Rigidity of Frameworks - Lecture 3 The rank function of the \mathcal{C}_2^1 -cofactor matroid

Bill Jackson School of Mathematical Sciences Queen Mary, University of London England

Winter School on Geometric Constraint Systems, Fields Institute, 11-22 January, 2021

Matroids

A **matroid** \mathcal{M} is a pair (E,\mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- \bullet $\emptyset \in \mathcal{I}$;
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A \subseteq E$ is **independent** if $A \in \mathcal{I}$ and A is **dependent** if $A \notin \mathcal{I}$.

A is a **circuit** if it is a minimal dependent set.

A set $B \subset A$ is a **base of** A if B is a maximal independent subset of A. All bases of A have the same cardinality r(A) referred to as the the **rank** of A. We refer to the bases of E as **bases of** M and to the rank of E as the **rank of** M, and denote it by r(M).

The **closure of** A, cl(A), is the (unique) maximal superset of A which has the same rank as A.

Matroids

A **matroid** \mathcal{M} is a pair (E,\mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- \bullet $\emptyset \in \mathcal{I}$;
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A \subseteq E$ is **independent** if $A \in \mathcal{I}$ and A is **dependent** if $A \notin \mathcal{I}$.

A is a **circuit** if it is a minimal dependent set.

A set $B \subset A$ is a **base of** A if B is a maximal independent subset of A. All bases of A have the same cardinality r(A) referred to as the the **rank** of A. We refer to the bases of E as **bases of** M and to the rank of E as the **rank of** M, and denote it by r(M).

The **closure of** A, cl(A), is the (unique) maximal superset of A which has the same rank as A.

A set $F \subseteq E$ is **spanning** if $r(F) = r(\mathcal{M})$. So F is spanning if and only if cl(F) = E, and all bases of \mathcal{M} are spanning.

A partial order for matroids

Given two matroids $\mathcal{M}_1=(E,\mathcal{I}_1)$ and $\mathcal{M}_2=(E,\mathcal{I}_2)$ with the same groundset, we say $\mathcal{M}_1 \preceq M_2$ if $\mathcal{I}_1 \subseteq \mathcal{I}_2$. Equivalently $\mathcal{M}_1 \preceq M_2$ if:

- ullet every base of \mathcal{M}_1 is independent in \mathcal{M}_2 ; or
- $r_1(A) \leq r_2(A)$ for all $A \subseteq E$.

The relation ' \leq ' defines a partial order, the **weak order**, on any set of matroids with the same groundset E.

The **truncation** of a matroid $\mathcal{M}_1 = (E, \mathcal{I}_1)$ of rank k is the matroid $\mathcal{M}_0 = (E, \mathcal{I}_0)$ of rank k-1, where $\mathcal{I}_0 = \{I \in \mathcal{I}_1 : |I| \leq k-1\}.$

The **truncation** of a matroid $\mathcal{M}_1 = (E, \mathcal{I}_1)$ of rank k is the matroid $\mathcal{M}_0 = (E, \mathcal{I}_0)$ of rank k-1, where $\mathcal{I}_0 = \{I \in \mathcal{I}_1 : |I| \leq k-1\}$.

Crapo (1970) defined **matroid erection** as the 'inverse operation' to truncation. So M_1 is an **erection** of M_0 if M_0 is the truncation of M_1 . (For technical reasons we also consider M_0 to be a **trivial erection** of itself.) Note that, although every matroid has a unique truncation, matroids may have several, or no, non-trivial erections.

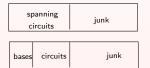
The **truncation** of a matroid $\mathcal{M}_1 = (E, \mathcal{I}_1)$ of rank k is the matroid $\mathcal{M}_0 = (E, \mathcal{I}_0)$ of rank k-1, where $\mathcal{I}_0 = \{I \in \mathcal{I}_1 : |I| \leq k-1\}$.

Crapo (1970) defined **matroid erection** as the 'inverse operation' to truncation. So M_1 is an **erection** of M_0 if M_0 is the truncation of M_1 . (For technical reasons we also consider M_0 to be a **trivial erection** of itself.) Note that, although every matroid has a unique truncation, matroids may have several, or no, non-trivial erections.

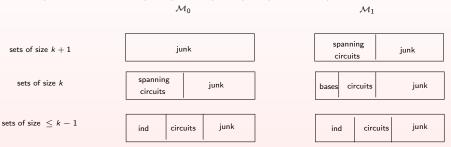
The set of all erections of a matroid M_0 forms a **poset** under the weak order of matroids. Crapo showed that it is actually a **lattice**: it is clear that the trivial erection of M_0 is the unique minimal element in this poset; he showed that there also exists a unique maximal element and called this the **free erection of** \mathcal{M}_0 .



Suppose \mathcal{M}_1 is an erection of \mathcal{M}_0 (so \mathcal{M}_0 is the truncation of \mathcal{M}_1) and we have $r(\mathcal{M}_1) = k$ (so $r(\mathcal{M}_0) = k - 1$).

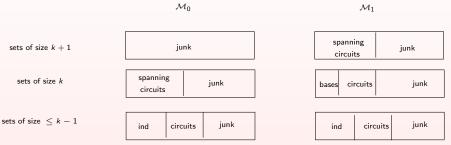


Suppose \mathcal{M}_1 is an erection of \mathcal{M}_0 (so \mathcal{M}_0 is the truncation of \mathcal{M}_1) and we have $r(\mathcal{M}_1) = k$ (so $r(\mathcal{M}_0) = k - 1$).



 \mathcal{M}_1 becomes the free erection of \mathcal{M}_0 when we choose the set of circuits of \mathcal{M}_1 of size k to be the set of all spanning circuits of \mathcal{M}_0 which are implied by its non-spanning circuits.

Suppose \mathcal{M}_1 is an erection of \mathcal{M}_0 (so \mathcal{M}_0 is the truncation of \mathcal{M}_1) and we have $r(\mathcal{M}_1) = k$ (so $r(\mathcal{M}_0) = k - 1$).



 \mathcal{M}_1 becomes the free erection of \mathcal{M}_0 when we choose the set of circuits of \mathcal{M}_1 of size k to be the set of all spanning circuits of \mathcal{M}_0 which are implied by its non-spanning circuits.

 \mathcal{M}_0 has no non-trivial erection if every spanning circuit of \mathcal{M}_0 is implied by its set of non-spanning circuits.

A partial elevation of a matroid \mathcal{M}_0 is any matroid \mathcal{M} which can be constructed from \mathcal{M}_0 by taking a sequence of erections. A **(full) elevation** of \mathcal{M}_0 is a partial elevation \mathcal{M} which has no non-trivial erection.

A partial elevation of a matroid \mathcal{M}_0 is any matroid \mathcal{M} which can be constructed from \mathcal{M}_0 by taking a sequence of erections. A **(full) elevation** of \mathcal{M}_0 is a partial elevation \mathcal{M} which has no non-trivial erection.

The **free elevation** of \mathcal{M}_0 is the matroid we get from \mathcal{M}_0 by recursively constructing a sequence of non-trivial free erections until we arrive at a matroid which has no non-trivial erection.

A partial elevation of a matroid \mathcal{M}_0 is any matroid \mathcal{M} which can be constructed from \mathcal{M}_0 by taking a sequence of erections. A **(full) elevation** of \mathcal{M}_0 is a partial elevation \mathcal{M} which has no non-trivial erection.

The **free elevation** of \mathcal{M}_0 is the matroid we get from \mathcal{M}_0 by recursively constructing a sequence of non-trivial free erections until we arrive at a matroid which has no non-trivial erection.

The set of all partial elevations of \mathcal{M}_0 forms a poset $P(\mathcal{M}_0)$ under the weak order and \mathcal{M}_0 is its unique minimal element. Every maximal element of $P(\mathcal{M}_0)$ will have no non-trivial erection so will be a (full) elevation of \mathcal{M}_0 .

A partial elevation of a matroid \mathcal{M}_0 is any matroid \mathcal{M} which can be constructed from \mathcal{M}_0 by taking a sequence of erections. A **(full) elevation** of \mathcal{M}_0 is a partial elevation \mathcal{M} which has no non-trivial erection.

The **free elevation** of \mathcal{M}_0 is the matroid we get from \mathcal{M}_0 by recursively constructing a sequence of non-trivial free erections until we arrive at a matroid which has no non-trivial erection.

The set of all partial elevations of \mathcal{M}_0 forms a poset $P(\mathcal{M}_0)$ under the weak order and \mathcal{M}_0 is its unique minimal element. Every maximal element of $P(\mathcal{M}_0)$ will have no non-trivial erection so will be a (full) elevation of \mathcal{M}_0 .

Given Crapo's result that the poset of all erections of \mathcal{M}_0 is a lattice, it is tempting to conjecture that $P(\mathcal{M}_0)$ will also be a lattice and that the free elevation of \mathcal{M}_0 will be its unique maximal element.



A partial elevation of a matroid \mathcal{M}_0 is any matroid \mathcal{M} which can be constructed from \mathcal{M}_0 by taking a sequence of erections. A **(full) elevation** of \mathcal{M}_0 is a partial elevation \mathcal{M} which has no non-trivial erection.

The **free elevation** of \mathcal{M}_0 is the matroid we get from \mathcal{M}_0 by recursively constructing a sequence of non-trivial free erections until we arrive at a matroid which has no non-trivial erection.

The set of all partial elevations of \mathcal{M}_0 forms a poset $P(\mathcal{M}_0)$ under the weak order and \mathcal{M}_0 is its unique minimal element. Every maximal element of $P(\mathcal{M}_0)$ will have no non-trivial erection so will be a (full) elevation of \mathcal{M}_0 .

Given Crapo's result that the poset of all erections of \mathcal{M}_0 is a lattice, it is tempting to conjecture that $P(\mathcal{M}_0)$ will also be a lattice and that the free elevation of \mathcal{M}_0 will be its unique maximal element. THIS IS FALSE - Brylawski (1986) gives a counterexample.

Free elevations

Lemma [Clinch, BJ, Tanigawa, 2019+]

Let \mathcal{M}_0 be a matroid on E and \mathcal{M} be its free elevation. Then \mathcal{M} is a maximal element in the poset of all partial elevations of \mathcal{M}_0 .

Proof Let \mathcal{M}' be a partial elevation of \mathcal{M}_0 . We show $\mathcal{M}' \not\succ \mathcal{M}$. Let $\mathcal{M} = \mathcal{M}_t, \mathcal{M}_{t-1}, \ldots, \mathcal{M}_0$ and $\mathcal{M}' = \mathcal{M}'_s, \mathcal{M}'_{s-1}, \ldots, \mathcal{M}_0$ be the sequences of truncations which construct \mathcal{M}_0 from \mathcal{M} and \mathcal{M}' , respectively.

Free elevations

Lemma [Clinch, BJ, Tanigawa, 2019+]

Let \mathcal{M}_0 be a matroid on E and \mathcal{M} be its free elevation. Then \mathcal{M} is a maximal element in the poset of all partial elevations of \mathcal{M}_0 .

Proof Let \mathcal{M}' be a partial elevation of \mathcal{M}_0 . We show $\mathcal{M}' \not\succ \mathcal{M}$. Let $\mathcal{M} = \mathcal{M}_t, \mathcal{M}_{t-1}, \dots, \mathcal{M}_0$ and $\mathcal{M}' = \mathcal{M}'_s, \mathcal{M}'_{s-1}, \dots, \mathcal{M}_0$ be the sequences of truncations which construct \mathcal{M}_0 from \mathcal{M} and \mathcal{M}' , respectively.

Let i be the largest integer such that $\mathcal{M}_i = \mathcal{M}'_i$. Then \mathcal{M}_{i+1} and \mathcal{M}'_{i+1} are both erections of \mathcal{M}_i . Since \mathcal{M}_{i+1} is the free erection of \mathcal{M}_i , Crapo's result gives $\mathcal{M}'_{i+1} \prec \mathcal{M}_{i+1}$. Hence there exists $F \subseteq E$ such that F is dependent in \mathcal{M}'_{i+1} and independent in \mathcal{M}_{i+1} .

Free elevations

Lemma [Clinch, BJ, Tanigawa, 2019+]

Let \mathcal{M}_0 be a matroid on E and \mathcal{M} be its free elevation. Then \mathcal{M} is a maximal element in the poset of all partial elevations of \mathcal{M}_0 .

Proof Let \mathcal{M}' be a partial elevation of \mathcal{M}_0 . We show $\mathcal{M}' \not\succ \mathcal{M}$. Let $\mathcal{M} = \mathcal{M}_t, \mathcal{M}_{t-1}, \dots, \mathcal{M}_0$ and $\mathcal{M}' = \mathcal{M}'_s, \mathcal{M}'_{s-1}, \dots, \mathcal{M}_0$ be the sequences of truncations which construct \mathcal{M}_0 from \mathcal{M} and \mathcal{M}' , respectively.

Let i be the largest integer such that $\mathcal{M}_i = \mathcal{M}'_i$. Then \mathcal{M}_{i+1} and \mathcal{M}'_{i+1} are both erections of \mathcal{M}_i . Since \mathcal{M}_{i+1} is the free erection of \mathcal{M}_i , Crapo's result gives $\mathcal{M}'_{i+1} \prec \mathcal{M}_{i+1}$. Hence there exists $F \subseteq E$ such that F is dependent in \mathcal{M}'_{i+1} and independent in \mathcal{M}_{i+1} .

Then F is a spanning circuit of \mathcal{M}_i which becomes a base of \mathcal{M}_{i+1} and a non-spanning circuit of \mathcal{M}'_{i+1} . This implies that F is a circuit in \mathcal{M}'_s and is independent in \mathcal{M}_t . Hence $\mathcal{M}' = \mathcal{M}'_{\varepsilon} \not\succ \mathcal{M}_{t} = \mathcal{M}.$

Implication for \mathcal{C}_1^2

Lemma [Clinch, BJ, Tanigawa, 2019+]

Let \mathcal{M}_0 be a matroid on E and \mathcal{M} be its free elevation. Then \mathcal{M} is a maximal element in the poset of all partial elevations of \mathcal{M}_0 .

Corollary [Clinch, BJ, Tanigawa, 2019+]

Let \mathcal{M}_0 be the rank 10 matroid on $E(K_n)$ in which the set of non-spanning circuits is the set of all copies of K_5 in K_n . Then $\mathcal{C}_1^2(K_n)$ is the free elevation of M_0 .

Implication for \mathcal{C}_1^2

Lemma [Clinch, BJ, Tanigawa, 2019+]

Let \mathcal{M}_0 be a matroid on E and \mathcal{M} be its free elevation. Then \mathcal{M} is a maximal element in the poset of all partial elevations of \mathcal{M}_0 .

Corollary [Clinch, BJ, Tanigawa, 2019+]

Let \mathcal{M}_0 be the rank 10 matroid on $E(K_n)$ in which the set of non-spanning circuits is the set of all copies of K_5 in K_n . Then $\mathcal{C}_1^2(K_n)$ is the free elevation of M_0 .

Proof We have seen that $\mathcal{C}_1^2(K_n)$ is the unique maximal element in the poset of all abstract rigidity matroids on $E(K_n)$. The same proof gives the stronger result that $\mathcal{C}_1^2(K_n)$ is the unique maximal element in the poset of all partial elevations of \mathcal{M}_0 . Since the lemma implies that the free elevation of \mathcal{M}_0 is a maximal element in this poset, it must be equal to $\mathcal{C}_1^2(K_n)$.

Let \mathcal{M} be a matroid. A sequence of circuits (C_1, C_2, \dots, C_t) of M is **proper** if $C_i \not\subseteq \bigcup_{i=1}^{i-1} C_j$ for all $2 \le i \le t$.

Let \mathcal{M} be a matroid. A sequence of circuits (C_1, C_2, \dots, C_t) of M is **proper** if $C_i \not\subseteq \bigcup_{j=1}^{i-1} C_j$ for all $2 \le i \le t$.

Lemma [Clinch, BJ, Tanigawa, 2019+]

Let (C_1,C_2,\ldots,C_m) be a proper sequence of circuits in $\mathcal{M}.$ Then

$$r(\bigcup_{i=1}^m C_i) \leq |\bigcup_{i=1}^m C_i| - m.$$

Proof We use induction on m. The lemma holds when m=1 since C_1 is a circuit so $r(C_1)=|C_1|-1$. When $m\geq 2$,

$$r(\bigcup_{i=1}^{m} C_{i}) \leq r(\bigcup_{i=1}^{m-1} C_{i}) + r(C_{m} \setminus \bigcup_{i=1}^{m-1} C_{i})$$

$$\leq |\bigcup_{i=1}^{m-1} C_{i}| - m + 1 + |C_{m} \setminus \bigcup_{i=1}^{m-1} C_{i}|$$

$$\leq |\bigcup_{i=1}^{m} C_{i}| - m.$$

since r is submodular and (C_1, C_2, \ldots, C_m) is proper.

Lemma [Clinch, BJ, Tanigawa, 2019+]

Let (C_1, C_2, \dots, C_m) be a proper sequence of circuits in $\mathcal{M}.$ Then

$$r(\bigcup_{i=1}^m C_i) \leq |\bigcup_{i=1}^m C_i| - m.$$

Corollary [Clinch, BJ, Tanigawa, 2019+]

Suppose $\mathcal{M} = (E, r)$ is a matroid and $F \subseteq E$. Then

$$r(F) \le \min\{|F_0| + |\bigcup_{i=1}^m C_i| - m\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper sequences of circuits (C_1, C_2, \dots, C_m) which cover $F \setminus F_0$.

Lemma [Clinch, BJ, Tanigawa, 2019+]

Let (C_1,C_2,\ldots,C_m) be a proper sequence of circuits in $\mathcal{M}.$ Then

$$r(\bigcup_{i=1}^m C_i) \leq |\bigcup_{i=1}^m C_i| - m.$$

Corollary [Clinch, BJ, Tanigawa, 2019+]

Suppose $\mathcal{M} = (E, r)$ is a matroid and $F \subseteq E$. Then

$$r(F) \le \min\{|F_0| + |\bigcup_{i=1}^m C_i| - m\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper sequences of circuits (C_1, C_2, \dots, C_m) which cover $F \setminus F_0$.

Proof This follows using $r(F) \le r(F_0) + r(F \setminus F_0) \le |F_0| + r(F \setminus F_0)$ and applying the lemma to bound $r(F \setminus F_0)$.

A bound on the rank function of a partial elevation

Corollary [Clinch, BJ, Tanigawa, 2019+]

Suppose $\mathcal{M} = (E, r)$ is a matroid and $F \subseteq E$. Then

$$r(F) \le \min\{|F_0| + |\bigcup_{i=1}^m C_i| - m\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper sequences of circuits (C_1, C_2, \ldots, C_m) which cover $F \setminus F_0$.

Theorem [Clinch, BJ, Tanigawa, 2019+]

Suppose \mathcal{M}_0 is a matroid on E, $\mathcal{M}=(E,r)$ is a partial elevation of M_0 and $F\subseteq E$. Then

$$r(F) \leq \min\{|F_0| + |\bigcup_{i=1}^m C_i| - m\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper sequences of non-spanning circuits (C_1, C_2, \ldots, C_m) of M_0 which cover $F \setminus F_0$.

A bound on the rank function of a partial elevation

Corollary [Clinch, BJ, Tanigawa, 2019+]

Suppose $\mathcal{M} = (E, r)$ is a matroid and $F \subseteq E$. Then

$$r(F) \le \min\{|F_0| + |\bigcup_{i=1}^m C_i| - m\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper sequences of circuits (C_1, C_2, \ldots, C_m) which cover $F \setminus F_0$.

Theorem [Clinch, BJ, Tanigawa, 2019+]

Suppose \mathcal{M}_0 is a matroid on E, $\mathcal{M}=(E,r)$ is a partial elevation of M_0 and $F\subseteq E$. Then

$$r(F) \leq \min\{|F_0| + |\bigcup_{i=1}^m C_i| - m\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper sequences of non-spanning circuits (C_1, C_2, \ldots, C_m) of M_0 which cover $F \setminus F_0$.

Proof This follows from the corollary since every non-spanning circuit of M_0 is a circuit of M.

The rank function of the free elevation?

Theorem [Clinch, BJ, Tanigawa, 2019+]

Suppose \mathcal{M}_0 is a matroid on E. For $F\subseteq E$ let

$$\rho(F) = \min\{|F_0| + |\bigcup_{i=1}^m C_i| - m\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper sequences of non-spanning circuits (C_1, C_2, \ldots, C_m) of \mathcal{M}_0 which cover $F \setminus F_0$. Suppose ρ is submodular on 2^E . Then the free elevation of \mathcal{M}_0 is the unique maximal element in the poset of all partial elevations of \mathcal{M}_0 and its rank function is ρ .

The rank function of the free elevation?

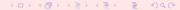
Theorem [Clinch, BJ, Tanigawa, 2019+]

Suppose \mathcal{M}_0 is a matroid on E. For $F \subseteq E$ let

$$\rho(F) = \min\{|F_0| + |\bigcup_{i=1}^m C_i| - m\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper sequences of non-spanning circuits (C_1, C_2, \ldots, C_m) of \mathcal{M}_0 which cover $F \setminus F_0$. Suppose ρ is submodular on 2^E . Then the free elevation of \mathcal{M}_0 is the unique maximal element in the poset of all partial elevations of \mathcal{M}_0 and its rank function is ρ .

Question For which matroids \mathcal{M}_0 is ρ a submodular function?



The rank function of the free elevation?

Theorem [Clinch, BJ, Tanigawa, 2019+]

Suppose \mathcal{M}_0 is a matroid on E. For $F\subseteq E$ let

$$\rho(F) = \min\{|F_0| + |\bigcup_{i=1}^m C_i| - m\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper sequences of non-spanning circuits (C_1, C_2, \ldots, C_m) of \mathcal{M}_0 which cover $F \setminus F_0$. Suppose ρ is submodular on 2^E . Then the free elevation of \mathcal{M}_0 is the unique maximal element in the poset of all partial elevations of \mathcal{M}_0 and its rank function is ρ .

Question For which matroids \mathcal{M}_0 is ρ a submodular function? **Note** If we can show that ρ is submodular when \mathcal{M}_0 is the rank $\binom{d+2}{2}$ matroid on $E(K_n)$ in which the set of non-spanning circuits is the set of all copies of K_{d+2} in K_n then this will verify part (a) of Graver's conjecture (that there is a unique maximal abstract d-rigidity matroid).

A characterisation of the rank function of $C_2^1(K_n)$

A K_5 -sequence in K_n is a sequence of subgraphs $(K_5^1, K_5^2, \ldots, K_5^m)$ each of which is isomorphic to K_5 . It is **proper** if $K_5^i \not\subseteq \bigcup_{i=1}^{i-1} K_5^j$ for all $2 \le i \le t$.

A characterisation of the rank function of $C_2^1(K_n)$

A K_5 -sequence in K_n is a sequence of subgraphs $(K_5^1, K_5^2, \ldots, K_5^m)$ each of which is isomorphic to K_5 . It is **proper** if $K_5^i \not\subseteq \bigcup_{j=1}^{i-1} K_5^j$ for all $2 \le i \le t$.

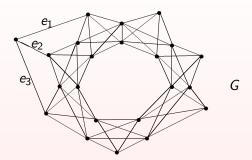
Theorem [Clinch,Tanigawa, BJ, 2019+]

Let $F \subseteq E(K_n)$. Then the rank of F in $\mathcal{C}_1^2(K_n)$ is

$$r(F) = \min\{|F_0| + |\bigcup_{i=1}^t E(K_5^i)| - m\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper K_5 -sequences $(K_5^1, K_5^2, \dots, K_5^m)$ in K_n which cover $F \setminus F_0$.

Example



Let F = E(G), $F_0 = \{e_1, e_2.e_3\}$ and $(K_5^1, K_5^2, \dots, K_5^7)$ be the 'obvious' proper K_5 -sequence which covers $F \setminus F_0$. We have

$$r(F) \le |F_0| + \left| \bigcup_{i=1}^7 E(K_5^i) \right| - 7 = 59 < 60 = |F|$$

so F is not \mathcal{C}_2^1 -independent.

Shellable covers

Let \mathcal{X} be a family of subsets of $V(K_n)$ of size at least five. A **hinge** of \mathcal{X} is a pair of vertices $\{x,y\}$ with $X_i \cap X_j = \{x,y\}$ for some $i \neq j$. Let $H(\mathcal{X})$ be the set of all hinges of \mathcal{X} . The **degree** $\deg_{\mathcal{X}}(h)$ of a hinge $h = \{x,y\}$ of \mathcal{X} is the number of sets in \mathcal{X} which contain h. Following Dress (1983), we say \mathcal{X} is **2-thin** if $|X_i \cap X_j| \leq 2$ for all distinct $X_i, X_j \in \mathcal{X}$ and define the **value** of \mathcal{X} to be

$$\operatorname{val}(\mathcal{X}) = \sum_{X \in \mathcal{X}} (3|X| - 6) - \sum_{h \in H(\mathcal{X})} (\deg_{\mathcal{X}}(h) - 1).$$

Shellable covers

Let \mathcal{X} be a family of subsets of $V(K_n)$ of size at least five. A **hinge** of \mathcal{X} is a pair of vertices $\{x,y\}$ with $X_i \cap X_j = \{x,y\}$ for some $i \neq j$. Let $H(\mathcal{X})$ be the set of all hinges of \mathcal{X} . The **degree** $\deg_{\mathcal{X}}(h)$ of a hinge $h = \{x,y\}$ of \mathcal{X} is the number of sets in \mathcal{X} which contain h. Following Dress (1983), we say \mathcal{X} is **2-thin** if $|X_i \cap X_j| \leq 2$ for all distinct $X_i, X_j \in \mathcal{X}$ and define the **value** of \mathcal{X} to be

$$\operatorname{val}(\mathcal{X}) = \sum_{X \in \mathcal{X}} (3|X| - 6) - \sum_{h \in H(\mathcal{X})} (\deg_{\mathcal{X}}(h) - 1).$$

The family \mathcal{X} is k-shellable if its elements can be ordered as a sequence (X_1, X_2, \ldots, X_m) so that $|X_i \cap \bigcup_{j=1}^{i-1} X_j| \leq k$ for all $2 \leq i \leq m$. The concept of a k-shellable cover is related to that of an 'iterated cover' (Jackson and Jordán, 2006) and a 'generalized partial k-tree (Chen and Sitharam, 2014).

A second characterisation of independence in $C_2^1(K_n)$

Theorem [Clinch, Tanigawa, BJ, 2019+]

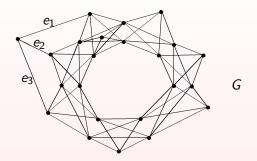
Let $F \subseteq E(K_n)$. Then the rank of F in $C_1^2(K_n)$ is given by

$$r(F) = \min\{|F_0| + \operatorname{val}(\mathcal{X})\}\$$

where the minimum is taken over all $F_0 \subseteq F$ and all 2-thin, 4-shellable covers of $F \setminus F_0$. Furthermore, we can construct a cover which minimises the RHS by choosing \mathcal{X} to be the set of all maximal complete graphs of size at least 5 in cl(F) and taking F_0 to be the set of all edges in F which are not covered by \mathcal{X} .

This result confirms that conjectured expressions for the rank function of $\mathcal{R}_3(K_n)$ due to Jackson and Jordán (2006), and Dress (1987) are valid for $\mathcal{C}_2^1(K_n)$.

Example



Let F = E(G), $F_{=}\{e_1, e_2.e_3\}$ and $\{X_1, X_2, \ldots, X_7\}$ be the 'obvious' 2-thin, 4-shellable cover of $F \setminus F_0$. We have $val(\mathcal{X}) = 6 \times 9 + 12 - 7 = 59$ and

$$r(F) \le |F_0| + \text{val}(\mathcal{X}) = 3 + 59 < 63 = |F|$$

so F is not \mathcal{C}_2^1 -independent.

Application

Theorem [Clinch, BJ, Tanigawa 2019+]

Every 12-connected graph is C_2^1 -rigid.

Lovász and Yemini (1982) conjectured that the analogous result holds for \mathcal{R}_3 -rigidity. Examples constructed by Lovász and Yemini show that the hypothesis of 12-connectivity is best possible for both \mathcal{C}_2^1 and \mathcal{R}_3 .

Open Problems

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid (Tay and Whiteley, 1985).

Open Problems

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid (Tay and Whiteley, 1985).

Problem 2 Find a polynomial algorithm for determining the rank function of $C_{2,n}^1$.

Open Problems

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid (Tay and Whiteley, 1985).

Problem 2 Find a polynomial algorithm for determining the rank function of $C_{2,n}^1$.

Problem 3 Determine whether the following function $\rho_d: 2^{E(K_n)} \to \mathbb{Z}$ is submodular.

$$\rho_d(F) = \min \left\{ |F_0| + \left| \bigcup_{i=1}^m E(K_{d+2}^i) \right| - m \right\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper K_{d+2} -sequences $(K_{d+2}^1, K_{d+2}^2, \dots, K_{d+2}^m)$ in K_n which cover $F \setminus F_0$.

An affirmative answer would tell us that there is a unique maximal abstract d-rigidity matroid and ρ_d is its rank function.

Preprints

K. Clinch, B. Jackson and S. Tanigawa, Abstract 3-rigidity and bivariate C_2^1 -splines I: Whiteley's maximality conjecture, preprint available at https://arxiv.org/abs/1911.00205.

K. Clinch, B. Jackson and S. Tanigawa, Abstract 3-rigidity and bivariate C_2^1 -splines II: Combinatorial Characterization, preprint available at https://arxiv.org/abs/1911.00207.