Skew Mean Curvature Flow

Chong Song

Xiamen University

Workshop on Vortex Filaments Nov 3, 2020

Outline

- 2 Problems and Results
- 3 Existence of SMCF
- Uniqueness of SMCF

Definition Backgrounds

Part I. Introduction

æ

(日) (同) (三) (三)

Definition Backgrounds

Definition of SMCF

The Skew Mean Curvature Flow (SMCF) or Bi-normal Flow is a family of codimension two immersions $F: [0,T) \times \Sigma^n \to M^{n+2}$ evolving by

$$\partial_t F = J\mathbf{H}$$

where H is the mean curvature of Σ_t and J is the complex structure on the normal bundle $\mathcal{N}\Sigma_t$, which rotates a normal vector by $\pi/2$ positively in the normal plane.

Definition Backgrounds

Examples 1: one dimension

- 1-D SMCF in \mathbb{R}^3 , i.e. Vortex Filament Equation: $\gamma_t = \kappa \mathbf{b} = \gamma_s \times \gamma_{ss}$
- By Hasimoto transformation $\Phi = \kappa e^{i\int \tau}$, equivalent to

$$-i\Phi_t = \Phi_{ss} + \frac{1}{2}|\Phi|^2\Phi,$$

which amounts to rewriting the evolution equation of curvature in a suitable frame (gauge) of the normal bundle.

$$\begin{array}{c} & & \\$$

Definition Backgrounds

Examples 1: one dimension

- 1D SMCF in \mathbb{R}^3 is completely integrable, has infinitely many conserved quantities, and admits soliton solutions.
- (translating or rotating) soliton curves are related to Euler's elastica and magnetic geodesics.

Definition Backgrounds

Examples 2: higher dimension

• Product of spheres $F: S^m(a) \times S^n(b) \to \mathbb{R}^{m+1} \times \mathbb{R}^{n+1}$ satisfies SMCF with a(0) = b(0) = 1 if $\begin{cases} \partial_t a &= -n/b; \\ \partial_t b &= +m/a. \end{cases}$

• m = n (eg. Clifford torus): global solution

$$a(t) = e^{-nt}, \quad b(t) = e^{nt}.$$

• m < n (eg. $S^1 \times S^2 \subset \mathbb{R}^5$): finite time solution $a(t) = (1 - (n - m)t)^{n/(n-m)}, b(t) = (1 - (n - m)t)^{m/(m-n)},$

which blows up at $T=1/(n-m).\ensuremath{\left[{\rm Khesin-Yang}\ 2019 \right]}$

Definition Backgrounds

Background 1: Hydrodynamics

SMCF models the locally induced motion of vortex membranes (codim 2 vortex) in a perfect fuild, which is deduced from the Euler equation by applying the Biot-Savart formula.

• [Da Rios 1906] 1-D Vortex filament in \mathbb{R}^3

$$\gamma_t = \gamma_s \times \gamma_{ss}$$

- [Shashikanth 2012] 2-D Vortex membrane in \mathbb{R}^4
- [Khesin 2012] n-D Vortex membrane in \mathbb{R}^{n+2}

Definition Backgrounds

Background 2: Superfluid

The Gross-Pitaevskii equation

$$-i\phi_t = \Delta \phi + \frac{1}{\varepsilon} W(|\phi|^2)\phi$$

models the evolution of the wave function $\phi : \mathbb{R}^{n+2} \times [0,\infty) \to \mathbb{C}^1$ associated with a Bose condensate.

Conjecture: Vortices evolve along SMCF.(Physics evidences)

- [Tai-Chia Lin 2000] 1-D vortex filament
- [Jerrard 2002] n-D vortex sphere with multiplicity 1
- Similar structure found in superconductors (parabolic PDEs) and cosmic strings (hyperbolic PDEs)

Definition Backgrounds

Background 3: Connection with other flows

• SMCF is the Hamiltonian flow of the volume functional in the (infinite dimensional) symplectic manifold (\mathcal{I}, Ω) . Here \mathcal{I} is the space of immersions moduli diffeomorphisms, Ω is the Marsden-Weinstein symplectic structure

$$\Omega(V,W) = \int_{F(\Sigma)} \iota_V \iota_W d\bar{\mu}$$

• Mean Curvature Flow is the gradient flow of the volume functional.

Definition Backgrounds

Background 3: Connection with other flows

Theorem (S., 2017)

The Gauss map $\rho: [0,T] \times \Sigma^n \to G(n,2)$ of SMCF in \mathbb{R}^{n+2} satisfies the Schrödinger map flow

$$\partial_t \rho = J_G \Delta_g \rho.$$

- The Grassmannian manifold G(n,2) is a Kähler manifold
- The underlying metric is evolving by $\partial_t g = -2 \langle J \mathbf{H}, \mathbf{A} \rangle$.
- [Ruh-Vilms, 1970]Gauss map of a minimal submanifold is harmonic.
- [M-T.Wang, 2001]Gauss map of the MCF satisfies the harmonic map heat flow.

< A >

- - E + - E +

Definition Backgrounds

Background 3: Connection with other flows

Theorem (S., 2017)

The Gauss map $\rho: [0,T] \times \Sigma^n \to G(n,2)$ of SMCF in \mathbb{R}^{n+2} satisfies the Schrödinger map flow

$$\partial_t \rho = J_G \Delta_g \rho.$$

- $\bullet\,$ The Grassmannian manifold G(n,2) is a Kähler manifold
- The underlying metric is evolving by $\partial_t g = -2 \langle J \mathbf{H}, \mathbf{A} \rangle$.
- [Ruh-Vilms, 1970]Gauss map of a minimal submanifold is harmonic.
- [M-T.Wang, 2001]Gauss map of the MCF satisfies the harmonic map heat flow.

* E > * E >

Definition Backgrounds

Background 3: Connection with other flows

Complex PDE		Mapping	Sub-manifold
	Elliptic	Harmonic map	Minimal sub-manifold
	Parabolic	Harmonic heat flow	Mean curvature flow
	Hyperbolic	Wave Map	Hyperbolic curvature flow
	Schrödinger	Schrödinger map flow	Skew mean curvature flow
Ginzburg-Landau		Dirichlet Energy	Volume functional

æ

Main results Open problems

Part II. Problems and Results

Main results Open problems

The initial value problem

Consider the initial value problem

$$\begin{cases} \partial_t F = J\mathbf{H} \\ F(0,\cdot) = F_0 \end{cases}$$

In local coordinates **H** can be written as

$$\mathbf{H}^{\alpha} = (\Delta_g F)^{\alpha} = g^{ij} (\partial_i \partial_j F^{\alpha} - \Gamma^k_{ij} \partial_k F^{\alpha}),$$

where

$$g = g(DF), \quad \Gamma = \Gamma(D^2F), \quad J = J(DF).$$

For a graphic solution $F(x) = (x, \phi^1(x), \phi^2(x))$, reduce to

$$\partial_t \phi = i\Delta \phi + O(\partial_x^2 \phi |\partial_x \phi|^2).$$

Main results Open problems

The initial value problem

Consider the initial value problem

$$\begin{cases} \partial_t F = J\mathbf{H} \\ F(0,\cdot) = F_0 \end{cases}$$

In local coordinates ${\bf H}$ can be written as

$$\mathbf{H}^{\alpha} = (\Delta_g F)^{\alpha} = g^{ij} (\partial_i \partial_j F^{\alpha} - \Gamma^k_{ij} \partial_k F^{\alpha}),$$

where

$$g = g(DF), \quad \Gamma = \Gamma(D^2F), \quad J = J(DF).$$

For a graphic solution $F(x) = (x, \phi^1(x), \phi^2(x))$, reduce to

$$\partial_t \phi = i\Delta \phi + O(\partial_x^2 \phi |\partial_x \phi|^2).$$

Main results Open problems

Global existence of 1-D SMCF

Theorem (H. Gomez, 2004)

Given a smooth initial curve with $\kappa \in L^2$ in a three dimensional Riemannian manifold, the 1-D SMCF admits a unique smooth global solution.

Remark:

- 1D-SMCF is essentially equivalent to a 1-D Schrödinger map arising from ferromagnetism physics.
- The proof used the Hasimoto Transformation and Strichartz-type estimates for Schrödinger equations.
- There exists self-similar solutions which becomes singular in finite time [Gutierrez-Rivas-Vega 2003].

Main results Open problems

Global existence of 1-D SMCF

Theorem (H. Gomez, 2004)

Given a smooth initial curve with $\kappa \in L^2$ in a three dimensional Riemannian manifold, the 1-D SMCF admits a unique smooth global solution.

Remark:

- 1D-SMCF is essentially equivalent to a 1-D Schrödinger map arising from ferromagnetism physics.
- The proof used the Hasimoto Transformation and Strichartz-type estimates for Schrödinger equations.
- There exists self-similar solutions which becomes singular in finite time [Gutierrez-Rivas-Vega 2003].

Main results Open problems

Main difficulties

For higher dimensional SMCF $(n \ge 2)$:

- Not covered by existing theory on nonlinear Schrödinger equations
- De Turck's trick does not apply
- NO Hasimoto transformation (?)
- Apparently, only preserved quantity is the volume (element), NO conservation laws for curvature
- Even the uniqueness of derivative non-linear Schrödinger equations is difficult

$$u_t = i\Delta u + F(\nabla u).$$

Main results Open problems

Results 1: Local Existence of 2-D SMCF

Theorem (S.-Sun, 2015)

Given a smooth initial compact surface Σ_0 in \mathbb{R}^4 , the SMCF admits a smooth local solution, where the existence time depends only on $\|\mathbf{A}_0\|_{H^{2,2}}$ and the volume of Σ_0 .

Remark:

- The existence actually holds for $W^{4,2}$ -initial data and for more general ambient manifolds.
- The proof relies on a uniform estimate of the second fundamental form which only holds for dimension two.

Main results Open problems

Results 1: Local Existence of 2-D SMCF

Theorem (S.-Sun, 2015)

Given a smooth initial compact surface Σ_0 in \mathbb{R}^4 , the SMCF admits a smooth local solution, where the existence time depends only on $\|\mathbf{A}_0\|_{H^{2,2}}$ and the volume of Σ_0 .

Remark:

- The existence actually holds for $W^{4,2}$ -initial data and for more general ambient manifolds.
- The proof relies on a uniform estimate of the second fundamental form which only holds for dimension two.

Main results Open problems

Results 2: Existence and Uniqueness of SMCF

Theorem (S. 2019)

Given a *n*-dimensional smooth initial compact sub-manifold Σ^n in \mathbb{R}^{n+2} , the SMCF admits a unique smooth local solution, where the existence time depends only on the $W^{[n/2]+2,2}$ -norm of the initial Gauss map.

Remark:

- The existence and uniqueness actually holds for more general initial data and ambient manifolds.
- For $k \geq [n/2],$ the $W^{k+1,2}\text{-norm}$ of the Gauss map is equivalent to

$E = vol + ||\mathbf{H}||_p + ||\mathbf{A}||_{k,2}.$

< ロ > < 同 > < 回 > < 回 >

Main results Open problems

Results 2: Existence and Uniqueness of SMCF

Theorem (S. 2019)

Given a *n*-dimensional smooth initial compact sub-manifold Σ^n in \mathbb{R}^{n+2} , the SMCF admits a unique smooth local solution, where the existence time depends only on the $W^{[n/2]+2,2}$ -norm of the initial Gauss map.

Remark:

- The existence and uniqueness actually holds for more general initial data and ambient manifolds.
- $\bullet\,$ For $k\geq [n/2],$ the $W^{k+1,2}\text{-norm}$ of the Gauss map is equivalent to

$$E = vol + \|\mathbf{H}\|_p + \|\mathbf{A}\|_{k,2}.$$

Main results Open problems

Open problems

The study of SMCF has just began, lots of open problems.

- Regularity: optimal regularity for existence and uniqueness?
- Local existence: on non-compact manifolds?
- Finite time blow-up: examples in 2d?
- Global existence: small initial data?
- Long time asymptotic behavior: geometric application?
- Solitons: no known non-trivial solitons for dimension ≥ 2 , which satisfies, for a Killing vector field K,

$$J\mathbf{H} = K.$$

Main results Open problems

Recent progress

Long-time existence for graphic submanifold with small data:

Theorem (Ze Li, preprint 2020)

Let $n \geq 3$ and $k \geq n + 4$. For a smooth graphic initial submanifold which is a H_k -small transversal perturbation of $\mathbb{R}^n \subset \mathbb{R}^{n+2}$, there exists a global unique smooth solution to the SMCF.

Local well-posedness for non-compact submanifold with small data:

Theorem (Huang-Tataru, preprint 2020)

Let $n \ge 4$ and k > n/2. There exists $\varepsilon_0 > 0$ such that any initial submanifold $F_0 : \mathbb{R}^n \to \mathbb{R}^{n+2}$ with $\|\mathbf{H}_0\|_{H^k} \le \varepsilon_0$, the n-D SMCF is locally well-posed.

・ロト ・同ト ・ヨト ・

Overview Uniform Sobolev inequalities Proof of existence

Part III. Existence of SMCF

Overview Uniform Sobolev inequalities Proof of existence

Perturbed SMCF

For $\varepsilon > 0$, consider the perturbed SMCF

$$\begin{cases} \partial_t F = J_{\varepsilon} \mathbf{H} = \varepsilon \mathbf{H} + J \mathbf{H}; \\ F(0, \cdot) = F_0. \end{cases}$$

- For ε > 0, pSMCF is weakly parabolic and De Turck trick yields a local solution
- Parabolic estimates will blow-up as $\varepsilon \to 0$, need uniform estimates of pSMCF w.r.t. ε
- **Strategy**: energy method, which relies on uniform Sobolev inequalities since the metric is varying along the flow,.

Overview Uniform Sobolev inequalities Proof of existence

Evolution equations

Along the pSMCF, we have

Overview Uniform Sobolev inequalities Proof of existence

Uniform Sobolev inequality

Theorem (Mantegazza, GAFA, 2002)

Suppose M^n is a compact submanifold of Euclidean space. If $Vol + ||H||_{n+\delta} \leq B$ for some $\delta > 0$, then there exists C = C(B, n) such that

 $\|D^{j}T\|_{p} \leq C\|T\|_{W^{k,q}}^{a}\|T\|_{r}^{1-a},$

where $j \in [0,k], p,q,r \in [1,\infty]$ and $a \in [j/k,1]$ satisfies

$$\frac{1}{p} = \frac{j}{m} + a\left(\frac{1}{q} - \frac{k}{m}\right) + \frac{1-a}{r} > 0.$$

In particular, when kq > m, we have

 $||T||_{\infty} \leq C ||T||_{W^{k,q}}.$

Overview Uniform Sobolev inequalities Proof of existence

Proof of existence I

Along pSMCF, since

$$\partial_t
abla^l \mathbf{A} = J_{arepsilon} \Delta
abla^l \mathbf{A} + \sum_{i+j+k=l}
abla^i \mathbf{A} *
abla^j \mathbf{A} *
abla^k \mathbf{A},$$

it follows

$$\partial_t \|\nabla^l A\|_2^2 \le C \sum_{i+j+k=l} \int_M |\nabla^i A| \cdot |\nabla^j A| \cdot |\nabla^k A| \cdot |\nabla^l A| d\mu.$$

Assume $V+\|H\|_p\leq B$ for some p>n, then by uniform Sobolev, we have for k>n/2

$$\partial_t \|A\|_p^2 \le C(B) \|A\|_{k,2}^2 (1 + \|A\|_p^2)$$

$$\partial_t \|A\|_{k,2}^2 \le C(B) \|A\|_{k,2}^2 \cdot \|A\|_{k,2}^2$$

< □ > < 同 >

A B + A B +

Overview Uniform Sobolev inequalities Proof of existence

Proof of existence II

By setting the energy $E = V + \|A\|_p^2 + \|A\|_{k,2}^2$, we conclude $\partial_t E \le C(B)E \cdot (1+E).$

Lemma

For pSMCF with $\varepsilon > 0$, there exists a uniform time T > 0 only depending on E_0 such that $E(t) \le 2E_0$ for all $t \in [0, T_0]$.

Once we have uniform time T and estimates of A, the convergence of pSMCF and existence of SMCF follow by standard arguments.

Overview Uniform Sobolev inequalities Proof of existence

Proof of existence II

By setting the energy $E = V + ||A||_p^2 + ||A||_{k,2}^2$, we conclude

 $\partial_t E \le C(B) E \cdot (1+E).$

Lemma

For pSMCF with $\varepsilon > 0$, there exists a uniform time T > 0 only depending on E_0 such that $E(t) \le 2E_0$ for all $t \in [0, T_0]$.

Once we have uniform time T and estimates of A, the convergence of pSMCF and existence of SMCF follow by standard arguments.

A B + A B +

Overview Uniform Sobolev inequalities Proof of existence

Proof of existence II

By setting the energy $E = V + ||A||_p^2 + ||A||_{k,2}^2$, we conclude

$$\partial_t E \le C(B)E \cdot (1+E).$$

Lemma

For pSMCF with $\varepsilon > 0$, there exists a uniform time T > 0 only depending on E_0 such that $E(t) \le 2E_0$ for all $t \in [0, T_0]$.

Once we have uniform time T and estimates of A, the convergence of pSMCF and existence of SMCF follow by standard arguments.

Overview Distance of tensors Idea of proof

Part IV. Uniqueness of SMCF

Overview Distance of tensors Idea of proof

Uniqueness of SMCF

Consider the initial value problem of SMCF

$$\begin{cases} \partial_t F = J\mathbf{H}, \\ F(0, \cdot) = F_0. \end{cases}$$

For two solutions F and \tilde{F} , show that $F = \tilde{F}$.

- Since no maximal principal, again we will use energy methods, which is also useful in parabolic flows,
 e.g. Ricci flow by [Kotchwar], and MCF by [Lee & Ma].
- Key idea: Measure the difference/distance of two solutions intrinsically by Parallel transportation/Relative gauge.

Overview Distance of tensors Idea of proof

Distance of vector fields

Suppose $x, y \in (M, g)$ is connected by a unique geodesic γ , then for any $X \in T_xM, Y \in T_yM$, define

$$d_1(X,Y) = |X - \mathcal{P}(Y)|$$

where $\mathcal{P}: T_y M \to T_x M$ is the parallel transportation along γ .

Overview Distance of tensors Idea of proof

Distance of second fundamental forms

Question: For two submanifolds $F, \tilde{F} : \Sigma^n \to \mathbb{R}^m$, how to compare their second fundamental forms A and \tilde{A} intrinsically?

• If Gauss maps $\rho, \tilde{\rho}$ lie close enough, define

 $d_1(A,\tilde{A}) = d_1(d\rho, d\tilde{\rho}).$

by using parallel transportation $\mathcal{P}: \tilde{\rho}^*TG \to \rho^*TG$

• Actually we can do better! Observe

$$\rho^*TG = \rho^*(\mathcal{G}^\top \otimes \mathcal{G}^\perp) = F^*(T\bar{\Sigma} \otimes N\bar{\Sigma}) =: \mathcal{H} \otimes \mathcal{N}$$

the parallel transportation ${\mathcal P}$ actually splits

$$\mathcal{P}^{\top}: \tilde{\mathcal{H}} \to \mathcal{H}, \quad \mathcal{P}^{\perp}: \tilde{\mathcal{N}} \to \mathcal{N}.$$

Overview Distance of tensors Idea of proof

Distance of arbitrary tensors

• \mathcal{P} in turn gives a "parallel transportation" $\mathcal{Q}: T\tilde{\Sigma} \to T\Sigma$ by

• Now for any tensor $\Phi \in \Gamma(\mathcal{N} \otimes (T\Sigma)^p), \tilde{\Phi} \in \Gamma(\tilde{\mathcal{N}} \otimes (T\tilde{\Sigma})^p)$, we can define their "intrinsic distance" by

$$d(\Phi, \tilde{\Phi}) = |\Phi - \mathcal{P}^{\perp} \otimes \mathcal{Q}^p(\tilde{\Phi})|.$$

Overview Distance of tensors Idea of proof

Parallel transport for tensors

32 / 34

Overview Distance of tensors Idea of proof

Idea of proof

Step 1: For a sufficiently small time, we can define the parallel transportation \mathcal{P} and \mathcal{Q} and derive estimates of their derivatives.

Step 2: Define the energy functional

$$\begin{split} \mathcal{L} &= \int_{\Sigma} \Big(|d(\rho, \tilde{\rho})|^2 + |d(A, \tilde{A})|^2 + |d(\nabla A, \tilde{\nabla} \tilde{A})|^2 \\ &+ |g - \tilde{g}|^2 + |\Gamma - \tilde{\Gamma}|^2 + |\mathbf{I} - \mathcal{Q}|^2 \Big) dv. \end{split}$$

Step 3: By the evolution equations of SMCF, we can derive a Gronwall inequality for the energy \mathcal{L} , which implies uniqueness.

Overview Distance of tensors Idea of proof

Thank you for your attention!

< 同 ▶