ⊂ Rk
I Columns in TX are identically distributed
I k still “largish” (because of ε−2)

distance instability⇒ closest/furthest points could be mistaken
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Graph embeddings for artificial Neural Networks

DG’s best known result
Proof of Heron’s theorem

Metric spaces representability
Missing distances
Noisy distances
Principal Component Analysis
Summary: Isomap

Distance geometry problem
Applications
Complexity
Number of solutions

MP formulations

Formulations in position variables
Formulations in matrix variables
Diagonal dominance
Dual DD
Dimensional reduction
Barvinok’s Naive Algorithm

High-dimensional weirdness
Random projections
Distance instability
Are these results related?

Graph embeddings for ANN
A clustering task
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Artificial neural networks

I Artificial Neural Network (ANN):
explicit approximate representation of a function oracle

ξ = f(χ)

where χ ∈ Rn and ξ ∈ Rk

I Parametrized discrete dynamical system with 2 phases
1. training (slow)
2. evaluation (fast)

I Learning phase assigns values to ANN parameters
learning algorithm is based on a given training dataset

I Once parametrized, ANN evaluates given input to output
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Formal definition

I ANNA: triplet (G, T, φ : R→ [−1, 1])

I G is aDirected Acyclic Graph (DAG)
I T is a training set
I φ is an activation function

I DAGG = (V,A, v, b, w, I, O):
I node weight function v : V → R (variables)
I node weight function b : V → R (parameter to be learned)
I arc weight functionw : A→ R (parameter to be learned)
I I ⊂ V s.t. |I| = n andN−(I) = ∅: input nodes
I O ⊂ V s.t. |O| = k andN+(O) = ∅: output nodes

I Training set T = (X ⊂ Rn, Y ⊂ Rk)

with |X| = |Y | = R̂ andR = {1, . . . , R̂}
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Training

I Finds values for b, w using the training data from T

I Decision variable map u : R× V → R
I For subset S ⊆ R and U ⊂ V let u[S, U ] the submatrix of u

with rows indexed by S and columns indexed by U
I Let dist(·, ·) denote a function evaluating a non-negative

difference score between two equally sized matrices
I Training problem:

min
w,b,u

dist(u[R,O], Y )

u[R, I] = X
∀t ∈ R, j ∈ V r I utj = φ

( ∑
i∈N−(j)

wijuti + bj
)
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Evaluation

I b, w have been fixed by training
I Evaluation problem:

∀j ∈ I vj = χj
∀j ∈ V r I vj = φj

( ∑
i∈N−(j)

wijvi + bj
)

∀j ∈ O ξj = vj


I SinceG is a DAG, for given χ can solve for ξ in linear time
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Subsection 1

A clustering task
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Natural language processing
I Aims at determining:

I segmentation of text into sentences and words
I lemmatization (removing desinence/conjugation syllables)
I part-of-speech tagging (grammatical category of word)
I finding the grammatical structure of sentences (parsing)
I named entity recognition
I relation extraction
I machine translation
I sentiment analysis
I . . .

I Commonmethodologies:
I deterministic algorithms (automaton-based)
I symbolic artificial intelligence (e.g. LISP, Prolog)
I supervised, semi-supervised, unsupervised machine learning

I In particular, ANNs very successful in machine translation
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Clustering sentences

I Cluster sentences according to a similarity using an ANN
assume input text is “clean” (lemmatized, stopwords removed)

I Sentences are linear sequences of words
transform them into a graph on words
I vertices are words
I sliding window on word sequences:

adjacency relation (word neighbourhoods)
I contract vertices with same word,

parallel edges represented by single edges with sum of weights
I ANN requires vectors inRn as input

we have differently sized graphs over the sentences
I Use DGmethods, stack word vectors, pad with zeros,

dimensional reduction
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Some results
I Simple ANN, one hidden layer
I Training sets formed by k-means over sentence vectors
I formed with inc, qrt, sdp
I dimensional reduction with pca, rp
I table below reports ANN loss function values

Training set outputs

Tr
ain

in
gs
et
in
pu
ts

µ inc inc qrt qrt sdp sdp sum
ρ pca rp pca rp pca rp µ ∈M

inc
pca 0.052 0.013 0.106 0.164 0.079 0.161 0.575
inc
rp 0.001 0.000 0.106 0.167 0.080 0.159 0.513
qrt
pca 0.063 0.022 0.038 0.218 0.079 0.159 0.579
qrt
rp 0.062 0.024 0.120 0.035 0.076 0.164 0.481
sdp
pca 0.063 0.021 0.126 0.195 0.033 0.149 0.587
sdp
rp 0.059 0.021 0.121 0.176 0.083 0.037 0.497
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