Rigidity of Frameworks - Lecture 1 Bar-Joint Rigidity in \mathbb{R}^d

Bill Jackson School of Mathematical Sciences Queen Mary, University of London England

Winter School on Geometric Constraint Systems, Fields Institute, 11-22 January, 2021

Rigidity of Bar-Joint Frameworks

• A *d*-dimensional bar-joint framework is a pair (G, p), where G = (V, E) is a graph and p is a map from V to \mathbb{R}^d .

Rigidity of Bar-Joint Frameworks

- A *d*-dimensional bar-joint framework is a pair (G, p), where G = (V, E) is a graph and p is a map from V to \mathbb{R}^d .
- We consider the framework to be a straight line **realization** of G in \mathbb{R}^d in which the *length* of an edge $uv \in E$ is given by the Euclidean distance ||p(u) p(v)|| between the points p(u) and p(v).

Rigidity of Bar-Joint Frameworks

- A *d*-dimensional bar-joint framework is a pair (G, p), where G = (V, E) is a graph and p is a map from V to \mathbb{R}^d .
- We consider the framework to be a straight line **realization** of G in \mathbb{R}^d in which the *length* of an edge $uv \in E$ is given by the Euclidean distance ||p(u) p(v)|| between the points p(u) and p(v).
- It is **rigid** if every continuous motion of the vertices of (G, p) in \mathbb{R}^d , which preserves the lengths of all edges of (G, p), also preserves the distances between all pairs of vertices of (G, p).)

Example

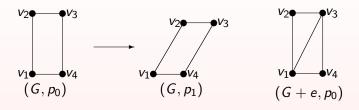


Figure: The 2-dimensional frameworks (G,p_0) and (G,p_1) are not rigid since (G,p_1) can be obtained from (G,p_0) by a continuous motion in \mathbb{R}^2 which preserves all edge lengths, but changes the distance between v_1 and v_3 . The 2-dimensional framework $(G+e,p_0)$ obtained by adding a 'brace' $e=v_1v_3$ ' to (G,p_0) is rigid. However, if we consider $(G+e,p_0)$ to be a 3-dimensional framework in which the vertices all lie in the same plane, then it will not be rigid since we can rotate the vertex v_2 about the 'hinge' v_1v_3 and change the distance between v_2 and v_4 .

Algorithmic Complexity

• A 1-dimensional framework (G, p) is rigid if and only if G is connected, but it is NP-hard to determine whether a given d-dimensional framework is rigid for any $d \ge 2$ (Abbot 2008).

Algorithmic Complexity

- A 1-dimensional framework (G, p) is rigid if and only if G is connected, but it is NP-hard to determine whether a given d-dimensional framework is rigid for any d ≥ 2 (Abbot 2008).
- This problem becomes more tractable if we restrict attention to **generic** frameworks (those for which the set of coordinates of all points p(v), $v \in V$, is algebraically independent over \mathbb{Q}). We will see that, in this case, the rigidity of (G, p) depends only on the graph G.

Algorithmic Complexity

- A 1-dimensional framework (G, p) is rigid if and only if G is connected, but it is NP-hard to determine whether a given d-dimensional framework is rigid for any d ≥ 2 (Abbot 2008).
- This problem becomes more tractable if we restrict attention to **generic** frameworks (those for which the set of coordinates of all points p(v), $v \in V$, is algebraically independent over \mathbb{Q}). We will see that, in this case, the rigidity of (G, p) depends only on the graph G.
- The algorithmic problem of determining when a graph is generically rigid in \mathbb{R}^d is solved for d=1 (easy) and d=2 (using a result of Pollaczek-Geiringer). It is an important open problem for $d\geq 3$.

The Rigidity Matrix

The rigidity of a given framework (G, p) is determined by the solution space of the system of quadratic equations

$$\|p_t(u) - p_t(v)\|^2 = \|p(u) - p(v)\|^2 \text{ for all } uv \in E$$
where $p_t(u)$ is the position of u at time t .

The Rigidity Matrix

The rigidity of a given framework (G, p) is determined by the solution space of the system of quadratic equations

$$\|p_t(u) - p_t(v)\|^2 = \|p(u) - p(v)\|^2 \text{ for all } uv \in E$$
 (1)

where $p_t(u)$ is the position of u at time t.

Differentiating (1) wrt t and putting t=0, we obtain the following system of linear equations for the **instantaneous velocities** $\dot{p}(u)$ at time t=0.

$$(p(u) - p(v)) \cdot (\dot{p}(u) - \dot{p}(v)) = 0 \text{ for all } uv \in E$$
 (2)

The Rigidity Matrix

The rigidity of a given framework (G, p) is determined by the solution space of the system of quadratic equations

$$\|p_t(u) - p_t(v)\|^2 = \|p(u) - p(v)\|^2 \text{ for all } uv \in E$$
 (1)

where $p_t(u)$ is the position of u at time t.

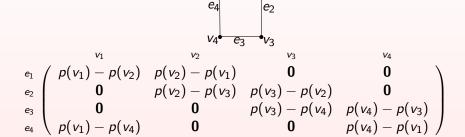
Differentiating (1) wrt t and putting t=0, we obtain the following system of linear equations for the **instantaneous velocities** $\dot{p}(u)$ at time t=0.

$$(p(u) - p(v)) \cdot (\dot{p}(u) - \dot{p}(v)) = 0 \text{ for all } uv \in E$$
 (2)

The **rigidity matrix** R(G,p) of (G,p) is the matrix of coefficients of (2). It is an $|E| \times d|V|$ matrix with rows indexed by E and sequences of d consecutive columns indexed by V, in which the row indexed by $e = uv \in E$ is given by

$$e=uv \ [\ 0 \dots 0 \ p(u) - p(v) \ 0 \dots 0 \ p(v) - p(u) \ 0 \dots 0 \].$$

Example



Assuming each edge has positive length, we have rank R(G, p) = 3 when v_1, v_2, v_3, v_4 are collinear and otherwise rank R(G, p) = 4.

Each vector \dot{p} in the null space of R(G, p) is an **infinitesimal** motion of (G, p).

Each vector \dot{p} in the null space of R(G, p) is an **infinitesimal** motion of (G, p).

Maxwell (1864) observed that each translation or rotation of \mathbb{R}^d gives rise to an infinitesimal motion of (G,p) and hence the dimension of the kernal of R(G,p) will be at least $\binom{d+1}{2}$ whenever p(V) affinely spans \mathbb{R}^d .

Each vector \dot{p} in the null space of R(G, p) is an **infinitesimal** motion of (G, p).

Maxwell (1864) observed that each translation or rotation of \mathbb{R}^d gives rise to an infinitesimal motion of (G,p) and hence the dimension of the kernal of R(G,p) will be at least $\binom{d+1}{2}$ whenever p(V) affinely spans \mathbb{R}^d . He deduced that

$$\operatorname{rank} R(G,p) \leq d|V| - \binom{d+1}{2},$$

whenever p(V) affinely spans \mathbb{R}^d , and (G, p) will be rigid if equality holds.



Each vector \dot{p} in the null space of R(G, p) is an **infinitesimal** motion of (G, p).

Maxwell (1864) observed that each translation or rotation of \mathbb{R}^d gives rise to an infinitesimal motion of (G,p) and hence the dimension of the kernal of R(G,p) will be at least $\binom{d+1}{2}$ whenever p(V) affinely spans \mathbb{R}^d . He deduced that

$$\operatorname{rank} R(G,p) \leq d|V| - \binom{d+1}{2},$$

whenever p(V) affinely spans \mathbb{R}^d , and (G, p) will be rigid if equality holds.

We say that (G, p) is **infinitesimally rigid** if

$$\operatorname{rank} R(G,p) = \min\{d|V| - {d+1 \choose 2}, {|V| \choose 2}\}.$$

Theorem [Gluck, 1975]

Suppose (G, p) is a generic *d*-dimensional framework. Then (G, p) is rigid if and only if it is infinitesimally rigid.

Theorem [Gluck, 1975]

Suppose (G, p) is a generic *d*-dimensional framework. Then (G, p) is rigid if and only if it is infinitesimally rigid.

This implies that a generic framework (G, p) in \mathbb{R}^d is rigid if and only if G is a complete graph on at most d+1 vertices or R(G, p) has rank $d|V| - \binom{d+1}{2}$. Hence:

Theorem [Gluck, 1975]

Suppose (G, p) is a generic *d*-dimensional framework. Then (G, p) is rigid if and only if it is infinitesimally rigid.

This implies that a generic framework (G, p) in \mathbb{R}^d is rigid if and only if G is a complete graph on at most d+1 vertices or R(G, p) has rank $d|V| - \binom{d+1}{2}$. Hence:

• The rigidity of a generic framework (G, p) depends only on the graph G and the dimension d. We say that G is **rigid in** \mathbb{R}^d if some (or equivalently every) generic realisation of G in \mathbb{R}^d is rigid.

Theorem [Gluck, 1975]

Suppose (G, p) is a generic *d*-dimensional framework. Then (G, p) is rigid if and only if it is infinitesimally rigid.

This implies that a generic framework (G, p) in \mathbb{R}^d is rigid if and only if G is a complete graph on at most d+1 vertices or R(G, p) has rank $d|V| - \binom{d+1}{2}$. Hence:

- The rigidity of a generic framework (G, p) depends only on the graph G and the dimension d. We say that G is **rigid in** \mathbb{R}^d if some (or equivalently every) generic realisation of G in \mathbb{R}^d is rigid.
- We can determine whether G is rigid in \mathbb{R}^d if we can determine when a given set of rows of R(G, p) is linearly independent when p is generic.

A **matroid** \mathcal{M} is a pair (E,\mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\bullet \emptyset \in \mathcal{I};$
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

A **matroid** \mathcal{M} is a pair (E,\mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- \bullet $\emptyset \in \mathcal{I}$;
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A \subseteq E$ is **independent** if $A \in \mathcal{I}$ and A is **dependent** if $A \notin \mathcal{I}$.

A **matroid** \mathcal{M} is a pair (E,\mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\bullet \emptyset \in \mathcal{I};$
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A \subseteq E$ is **independent** if $A \in \mathcal{I}$ and A is **dependent** if $A \notin \mathcal{I}$. A is a **circuit** if it is a minimal dependent set.

A **matroid** \mathcal{M} is a pair (E,\mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\bullet \emptyset \in \mathcal{I};$
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A \subseteq E$ is **independent** if $A \in \mathcal{I}$ and A is **dependent** if $A \notin \mathcal{I}$. A is a **circuit** if it is a minimal dependent set.

A set $B \subset A$ is a **basis of** A if B is a maximal independent subset of A. All bases of A have the same cardinality r(A) referred to as the **rank of** A. We refer to the bases of E as **bases of** E and to the rank of E as the **rank of** E, and denote it by E.

A **matroid** \mathcal{M} is a pair (E,\mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\bullet \emptyset \in \mathcal{I};$
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A \subseteq E$ is **independent** if $A \in \mathcal{I}$ and A is **dependent** if $A \notin \mathcal{I}$. A is a **circuit** if it is a minimal dependent set.

A set $B \subset A$ is a **basis of** A if B is a maximal independent subset of A. All bases of A have the same cardinality r(A) referred to as the the **rank of** A. We refer to the bases of E as **bases of** E and to the rank of E as the **rank of** E, and denote it by E is the matroid with groundset E given by the rows of E in which a set E is **independent** if the rows of E independent.

The d-dimensional rigidity matroid and Maxwell's theorem

The *d*-dimensional rigidity matroid of a graph G = (V, E) is the row matroid $\mathcal{R}_d(G)$ of the rigidity matrix R(G, p) for any generic $p: V \to \mathbb{R}^d$. We say that G is \mathcal{R}_d -independent if E is independent in $\mathcal{R}_d(G)$.

The d-dimensional rigidity matroid and Maxwell's theorem

The *d*-dimensional rigidity matroid of a graph G = (V, E) is the row matroid $\mathcal{R}_d(G)$ of the rigidity matrix R(G, p) for any generic $p: V \to \mathbb{R}^d$. We say that G is \mathcal{R}_d -independent if E is independent in $\mathcal{R}_d(G)$.

We can use Maxwell's observation on rank R(G, p) to obtain a necessary condition for \mathcal{R}_d -independence. Given $X \subseteq V$ let i(X) denote the number of edges of G induced by X.

Theorem [Maxwell, 1864]

Suppose G = (V, E) is \mathcal{R}_d -independent. Then

$$i(X) \leq d|X| - {d+1 \choose 2}$$

for all $X \subseteq V$ with $|X| \ge d + 1$.

The case d = 2: Pollaczek-Geiringer's theorem

Maxwell's necessary condition for independence is also sufficient when d=1 (since it implies that G is a forest). Hence $\mathcal{R}_1(G)$ is the well known cycle matroid of G.

The case d = 2: Pollaczek-Geiringer's theorem

Maxwell's necessary condition for independence is also sufficient when d=1 (since it implies that G is a forest). Hence $\mathcal{R}_1(G)$ is the well known cycle matroid of G.

Maxwell's condition is also sufficent when d=2 by the following result of Pollaczek-Geiringer (rediscovered by Laman in 1970).

Theorem [Pollaczek-Geiringer, 1927]

A graph G = (V, E) is \mathcal{R}_2 -independent if and only if

$$i(X) \le 2|X| - 3$$

for all $X \subseteq V$ with $|X| \ge 2$.

The case d = 2: Pollaczek-Geiringer's theorem

Maxwell's necessary condition for independence is also sufficient when d=1 (since it implies that G is a forest). Hence $\mathcal{R}_1(G)$ is the well known cycle matroid of G.

Maxwell's condition is also sufficent when d=2 by the following result of Pollaczek-Geiringer (rediscovered by Laman in 1970).

Theorem [Pollaczek-Geiringer, 1927]

A graph G = (V, E) is \mathcal{R}_2 -independent if and only if

$$i(X) \le 2|X| - 3$$

for all $X \subseteq V$ with $|X| \ge 2$.

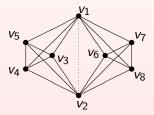
Jacobs and Hendrickson (1997) used this characterisation of independence to give an efficient pebble game algorithm for testing generic rigidity in \mathbb{R}^2 .

Maxwell's condition is not sufficient when $d \geq 3$

The graph G given below shows that Maxwell's necessary condition,

$$i(X) \leq 3|X| - 6$$
 for all $X \subseteq V$ with $|X| \geq 3$,

does not imply \mathcal{R}_3 -independence.



$$|E| = 18 = 3|V| - 6$$

Bases of $\mathcal{R}_d(K_n)$ and the Henneberg construction

Let K_n be the complete graph on $n \geq d+1$ vertices. Maxwell's theorem implies that $\mathcal{R}_d(K_n)$ has rank $dn-\binom{d+1}{2}$ and that the bases of $\mathcal{R}_d(K_n)$ are the (edge sets of the) **minimally rigid** spanning subgraphs of K_n i.e. subgraphs which are rigid in \mathbb{R}^2 and have n vertices and $dn-\binom{d+1}{2}$ edges.

Bases of $\mathcal{R}_d(K_n)$ and the Henneberg construction

Let K_n be the complete graph on $n \geq d+1$ vertices. Maxwell's theorem implies that $\mathcal{R}_d(K_n)$ has rank $dn-\binom{d+1}{2}$ and that the bases of $\mathcal{R}_d(K_n)$ are the (edge sets of the) **minimally rigid** spanning subgraphs of K_n i.e. subgraphs which are rigid in \mathbb{R}^2 and have n vertices and $dn-\binom{d+1}{2}$ edges.

Pollaczek-Geiringer's characterisation of independence in $\mathcal{R}_2(K_n)$ is inductive and gives a recursive contruction for all graphs which are minimally rigid in \mathbb{R}^2 using the following operations first suggested by Henneberg in 1911. The **0-extension operation** adds a vertex of degree two to a graph. The **1-extension operation** deletes an edge e and then adds a vertex of degree three which includes both end-vertices of e in its neighbour set.

Bases of $\mathcal{R}_d(K_n)$ and the Henneberg construction

Let K_n be the complete graph on $n \geq d+1$ vertices. Maxwell's theorem implies that $\mathcal{R}_d(K_n)$ has rank $dn-\binom{d+1}{2}$ and that the bases of $\mathcal{R}_d(K_n)$ are the (edge sets of the) **minimally rigid** spanning subgraphs of K_n i.e. subgraphs which are rigid in \mathbb{R}^2 and have n vertices and $dn-\binom{d+1}{2}$ edges.

Pollaczek-Geiringer's characterisation of independence in $\mathcal{R}_2(K_n)$ is inductive and gives a recursive contruction for all graphs which are minimally rigid in \mathbb{R}^2 using the following operations first suggested by Henneberg in 1911. The **0-extension operation** adds a vertex of degree two to a graph. The **1-extension operation** deletes an edge e and then adds a vertex of degree three which includes both end-vertices of e in its neighbour set.

Theorem

A graph is minimally rigid in \mathbb{R}^2 if and only if it can be constructed for K_3 by recursively applying the 0- and 1-extension operations.

0-extensions preserve independence in $\mathcal{R}_2(K_n)$

Lemma

Suppose G is obtained from H by a 0-extension which adds a new vertex v and two new edges vw, vx. Let p be a realisation of G in \mathbb{R}^2 such that p(v), p(w), p(x) are not collinear and $R(H, p|_H)$ has independent rows. Then R(G, p) has independent rows.

Proof We have

$$R(G,p) = \begin{pmatrix} p(v) - p(w) & * \\ p(v) - p(x) & * \\ \mathbf{0} & R(H,p|_H) \end{pmatrix}$$

Since $R(H, p|_H)$ has independent rows and p(v), p(w), p(x) are not collinear, R(G, p) has independent rows.

1-extensions preserve independence in $\mathcal{R}_2(K_n)$

Lemma

Suppose H is \mathcal{R}_2 -independent and G is obtained from H by a 1-extension which adds a new vertex v, three new edges vw, vx, vy, and deletes the edge xy. Then G is \mathcal{R}_2 -independent.

Proof Choose a generic realisation p of H and extend it to a realisation p' of G by putting p'(v) on the line through p(x) and p(y). Then rank $R(G+xy-vx,p')=\operatorname{rank} R(H,p)+2=|E|$ since (G+xy-vx,p') can be obtained from (H,p) by a 0-extension.

$$(H,p) \qquad (G+xy-vx,p') \qquad (G+xy,p') \qquad (G,p')$$

1-extensions preserve independence in $\mathcal{R}_2(K_n)$

Lemma

Suppose H is \mathcal{R}_2 -independent and G is obtained from H by a 1-extension which adds a new vertex v, three new edges vw, vx, vy, and deletes the edge xy. Then G is \mathcal{R}_2 -independent.

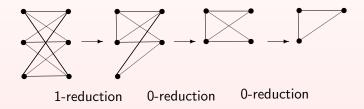
Proof Choose a generic realisation p of H and extend it to a realisation p' of G by putting p'(v) on the line through p(x) and p(y). Then rank $R(G+xy-vx,p')=\operatorname{rank} R(H,p)+2=|E|$ since (G+xy-vx,p') can be obtained from (H,p) by a 0-extension.

$$(H,p) \qquad (G+xy-vx,p') \qquad (G+xy,p') \qquad (G,p')$$

Since p'(x), p'(y), p'(v) are collinear, $\{xy, yv, vx\}$ is a ciruit in the row matroid of R(G+xy, p'). Hence rank $R(G, p') = \operatorname{rank} R(G+xy, p') = \operatorname{rank} R(G+xy-vx, p') = |E|$ so R(G, p') has linearly independent rows.

Example

We can use the (inverse) Henneberg operations to construct a combinatorial certificate that $K_{3,3}$ is minimally rigid.



Since $K_{3,3}$ can be obtained from K_3 by a sequence of 0- and 1-extensions, it is \mathcal{R}_2 -independent. Since each operation preserves the condition |E|=2|V|-3, $K_{3,3}$ is minimally rigid.

Rank fuction of $\mathcal{R}_2(K_n)$ and the Lovász-Yemini Theorem

Lovász and Yemini used Pollaczek-Geiringer's Theorem and a result of Edmunds from matroid theory to characterise the rank function $r_2(.)$ of $\mathcal{R}_2(K_n)$. We need the following concept.

A 1-thin cover of a graph G is a family $\mathcal X$ of subsets of V of size at least two such that each edge of G is induced by at least one set in $\mathcal X$ and $|X_i \cap X_i| \leq 1$ for all distinct $X_i, X_i \in \mathcal X$.

Rank fuction of $\mathcal{R}_2(K_n)$ and the Lovász-Yemini Theorem

Lovász and Yemini used Pollaczek-Geiringer's Theorem and a result of Edmunds from matroid theory to characterise the rank function $r_2(.)$ of $\mathcal{R}_2(K_n)$. We need the following concept.

A 1-thin cover of a graph G is a family \mathcal{X} of subsets of V of size at least two such that each edge of G is induced by at least one set in \mathcal{X} and $|X_i \cap X_i| \leq 1$ for all distinct $X_i, X_i \in \mathcal{X}$.

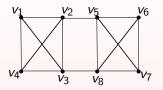
Theorem [Lovász and Yemini, 1982]

Suppose G = (V, E) is a graph and $F \subseteq E$. Then

$$r_2(F) = \min \left\{ \sum_{X \in \mathcal{X}} (2|X| - 3) \right\}$$

where the minimum is taken over all 1-thin covers \mathcal{X} of (V, F).

Example



Let
$$\mathcal{X}=\{X_1,X_2,X_3,X_4\}$$
 where $X_1=\{v_1,v_2,v_3,v_4\}$, $X_2=\{v_5,v_6,v_7,v_8\}$, $X_3=\{v_2,v_5\}$ and $X_4=\{v_3,v_8\}$. Then

$$r_2(G) \le \sum_{X \in \mathcal{X}} (2|X| - 3) = 5 + 5 + 1 + 1 = 12 < 13 = 2|V| - 3$$

so G is not rigid in \mathbb{R}^2 .

Submodular functions and Edmund's Theorem

A set function $f: 2^E \to \mathbb{Z}$ is **submodular** if $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ for all $A, B \subseteq E$.

Submodular functions and Edmund's Theorem

A set function $f: 2^E \to \mathbb{Z}$ is **submodular** if

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$

for all $A, B \subseteq E$.

Theorem [Edmonds, 1982]

Suppose $f: 2^E \to \mathbb{Z}$ is submodular and non-decreasing, and is non-negative on $2^E \setminus \{\emptyset\}$. Then

$$\mathcal{I} = \{ I \subseteq E : |J| \le f(J) \text{ for all } \emptyset \ne J \subseteq I \}$$

is the set of independent sets in a matroid $M_f=(E,\mathcal{I})$ on E. In addition, if $f(e)\leq 1$ for all $e\in E$, then the rank of any $F\subseteq E$ in M_f is given by

 $r(F) = \min \left\{ \sum_{F_i \in \mathcal{F}} f(F_i) \right\}$

where the minimum is taken over all partitions \mathcal{F} of F.

Application of Edmund's Theorem to $\mathcal{R}_2(K_n)$

Let $E = E(K_n)$ and $f: 2^E \to \mathbb{Z}$ be defined by putting f(F) = 2|V(F)| - 3. Then f is submodular and non-decreasing and is non-negative on $2^E \setminus \{\emptyset\}$. In addition, Pollaczek-Geiringer's Theorem gives $\mathcal{R}_2(K_n) = M_f$. So Edmond's theorem immediately implies that, for all $F \subseteq E$,

$$r_2(F) = \min \left\{ \sum_{F_i \in \mathcal{F}} (2|V(F_i)| - 3) \right\}$$
 (3)

where the minimum is taken over all partitions \mathcal{F} of F.

Application of Edmund's Theorem to $\mathcal{R}_2(K_n)$

Let $E = E(K_n)$ and $f: 2^E \to \mathbb{Z}$ be defined by putting f(F) = 2|V(F)| - 3. Then f is submodular and non-decreasing and is non-negative on $2^E \setminus \{\emptyset\}$. In addition, Pollaczek-Geiringer's Theorem gives $\mathcal{R}_2(K_n) = M_f$. So Edmond's theorem immediately implies that, for all $F \subseteq E$,

$$r_2(F) = \min \left\{ \sum_{F_i \in \mathcal{F}} (2|V(F_i)| - 3) \right\}$$
 (3)

where the minimum is taken over all partitions $\mathcal F$ of F. The expression for $r_2(G)$ given in the Lovász-Yemini theorem can be obtained by choosing a partition $\mathcal F$ for which equality holds in (3) and taking $\mathcal X=\{V(F_i):F_i\in\mathcal F\}$. Then showing that $|X_i\cap X_j|\leq 1$ for all $X_i,X_j\in X$.