# The Provable Effectiveness of Policy Gradient Methods in Reinforcement Learning

## Sham Kakade

**University of Washington & Microsoft Research** 

(with Alekh Agarwal, Jason Lee, and Gaurav Mahajan)

## **Policy Optimization in RL**





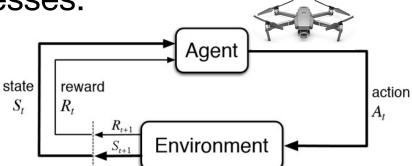


[AlphaZero, Silver et.al, 17]

[OpenAl Five, 18]

[OpenAI,19]

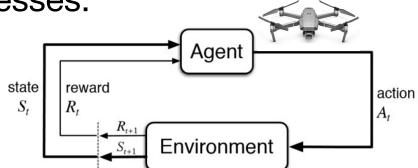
a framework for RL



a framework for RL

A policy:

 $\pi: \mathsf{States} \to \mathsf{Actions}$ 



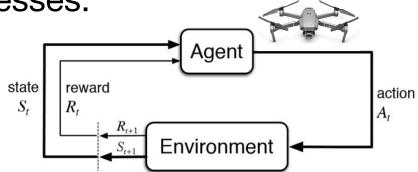
a framework for RL

A policy:

 $\pi: \mathsf{States} \to \mathsf{Actions}$ 

• We execute  $\pi$  to obtain a trajectory:

$$s_0, a_0, r_0, s_1, a_1, r_1...$$



a framework for RL

• A policy:

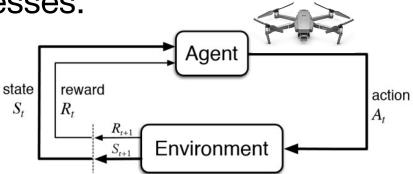
 $\pi: \mathsf{States} \to \mathsf{Actions}$ 

• We execute  $\pi$  to obtain a trajectory:

$$s_0, a_0, r_0, s_1, a_1, r_1 \dots$$

Total γ-discounted reward:

$$V^{\pi}(s_0) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^t r_t \right]$$



a framework for RL

• A policy:

 $\pi: \mathsf{States} \to \mathsf{Actions}$ 

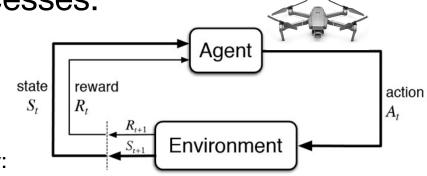
• We execute  $\pi$  to obtain a trajectory:

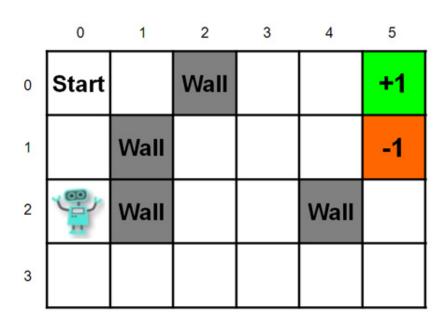
$$s_0, a_0, r_0, s_1, a_1, r_1 \dots$$

• Total γ-discounted reward:

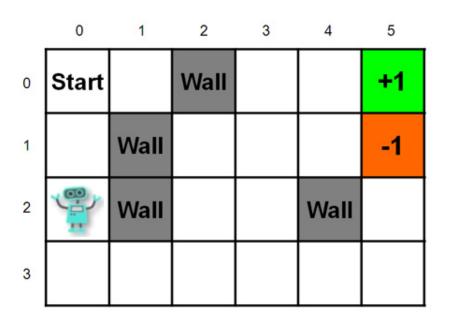
$$V^{\pi}(s_0) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^t r_t \right]$$

• Goal: Find a policy  $\pi$  that maximizes our value  $V^{\pi}(s_0)$ 





## Challenges in RL



## Challenges in RL

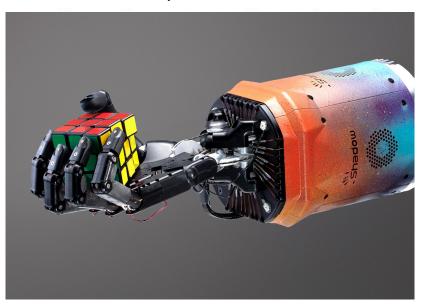
1. Exploration (the environment may be unknown)



## Challenges in RL

- Exploration
   (the environment may be unknown)
- 2. Credit assignment problem (due to delayed rewards)

## Dexterous Robotic Hand Manipulation OpenAl, 2019



### Challenges in RL

- Exploration
   (the environment may be unknown)
- Credit assignment problem (due to delayed rewards)
- 3. Large state/action spaces:
  hand state: joint angles/velocities
  cube state: configuration
  actions: forces applied to actuators

# Part 0: Background RL, Deep RL, and Supervised Learning (SL)

## The "Tabular" Dynamic Programming approach

| State s: (joint angles, cube config,) | Action $a$ : (forces at joints) | $Q^{\pi}(s,a)$ : state-action value "one step look-ahead value" using $\pi$ |
|---------------------------------------|---------------------------------|-----------------------------------------------------------------------------|
|                                       |                                 |                                                                             |
| (31°, 12°,, 8134,)                    | (1.2 Newton, 0.1 Newton,)       | 8 units of reward                                                           |
| :                                     | :                               | :                                                                           |

- "Tabular" dynamic programming approach: (with known model)
  - 1. For every entry in the table, compute the state-action value:

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} r_{t} | s_{0} = s, a_{0} = a \right]$$

2. Update the policy  $\pi$  to be greedy:  $\pi(s) \leftarrow \operatorname{argmax}_a Q^{\pi}(s, a)$ 

## The "Tabular" Dynamic Programming approach

| State s: (joint angles, cube config,) | Action $a$ : (forces at joints) | $m{Q^{\pi}(s,a)}$ : state-action value "one step look-ahead value" using $m{\pi}$ |
|---------------------------------------|---------------------------------|-----------------------------------------------------------------------------------|
|                                       |                                 |                                                                                   |
| (31°, 12°,, 8134,)                    | (1.2 Newton, 0.1 Newton,)       | 8 units of reward                                                                 |
| :                                     | <u>:</u>                        | :                                                                                 |

- "Tabular" dynamic programming approach: (with known model)
  - 1. For every entry in the table, compute the state-action value:

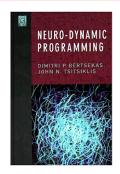
$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s, a_0 = a \right]$$

- 2. Update the policy  $\pi$  to be greedy:  $\pi(s) \leftarrow \operatorname{argmax}_a Q^{\pi}(s, a)$
- Generalization: how can we deal with this infinite table?
   Use sampling/supervised learning + deep learning.

## The "Tabular" Dynamic Programming approach

#### "deep RL"?

[Bertsekas & Tsitsiklis '97] provides first systematic analysis of RL with (worst case) "function approximation".



- "Tabular" dynamic programming approach: (with known model)
  - 1. For every entry in the table, compute the state-action value:

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} r_{t} | s_{0} = s, a_{0} = a \right]$$

- 2. Update the policy  $\pi$  to be greedy:  $\pi(s) \leftarrow \operatorname{argmax}_a Q^{\pi}(s, a)$
- Generalization: how can we deal with this infinite table?
   Use sampling/supervised learning + deep learning.



$$\theta \leftarrow \theta + \eta \nabla_{\theta} V^{\pi_{\theta}}(s_0)$$



 They are the most effective method for obtaining state of the art.

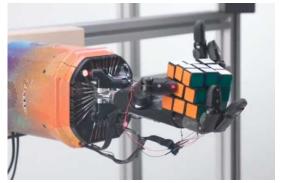
$$\theta \leftarrow \theta + \eta \nabla_{\theta} V^{\pi_{\theta}}(s_0)$$

Why do we like them?



$$\theta \leftarrow \theta + \eta \nabla_{\theta} V^{\pi_{\theta}}(s_0)$$

- Why do we like them?
  - they easily deal with large state/action spaces (through the neural net parameterization)



$$\theta \leftarrow \theta + \eta \nabla_{\theta} V^{\pi_{\theta}}(s_0)$$



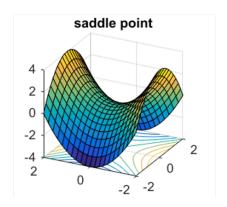
- Why do we like them?
  - they easily deal with large state/action spaces (through the neural net parameterization)
  - We can estimate the gradient using only simulation of our current policy  $\pi_{\theta}$  (the expectation is under the state actions visited under  $\pi_{\theta}$ )

$$\theta \leftarrow \theta + \eta \nabla_{\theta} V^{\pi_{\theta}}(s_0)$$



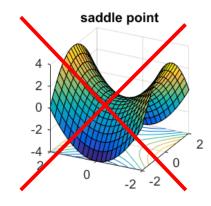
- Why do we like them?
  - they easily deal with large state/action spaces (through the neural net parameterization)
  - We can estimate the gradient using only simulation of our current policy  $\pi_{\theta}$  (the expectation is under the state actions visited under  $\pi_{\theta}$ )
  - They directly optimize the cost function of interest!

## The Optimization Landscape



#### Supervised Learning:

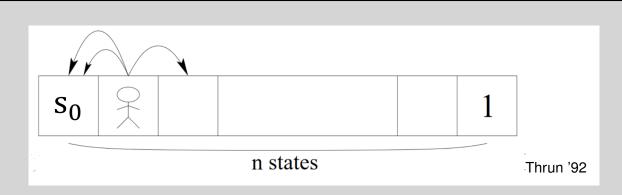
- Gradient descent tends to 'just work' in practice (not sensitive to initialization)
- Saddle points not a problem...



#### Reinforcement Learning:

- In many real RL problems, we have "very" flat regions.
- Gradients can be exponentially small in the "horizon" due to lack of exploration.

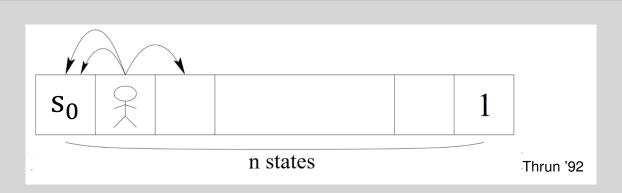
## The Optimization Landscape



Lemma: [Higher order vanishing gradients]

Suppose there are  $S \le 1/(1-\gamma)$  states in the MDP. With random initialization, all k-th higher-order gradients, for  $k < S/\log(S)$ , the spectral norm of the gradients are bounded by  $2^{-S/2}$ .

## The Optimization Landscape



Lemma: [Higher order vanishing gradients]

Suppose there are  $S \leq 1/(1-\gamma)$  states in the MDP. With random initialization, all k-th higher-order gradients, for  $k < S/\log(S)$ , the spectral norm of the gradients are bounded by  $2^{-S/2}$ .

This talk: Can we get any handle on policy gradient methods because they are one of the most widely used practical tools?

## This talk

We provide provable global convergence and generalization guarantees of (nonconvex) policy gradient methods.

## This talk

We provide provable global convergence and generalization guarantees of (nonconvex) policy gradient methods.

- Part I: small state spaces + exact gradients curvature + non-convexity
  - Vanilla PG
  - PG with regularization
  - Natural Policy Gradient

## This talk

We provide provable global convergence and generalization guarantees of (nonconvex) policy gradient methods.

- Part I: small state spaces + exact gradients curvature + non-convexity
  - Vanilla PG
  - PG with regularization
  - Natural Policy Gradient
- Part II: large state spaces generalization and distribution shift
  - Function approximation/deep nets? Why use PG?

(and the softmax policy class)

Part I: Small State Spaces

# Policy Optimization over the "softmax" policy class (let's start simple!)

• Simplest way to parameterize the simplex, without constraints.

# Policy Optimization over the "softmax" policy class (let's start simple!)

- Simplest way to parameterize the simplex, without constraints.
- $\pi_{\theta}(a \mid s)$  is the probability of action a given state s  $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$

# Policy Optimization over the "softmax" policy class (let's start simple!)

- Simplest way to parameterize the simplex, without constraints.
- $\pi_{\theta}(a \mid s)$  is the probability of action a given state s  $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$
- Complete class: contains every stationary policy

## Policy Optimization over the "softmax" policy class (let's start simple!)

- Simplest way to parameterize the simplex, without constraints.
- $\pi_{\theta}(a \mid s)$  is the probability of action a given state s  $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$
- Complete class: contains every stationary policy

The policy optimization problem  $\max V^{\pi_{\theta}}(s_0)$  is non-convex.

Do we have global convergence?

## Global Convergence of PG for Softmax

$$V^{\theta}(\mu) = E_{s \sim \mu}[V^{\theta}(s)] \qquad \mu = S_{far} + c_{rag}$$

$$\theta \leftarrow \theta + \eta \nabla_{\theta} V^{\theta}(\mu) \qquad \text{state}$$
oftmax Policy class}

#### Theorem [Vanilla PG for Softmax Policy class]

Suppose  $\mu$  has full support over the state space. Then, for all states s,

$$V^{\theta}(s) \to V^{\star}(s)$$

## Global Convergence of PG for Softmax

$$V^{\theta}(\mu) = E_{s \sim \mu}[V^{\theta}(s)]$$

$$\theta \leftarrow \theta + \eta \, \nabla_{\theta} V^{\theta}(\mu)$$

#### Theorem [Vanilla PG for Softmax Policy class]

Suppose  $\mu$  has full support over the state space. Then, for all states s,

$$V^{\theta}(s) \to V^{\star}(s)$$

- Even though problem is non-convex, we have global convergence.
  - proof is detailed/asymptotic

## Global Convergence of PG for Softmax

$$V^{\theta}(\mu) = E_{s \sim \mu}[V^{\theta}(s)]$$

$$\theta \leftarrow \theta + \eta \, \nabla_{\theta} V^{\theta}(\mu)$$

#### Theorem [Vanilla PG for Softmax Policy class]

Suppose  $\mu$  has full support over the state space. Then, for all states s,

$$V^{\theta}(s) \to V^{\star}(s)$$

- Even though problem is non-convex, we have global convergence.
  - proof is detailed/asymptotic
- Rate could be exponentially slow in terms of #states
  - Issue: the softmax can have very flat gradients

## Global Convergence: Softmax + Log Barrier regularization

$$L_{\lambda}(\theta) := V^{\theta}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a \mid s)$$
$$\theta \leftarrow \theta + \eta \nabla L_{\lambda}(\theta)$$

#### Theorem [PG: Softmax+Log Barrier]

S: #states, A: #actions, H: Horizon =  $1/(1-\gamma)$ 

Suppose  $\mu = \mathrm{uniform}_S$  and with appropriate settings of  $\lambda$  and  $\eta$ 

After  $\frac{S^4A^2H^6}{S^2}$  iterations, we have for all s,

$$V^{\theta}(s) \ge V^{\star}(s) - \epsilon$$

## Global Convergence: Softmax + Log Barrier regularization

$$L_{\lambda}(\theta) := V^{\theta}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a \mid s)$$
$$\theta \leftarrow \theta + \eta \, \nabla L_{\lambda}(\theta)$$

### Theorem [PG: Softmax+Log Barrier]

S: #states, A: #actions, H: Horizon =  $1/(1 - \gamma)$ 

Suppose  $\mu = \mathrm{uniform}_S$  and with appropriate settings of  $\lambda$  and  $\eta$ 

After  $\frac{S^4A^2H^6}{s^2}$  iterations, we have for all s,

$$V^{\theta}(s) \ge V^{\star}(s) - \epsilon$$

Even though problem is non-convex, we a have poly iteration complexity.

## Global Convergence: Softmax + Log Barrier regularization

$$L_{\lambda}(\theta) := V^{\theta}(\mu) + \frac{\lambda}{SA} \sum_{s,a} \log \pi_{\theta}(a \mid s)$$
$$\theta \leftarrow \theta + \eta \nabla L_{\lambda}(\theta)$$

### Theorem [PG: Softmax+Log Barrier]

S: #states, A: #actions, H: Horizon =  $1/(1 - \gamma)$ Suppose  $\mu = \text{uniform}_S$  and with appropriate settings of  $\lambda$  and  $\eta$ 

After  $\frac{S^4A^2H^6}{\epsilon^2}$  iterations, we have for all s,

$$V^{\theta}(s) \ge V^{\star}(s) - \epsilon$$

- Even though problem is non-convex, we a have poly iteration complexity.
- Log barrier and uniform  $\mu$  helps with conditioning problems.
  - proof is succinct/ requires showing  $\pi_{\theta}(a \mid s)$  doesn't become too small.
  - log barrier reg = KL-regularization ≠ entropy regularization

## Preconditioning: The Natural Policy Gradient (NPG)



Practice: most methods are gradient based, usually variants of:
 NPG [K. '01]; TRPO [Schulman '15]; PPO [Schulman '17]

## Preconditioning: The Natural Policy Gradient (NPG)



- Practice: most methods are gradient based, usually variants of:
   NPG [K. '01]; TRPO [Schulman '15]; PPO [Schulman '17]
- NPG warps the distance metric to stretch the corners out (using the Fisher information metric) to move 'more' near the boundaries. The update is:

$$F(\theta) = E_{s, a \sim \pi_{\theta}} \left[ \nabla \log \pi_{\theta}(a \mid s) \nabla \log \pi_{\theta}(a \mid s)^{\mathsf{T}} \right]$$
$$\theta \leftarrow \theta + \eta F(\theta)^{-1} \nabla V^{\theta}(s_{0})$$

# NPG and "soft" policy iteration

• The softmax policy class:  $\pi_{\theta}(a \mid s) \propto \exp(\theta_{s,a})$ 

## NPG and "soft" policy iteration

- The softmax policy class:  $\pi_{\theta}(a \mid s) \propto \exp(\theta_{s,a})$
- At iteration *t*, the NPG update rule:

$$\theta \leftarrow \theta + \eta F(\theta)^{-1} \nabla V^{\theta}(s_0)$$

is equivalent to a "soft" policy iteration update rule:

$$\pi(a \mid s) \leftarrow \pi(a \mid s) \frac{\exp(\eta Q^{\pi}(s, a))}{Z}$$

# NPG and "soft" policy iteration

- The softmax policy class:  $\pi_{\theta}(a \mid s) \propto \exp(\theta_{s,a})$
- At iteration *t*, the NPG update rule:

$$\theta \leftarrow \theta + \eta F(\theta)^{-1} \nabla V^{\theta}(s_0)$$

is equivalent to a "soft" policy iteration update rule:

$$\pi(a \mid s) \leftarrow \pi(a \mid s) \xrightarrow{\exp(\eta Q^{\pi}(s, a))} Z$$

What happens for this non-convex update rule?

## Theorem [NPG]

Set  $\eta = (1 - \gamma)^2 \log A$ .

For the softmax policy class, we have after T iterations,

$$V^{(T)}(\mathfrak{G}) \ge V^{\star}(\mathfrak{G}) - \frac{2}{(1-\gamma)^2 T}$$



## Theorem [NPG]

Set  $\eta = (1 - \gamma)^2 \log A$ .

For the softmax policy class, we have after T iterations,

$$V^{(T)}(\rho) \ge V^{\star}(\rho) - \frac{2}{(1-\gamma)^2 T}$$

• Dimension free iteration complexity: (No dependence on  $S, A, \mu$ )

### Theorem [NPG]

Set  $\eta = (1 - \gamma)^2 \log A$ .

For the softmax policy class, we have after T iterations,

$$V^{(T)}(\rho) \ge V^{\star}(\rho) - \frac{2}{(1-\gamma)^2 T}$$

- Dimension free iteration complexity: (No dependence on  $S, A, \mu$ )
- Also a "fast rate".

### Theorem [NPG]

Set  $\eta = (1 - \gamma)^2 \log A$ .

For the softmax policy class, we have after T iterations,

$$V^{(T)}(\rho) \ge V^{\star}(\rho) - \frac{2}{(1-\gamma)^2 T}$$

- Dimension free iteration complexity: (No dependence on  $S, A, \mu$ )
- Also a "fast rate".
- Even though problem is non-convex, a mirror descent analysis applies. Analysis idea from [Even-Dar, K., Mansour 2009]

## Theorem [NPG]

Set  $\eta = (1 - \gamma)^2 \log A$ .

For the softmax policy class, we have after T iterations,

$$V^{(T)}(\rho) \ge V^{\star}(\rho) - \frac{2}{(1-\gamma)^2 T}$$

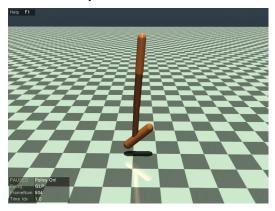
- Dimension free iteration complexity: (No dependence on  $S, A, \mu$ )
- Also a "fast rate".
- Even though problem is non-convex, a mirror descent analysis applies.
   Analysis idea from [Even-Dar, K., Mansour 2009]

What about approximate/sampled gradients and large state space?

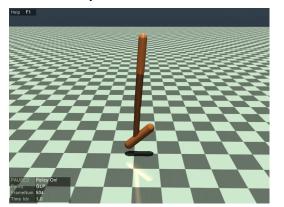
Taking stock: "measures" and related work

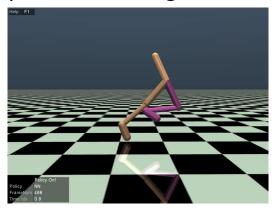
what is the role of the "coverage measure"  $\mu$ ?

• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single starting configuration  $s_0$  are not robust!

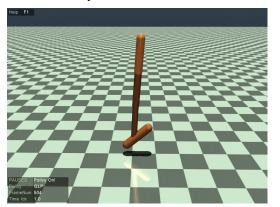


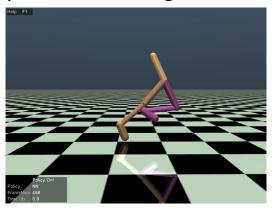
• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single starting configuration  $s_0$  are not robust!



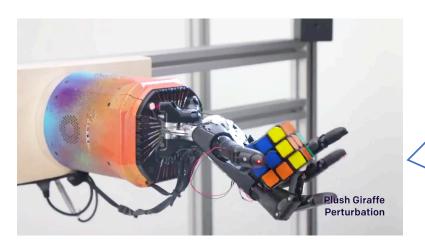


• [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single starting configuration  $s_0$  are not robust!

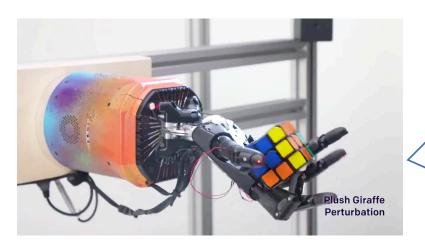




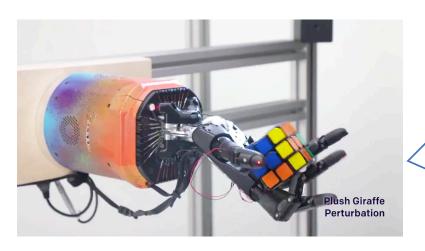
- [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single starting configuration  $s_0$  are not robust!
- How to fix this? Training from different starting configurations sampled from  $s_0 \sim \mu$  fixes this.



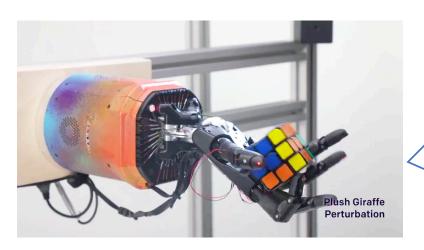
Trained with "domain randomization"



Trained with "domain randomization"



Trained with "domain randomization"



Trained with "domain randomization"

- How should we think about approximation/generalization? (this is not an issue in supervised learning)
- How should we think about the measure  $\mu$  in the infinite state space case? ( $\mu$  lets us sidestep exploration...)

Generalization:

#### Generalization:

• approx. dynamic programming requires worst-case  $\ell_{\infty}$  guarantees on errors. some relaxations possible: [Munos, 2005, Antos et al., 2008]

#### Generalization:

- approx. dynamic programming requires worst-case  $\ell_{\infty}$  guarantees on errors. some relaxations possible: [Munos, 2005, Antos et al., 2008]
- [K. & Langford; '02] conservative policy iteration (CPI)
   provable guarantees in terms of 'supervised learning' error + μ
  - Related: PSDP [Bagnell et al, '04], [Scherer & Geist, '14], MD-MPI [Geist et al., '19]...
  - imitation learning

#### Generalization:

- approx. dynamic programming requires worst-case  $\ell_{\infty}$  guarantees on errors. some relaxations possible: [Munos, 2005, Antos et al., 2008]
- [K. & Langford; '02] conservative policy iteration (CPI)
   provable guarantees in terms of 'supervised learning' error + μ
  - Related: PSDP [Bagnell et al, '04], [Scherer & Geist, '14], MD-MPI [Geist et al., '19]...
  - imitation learning

Optimization and global convergence:

#### Generalization:

- approx. dynamic programming requires worst-case  $\ell_{\infty}$  guarantees on errors. some relaxations possible: [Munos, 2005, Antos et al., 2008]
- [K. & Langford; '02] conservative policy iteration (CPI)
   provable guarantees in terms of 'supervised learning' error + μ
  - Related: PSDP [Bagnell et al, '04], [Scherer & Geist, '14], MD-MPI [Geist et al., '19]...
  - imitation learning

### Optimization and global convergence:

roots in [Even-Dar, K., Mansour 2009]

#### Generalization:

- approx. dynamic programming requires worst-case  $\ell_{\infty}$  guarantees on errors. some relaxations possible: [Munos, 2005, Antos et al., 2008]
- [K. & Langford; '02] conservative policy iteration (CPI)
   provable guarantees in terms of 'supervised learning' error + μ
  - Related: PSDP [Bagnell et al, '04], [Scherer & Geist, '14], MD-MPI [Geist et al., '19]...
  - imitation learning

### Optimization and global convergence:

- roots in [Even-Dar, K., Mansour 2009]
- CPI also gives a subgradient condition for policy search
  - [Scherer & Geist, '14], [Bhandari & Russo]

#### Generalization:

- approx. dynamic programming requires worst-case  $\ell_{\infty}$  guarantees on errors. some relaxations possible: [Munos, 2005, Antos et al., 2008]
- [K. & Langford; '02] conservative policy iteration (CPI)
   provable guarantees in terms of 'supervised learning' error + μ
  - Related: PSDP [Bagnell et al, '04], [Scherer & Geist, '14], MD-MPI [Geist et al., '19]...
  - imitation learning

#### Optimization and global convergence:

- roots in [Even-Dar, K., Mansour 2009]
- CPI also gives a subgradient condition for policy search
  - [Scherer & Geist, '14], [Bhandari & Russo]
- [Fazel et. al. 18]: global convergence for LQRs

# Approximation and Generalization

Part-II: Large State Spaces

 $\pi_{\theta}(a \mid s)$  is the probability of action a given s, parameterized by  $\pi_{\theta}(a \mid s) \propto \exp(f_{\theta}(s, a))$ 

 $\pi_{\theta}(a \mid s)$  is the probability of action a given s, parameterized by  $\pi_{\theta}(a \mid s) \propto \exp(f_{\theta}(s, a))$ 

• Softmax policy class:  $f_{\theta}(s, a) = \theta_{s, a}$ 

 $\pi_{\theta}(a \mid s)$  is the probability of action a given s, parameterized by  $\pi_{\theta}(a \mid s) \propto \exp(f_{\theta}(s, a))$ 

- Softmax policy class:  $f_{\theta}(s, a) = \theta_{s,a}$
- Log-linear policy class:  $f_{\theta}(s,a) = \overrightarrow{\theta} \cdot \overrightarrow{\phi}(s,a)$  where  $\overrightarrow{\phi}(s,a) \in R^d$

 $\pi_{\theta}(a \mid s)$  is the probability of action a given s, parameterized by  $\pi_{\theta}(a \mid s) \propto \exp(f_{\theta}(s, a))$ 

- Softmax policy class:  $f_{\theta}(s, a) = \theta_{s,a}$
- Log-linear policy class:  $f_{\theta}(s, a) = \overrightarrow{\theta} \cdot \overrightarrow{\phi}(s, a)$  where  $\overrightarrow{\phi}(s, a) \in \mathbb{R}^d$
- Neural policy class:  $f_{\theta}(s, a)$  is a neural network

# NPG & Log Linear Policy Classes

• Feature vector  $\phi(s, a) \in \mathbb{R}^d$ ,  $\pi_{\theta}(a \mid s) \propto \exp(\theta \cdot \phi_{s, a})$ 

# NPG & Log Linear Policy Classes

- Feature vector  $\phi(s, a) \in \mathbb{R}^d$ ,  $\pi_{\theta}(a \mid s) \propto \exp(\theta \cdot \phi_{s, a})$
- At iteration *t*, the NPG update rule:

$$\theta \leftarrow \theta + \eta F(\theta)^{-1} \nabla V^{\theta}(s_0)$$

is equivalent to the "soft"+approximate policy iteration update:

# NPG & Log Linear Policy Classes

- Feature vector  $\phi(s, a) \in \mathbb{R}^d$ ,  $\pi_{\theta}(a \mid s) \propto \exp(\theta \cdot \phi_{s, a})$
- At iteration *t*, the NPG update rule:

$$\theta \leftarrow \theta + \eta F(\theta)^{-1} \nabla V^{\theta}(s_0)$$

is equivalent to the "soft"+approximate policy iteration update:

1. approximate the  $Q^{\theta}$  with the the features:

$$w_{\star} \in \operatorname{argmin}_{w} E_{s,a \sim d(\cdot \mid \pi, \mu)} \left[ \left( Q^{\theta}(s,a) - w \cdot \phi_{s,a} \right)^{2} \right].$$

where  $d(\cdot \mid \pi, \mu)$  is "on-policy" distribution starting from  $s_0, a_0 \sim \mu$ 



## NPG & Log Linear Policy Classes

- Feature vector  $\phi(s, a) \in \mathbb{R}^d$ ,  $\pi_{\theta}(a \mid s) \propto \exp(\theta \cdot \phi_{s, a})$
- At iteration *t*, the NPG update rule:

$$\theta \leftarrow \theta + \eta \widehat{F(\theta)}^{-1} \nabla \widehat{V^{\theta}(s_0)}$$

is equivalent to the "soft"+approximate policy iteration update:

1. approximate the  $Q^{\theta}$  with the the features:

approximate the 
$$Q^{\sigma}$$
 with the the features:  $w_{\star} \in \operatorname{argmin}_{w} E_{s,a \sim d(\cdot \mid \pi, \mu)} \left[ \left( Q^{\theta}(s,a) - w \cdot \phi_{s,a} \right)^{2} \right].$  where  $d(\cdot \mid \pi, \mu)$  is "on-policy" distribution starting from  $s_{0}, a_{0} \sim \mu$ 

2. policy update

 $(Z_{\rm s}$  is the normalizing constant)

• Realizability: Suppose that  $Q^{\theta}(s, a)$  is a linear function in  $\phi(s, a)$ 

- Realizability: Suppose that  $Q^{\theta}(s, a)$  is a linear function in  $\phi(s, a)$
- Supervised learning error: our estimate  $\widehat{w}^t$  has bounded regression error (say due to sampling)

$$E_{s,a\sim d(\cdot|\pi,\mu)}\left[\left(Q^{\theta}(s,a)-\widehat{w}^{t}\cdot\phi_{s,a}\right)^{2}\right]\leq\epsilon_{\text{stat}}\approx\sqrt{2}$$

- Realizability: Suppose that  $Q^{\theta}(s,a)$  is a linear function in  $\phi(s,a)$
- Supervised learning error: our estimate  $\widehat{w}^t$  has bounded regression error (say due to sampling)

$$E_{s,a \sim d(\cdot | \pi, \mu)} \left[ \left( Q^{\theta}(s, a) - \widehat{w}^{t} \cdot \phi_{s,a} \right)^{2} \right] \leq \epsilon_{\text{stat}}$$

• Conditioning (i.e. "feature coverage"):  $\|\phi_{s,a}\| \leq 1$  and define

$$\kappa = 1/\sigma_{\min}(E_{s,a\sim\mu}[\phi_{s,a}\phi_{s,a}^{\mathsf{T}}])$$

- Realizability: Suppose that  $Q^{\theta}(s, a)$  is a linear function in  $\phi(s, a)$
- Supervised learning error: our estimate  $\widehat{w}^t$  has bounded regression error (say due to sampling)

$$E_{s,a\sim d(\cdot|\pi,\mu)}\left[\left(Q^{\theta}(s,a)-\widehat{w}^{t}\cdot\phi_{s,a}\right)^{2}\right]\leq\epsilon_{\text{stat}} \approx \sqrt{4}$$

• Conditioning (i.e. "feature coverage"):  $\|\phi_{s,a}\| \leq 1$  and define

$$\kappa = 1/\sigma_{\min}(E_{s,a\sim\mu}[\phi_{s,a}\phi_{s,a}^{\mathsf{T}}])$$

### Theorem [NPG]

*A*: #actions, *H*: Horizon =  $1/(1 - \gamma)$ , Norm bound:  $\|\widehat{w}^t\| \le W$  After *T* iterations, the NPG algorithm returns a  $\pi$  s.t.

$$V^{(T)}(\rho) \ge V^{\star}(\rho) - HW\sqrt{\frac{2\log A}{T}} + \sqrt{4AH^3\kappa \ \epsilon_{\text{stat}}}$$

NPG+Log Linear Case

(just notation for sample based approach)

• For a state-action distribution v, define:

$$L(w; \theta, v) := E_{s,a \sim v} \left[ (Q^{\pi_{\theta}}(s, a) - w \cdot \phi_{s,a})^2 \right]$$

• For a state-action distribution v, define:

$$L(w; \theta, v) := E_{s,a \sim v} \left[ (Q^{\pi_{\theta}}(s, a) - w \cdot \phi_{s,a})^2 \right].$$

• The NPG update is equivalent to:

• For a state-action distribution v, define:

$$L(w; \theta, v) := E_{s,a\sim v} \left[ (Q^{\pi_{\theta}}(s, a) - w \cdot \phi_{s,a})^2 \right].$$

- The NPG update is equivalent to:
  - 1. approximate the  $Q^{\theta}$  with the the features:

$$\widehat{w}^t \approx \operatorname{argmin}_{w} L(w; \theta, d(\cdot \mid \pi, \mu)).$$

where  $d(\cdot \mid \pi, \mu)$  is "on-policy" distribution starting from  $s_0, a_0 \sim \mu$ 

• For a state-action distribution v, define:

$$L(w; \theta, v) := E_{s,a\sim v} \left[ (Q^{\pi_{\theta}}(s, a) - w \cdot \phi_{s,a})^2 \right].$$

- The NPG update is equivalent to:
  - 1. approximate the  $Q^{\theta}$  with the the features:

$$\widehat{w}^t \approx \operatorname{argmin}_{w} L(w; \theta, d(\cdot \mid \pi, \mu)).$$

where  $d(\cdot \mid \pi, \mu)$  is "on-policy" distribution starting from  $s_0, a_0 \sim \mu$ 

2. policy update:  $\pi(a \mid s) \leftarrow \pi(a \mid s) \exp(w_{\star} \cdot \phi_{s,a})/Z_{s}$  ( $Z_{s}$  is the normalizing constant)

• Supervised learning error: Suppose the excess risk and approx error are bounded as:

$$\begin{split} &L(\boldsymbol{w}^{(t)};\boldsymbol{\theta}^{(t)},\boldsymbol{d}^{(t)}) - L(\boldsymbol{w}_{\star}^{(t)};\boldsymbol{\theta}^{(t)},\boldsymbol{d}^{(t)}) \leq \epsilon_{\text{stat}}, \\ &L(\boldsymbol{w}_{\star}^{(t)};\boldsymbol{\theta}^{(t)},\boldsymbol{d}^{(t)}) \leq \epsilon_{\text{approx}}, \end{split}$$

• Supervised learning error: Suppose the excess risk and approx error are bounded as:

$$L(w_{\star}^{(t)}; \theta^{(t)}, d^{(t)}) - L(w_{\star}^{(t)}; \theta^{(t)}, d^{(t)}) \leq \epsilon_{\text{stat}},$$

$$L(w_{\star}^{(t)}; \theta^{(t)}, d^{(t)}) \leq \epsilon_{\text{approx}}, \quad \text{if } v \neq 0 \text{ for } t \neq 0 \text{ f$$

• Conditioning (i.e. "feature coverage"):  $\|\phi_{s,a}\| \leq 1$  and define

$$\kappa = 1/\sigma_{\min}(E_{s,a\sim\mu}[\phi_{s,a}\phi_{s,a}^{\top}])$$

• Supervised learning error: Suppose the excess risk and approx error are bounded as:

$$L(w_{\star}^{(t)}; \theta^{(t)}, d^{(t)}) - L(w_{\star}^{(t)}; \theta^{(t)}, d^{(t)}) \le \epsilon_{\text{stat}},$$
  

$$L(w_{\star}^{(t)}; \theta^{(t)}, d^{(t)}) \le \epsilon_{\text{approx}},$$

• Conditioning (i.e. "feature coverage"):  $\|\phi_{s,a}\| \leq 1$  and define

$$\kappa = 1/\sigma_{\min}(E_{s,a\sim\mu}[\phi_{s,a}\phi_{s,a}^{\mathsf{T}}])$$

A: #actions, H: Horizon =  $1/(1-\gamma)$  List of any  $T^*$ After T iterations, the NPG algorithm returns a  $\pi$  s.t. Compartor

$$V^{(T)}(s_0) \ge V^{\star}(s_0) - HW\sqrt{\frac{2\log A}{T}} + \sqrt{4AH^3\left(\kappa \cdot \epsilon_{\text{stat}} + \left\|\frac{d^{\star}}{\mu}\right\|_{\infty} \cdot \epsilon_{\text{approx}}\right)}$$
where  $\left\|\frac{a}{b}\right\|_{\infty} = \max_{i} \left|\frac{a_i}{b_i}\right|$ .

• theory foundations of PG methods: optimization and approximation guarantees



**Alekh Agarwal** 



**Jason Lee** 



**Gaurav Mahajan** 

- theory foundations of PG methods: optimization and approximation guarantees
  - PG methods effective due to their approximation power



**Alekh Agarwal** 



**Jason Lee** 



**Gaurav Mahajan** 

- theory foundations of PG methods: optimization and approximation guarantees
  - PG methods effective due to their approximation power
- conceptually (and technically) important issues for progress:



**Alekh Agarwal** 



**Jason Lee** 



**Gaurav Mahajan** 

- theory foundations of PG methods: optimization and approximation guarantees
  - PG methods effective due to their approximation power
- conceptually (and technically) important issues for progress:
  - exploration: we assumed a good coverage " $\mu$ " but this should be learned (see pc-pg paper!)



Alekh Agarwal



**Jason Lee** 



**Gaurav Mahajan** 

- theory foundations of PG methods: optimization and approximation guarantees
  - PG methods effective due to their approximation power
- conceptually (and technically) important issues for progress:
  - exploration: we assumed a good coverage "μ" but this should be learned (see pc-pg paper!)
  - representation/transfer learning: theory of RL is different from SL.



**Alekh Agarwal** 



**Jason Lee** 



**Gaurav Mahajan**