An introduction to tropical geometry: theory and applications Lecture 1

Fatemeh Mohammadi (Ghent University) Winter School on Geometric Constraint Systems

January 15, 2021

Hello from Hong Kong!

Motivation

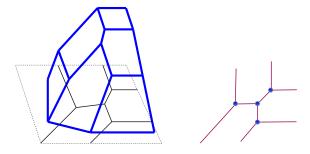
- Much of the study of tropical geometry has been motivated by the applications both inside and outside mathematics.
- From theoretical side, it is considered a combinatorial shadow of algebraic geometry with remarkable results in:
 - Enumerative algebraic geometry
 - Toric geometry
- From applied side it is used in:
 - Economics (Bank of England)
 - Phylogenetics
 - Quantum field theory
 - MANY MORE
- Tropical: honoring the Brazilian computer scientist Imre Simon.

What is tropical geometry?

 A tool for transforming algebraic varieties into polyhedral objects which retain a lot of information about the original variety.

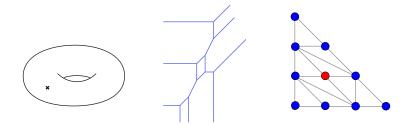
polynomials/varieties $\xrightarrow{\text{tropicalization}}$ polyhedral fans and graphs

A piecewise linear shadow of algebraic geometry.



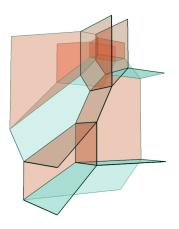
Outline

• Lecture 1: Tropical polynomials



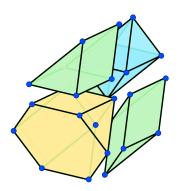
Outline

• Lecture 2: Tropical varieties as polyhedral complexes



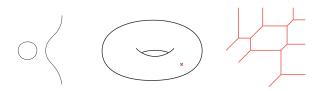
Outline

 Lecture 3: Tropical linear spaces, Grassmannians, and matroids with applications in phylogenetics



What is tropical geometry about?

- We can think of it as a new type of algebraic geometry.
- What is the solution space of polynomials?
- \bullet We work over tropical numbers $\overline{\mathbb{R}}=\mathbb{R}\cup\{\infty\}$
- $f = y^2 x^3 + 3x^2 2x \subset \mathbb{R}[x, y]$
- Look at V(f):
 - over real numbers R
 - ullet over complex numbers ${\mathbb C}$
 - and the variety of trop V(f) over tropical numbers $\overline{\mathbb{R}}$



• The degree of V(f) is 3 and its genus is 1.

Tropical Arithmetic

Tropical geometry is algebraic geometry over the tropical semiring

$$\overline{\mathbb{R}} = (\mathbb{R} \cup \{\infty\}, \oplus, \odot)$$

Addition and multiplication:

$$x \oplus y = \text{minimum of } x \text{ and } y$$

 $x \odot y = x + y$

- $3 \odot 4 = 7$ and $3 \oplus 4 = 3$
- $3 \odot (4 \oplus 8) = ?$

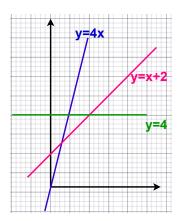
$$\infty \oplus x = x$$
 ? $\odot x = x$ and $2 \oplus x = 8$

ullet is a semiring: commutative, associative with additive and multiplicative identities.

Tropical polynomials

A tropical polynomial is a **piecewise linear function** with integer slopes, and a finite number of linear pieces.

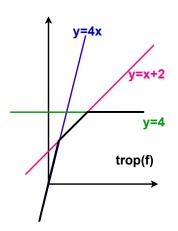
$$f(x) = x^4 \oplus 2_{\odot}x \oplus 4 = \min\{4x, 2+x, 4\}$$



Tropical polynomials

A tropical polynomial is a **piecewise linear function** with integer slopes, and a finite number of linear pieces.

$$f(x) = x^4 \oplus 2_{\odot}x \oplus 4 = \min\{4x, 2+x, 4\}$$

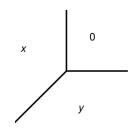


Fatemeh Mohammadi Tropical Geometry January 15, 2021 10/24

Tropical hypersurfaces

• The tropical hypersurface of $f \in \overline{\mathbb{R}}[x_1, \dots, x_n]$ is $V(f) = \{ \mathbf{w} \in \mathbb{R}^n : f(\mathbf{w}) = \infty \text{ or the min in } f(\mathbf{w}) \text{ is achieved at least twice} \}.$

 $\bullet \ f = x \oplus y \oplus 0 = \min\{x, y, 0\}$

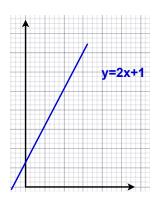


$$x = y < 0, \quad x = 0 < y, \quad y = 0 < x$$

Also, V(f) contains $(0, \infty)$ and $(\infty, 0)$

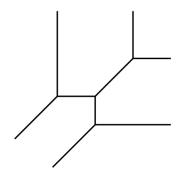
Tropical hypersurfaces

- Draw the tropical hypersurface $V(3_{\odot}x^3 + 2_{\odot}x_{\odot}y)$.
- When $min{3 + 3x, 2 + x + y}$ is attained twice?
- This is the case iff $3 + 3x = 2 + x + y \iff y = 2x + 1$.



Tropical hypersurfaces and dual subdivisions

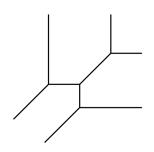
$$\bullet \ f = 1 \oplus (0 \circ x) \oplus (0 \circ y) \oplus (0 \circ xy) \oplus (1 \circ x^2) \oplus (1 \circ y^2)$$

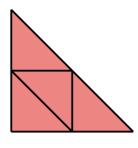


• V(f) has 4 vertices, 9 edges and 6 connected cells in $\mathbb{R}^2 \setminus V(f)$

Tropical hypersurfaces and dual subdivisions

$$\bullet \ f = 1 \oplus (0 \odot x) \oplus (0 \odot y) \oplus (0 \odot xy) \oplus (1 \odot x^2) \oplus (1 \odot y^2)$$

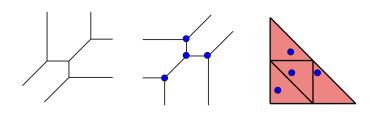




• V(f) has 4 vertices, 9 edges and 6 connected cells in $\mathbb{R}^2 \setminus V(f)$

Tropical hypersurfaces and dual subdivisions

$$\bullet \ f = 1 \oplus (0 \circ x) \oplus (0 \circ y) \oplus (0 \circ xy) \oplus (1 \circ x^2) \oplus (1 \circ y^2)$$



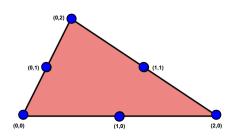
- V(f) has 4 vertices, 9 edges and 6 connected cells in $\mathbb{R}^2 \setminus V(f)$
- ullet The dual subdivision of 2Δ encodes the combinatorial structure of V(f)
- {vertices of V(f)} \iff {maximal cells of 2Δ }
- {edges of V(f)} \iff {edges of 2Δ }
- {connected components of $\mathbb{R}^2 \setminus V(f)$ } \iff {vertices of 2Δ }

Fatemeh Mohammadi Tropical Geometry January 15, 2021

13/24

Newton polytope

- $\bullet \ f = \bigoplus a_u \circ x^u = \bigoplus a_u \circ x^{u_1} \circ \cdots \circ x^{u_n} = \min\{a_u + u_1x_1 + \cdots + u_nx_n\}$
- $supp(f) := \{exponents \ u \text{ for which } a_u \neq \infty\}$
- Newton polytope of f := The convex hull of supp(f).



• Example: $f = 1 \oplus x \oplus y \oplus xy \oplus x^2 \oplus y^2$

14/24

Lifted Newton polytope

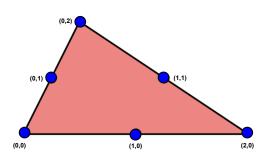
- $\bullet \ f = \oplus a_u \circ x^u = \oplus a_u \circ x^{u_1} \circ \cdots \circ x^{u_n} = \min\{a_u + u_1 x_1 + \cdots + u_n x_n\}$
- The lifted Newton polytope is the convex hull of

$$\{(u, a_u): u \in \text{supp}(f)\} \subset \mathbb{Z}^n \times \mathbb{R}$$

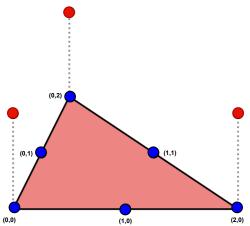
- Project the lower facets into \mathbb{R}^n (facets visible from below).
- This provides a regular subdivision of the Newton polytope of f.

Fatemeh Mohammadi Tropical Geometry January 15, 2021 15/24

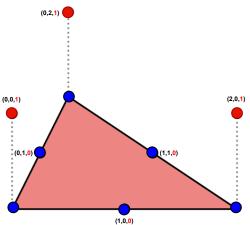
- $\bullet \ f = 1 \oplus (0 \circ x) \oplus (0 \circ y) \oplus (0 \circ xy) \oplus (1 \circ x^2) \oplus (1 \circ y^2)$
- Goal: To show that the dual subdivision of the lifted Newton polytope of f encodes the combinatorial structure of V(f).



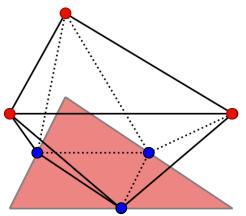
- $\bullet \ f = 1 \oplus (0 \odot x) \oplus (0 \odot y) \oplus (0 \odot xy) \oplus (1 \odot x^2) \oplus (1 \odot y^2)$
- Goal: To show that the dual subdivision of the lifted Newton polytope of f encodes the combinatorial structure of V(f).



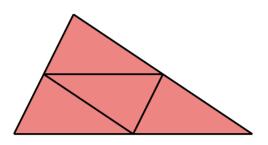
- $\bullet \ f = 1 \oplus (0 \odot x) \oplus (0 \odot y) \oplus (0 \odot xy) \oplus (1 \odot x^2) \oplus (1 \odot y^2)$
- Goal: To show that the dual subdivision of the lifted Newton polytope of f encodes the combinatorial structure of V(f).



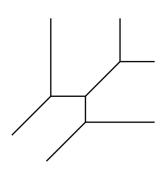
- $\bullet \ f = 1 \oplus (0 \circ x) \oplus (0 \circ y) \oplus (0 \circ xy) \oplus (1 \circ x^2) \oplus (1 \circ y^2)$
- Goal: To show that the dual subdivision of the lifted Newton polytope of f encodes the combinatorial structure of V(f).

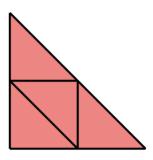


- $\bullet \ f = 1 \oplus (0 \circ x) \oplus (0 \circ y) \oplus (0 \circ xy) \oplus (1 \circ x^2) \oplus (1 \circ y^2)$
- Goal: To show that the dual subdivision of the lifted Newton polytope of f encodes the combinatorial structure of V(f).



- $\bullet \ f = 1 \oplus (0 \odot x) \oplus (0 \odot y) \oplus (0 \odot xy) \oplus (1 \odot x^2) \oplus (1 \odot y^2)$
- Goal: To show that the dual subdivision of the lifted Newton polytope of f encodes the combinatorial structure of V(f).



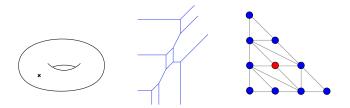


Genus formula for planar curves

Classical version

The genus of a smooth planar curve of degree d is equal to $g = \frac{(d-1)(d-2)}{2}$.

• Let V(f) be a degree 3 curve with genus 1



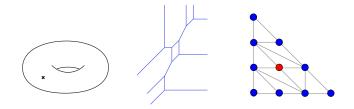
Combinatorial analogue

What is the genus of a tropical planar curve?

Genus formula for tropical planar curves

• Let $f \in \overline{\mathbb{R}}[x, y]$ be a tropical polynomial of degree d s.t.

Newton polytope of $f = d\Delta := \text{convex hull}\{(0,0), (d,0), (0,d)\}.$



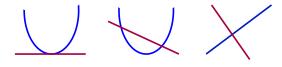
Tropical version

The genus of V(f) is the number of vertices of the dual subdivision in the interior of $d\Delta$. If each integer point of $d\Delta \cap \mathbb{Z}^2$ occurs as a vertex in the subdivision, then we obtain the classical formula.

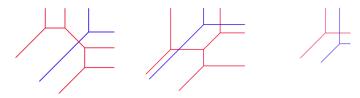
Bézout's theorem

Classical version

Two algebraic planar curves of degree d and d' intersect in dd' points.

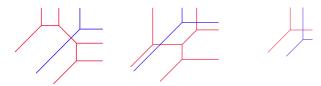


How about the tropical version?

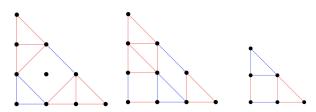


Fatemeh Mohammadi Tropical Geometry January 15, 2021 19/24

- Goal: to provide a simple model of algebraic geometry.
- Why some of the intersection points are counted twice?

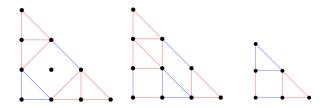


- Generic case: the curves intersect in finitely many points.
- The union of the curves of f and g is the curve of trop(fg).



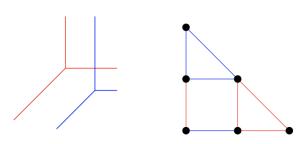
Fatemeh Mohammadi Tropical Geometry January 15, 2021 20/24

- Each intersection point is contained in an edge of both curves.
- The polygon dual to such a vertex of curve is a parallelogram.

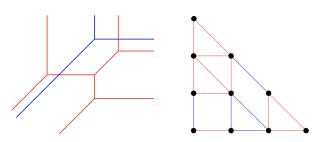


• **Observation:** The area of the parallelogram dual to an intersection point is related to its multiplicity.

- Let V(f) and V(g) be two tropical curves of degree d and d', intersecting in a finite number of points and away from the vertices of the two curves.
- The **tropical multiplicity** of an intersection point p is the area of the parallelogram dual to p in the dual subdivision of $V(f) \cup V(g)$.



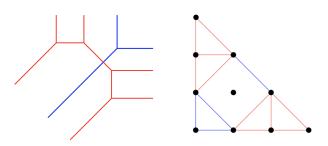
- Let V(f) and V(g) be two tropical curves of degree d and d', intersecting in a finite number of points and away from the vertices of the two curves.
- The **tropical multiplicity** of an intersection point p is the area of the parallelogram dual to p in the dual subdivision of $V(f) \cup V(g)$.



Tropical Bézout's theorem (Sturmfels)

The sum of the tropical multiplicities of all intersection points of V(f) and V(g) is equal to dd'.

- Let V(f) and V(g) be two tropical curves of degree d and d', intersecting in a finite number of points and away from the vertices of the two curves.
- The **tropical multiplicity** of an intersection point p is the area of the parallelogram dual to p in the dual subdivision of $V(f) \cup V(g)$.



Tropical Bézout's theorem (Sturmfels)

The sum of the tropical multiplicities of all intersection points of V(f) and V(g) is equal to dd'.

Proof of tropical Bézout's theorem

Tropical Bézout's theorem (Sturmfels)

Let V(f) and V(g) be two tropical curves of degree d and d', intersecting in a finite number of points. The sum of the tropical multiplicities of all intersection points of V(f) and V(g) is equal to dd'.

- The curve $V(f) \cup V(g)$ is of degree d+d'. Hence, the sum of the areas of all polygons is equal to the area of $(d+d')\Delta$ that is $(d+d')^2/2$.
- There are 3 types of polygons in the dual subdivision of $V(f) \cup V(g)$:
 - (1) Red polygons: Those which are dual to a vertex of V(f). The sum of their areas is equal to the area of $d\Delta$ that is $d^2/2$.
 - (2) Blue polygons: Those which are dual to a vertex of V(g). The sum of their areas is equal to the area of $d'\Delta$ that is $d'^2/2$.
 - (3) bicolored polygons: Those dual to an intersection point. Their areas sum up to

$$(d+d')^2/2-d^2/2-d'^2/2=dd'.$$

Main references

A bit of tropical geometry

Erwan Brugallé and Kristin Shaw

A First Expedition to tropical geometry

Book by Johannes Rau

Introduction to Tropical geometry

Book by Bernd Sturmfels and Diane Maclagan

Essentials of tropical combinatorics

Book by Michael Joswig