Sums of Squares of Polynomials and Graphs

CWI
 Monique Laurent

Joint work with Luis Felipe Vargas (CWI)
Fields Distinguished Lecture Series - May 13, 2021

Computing the stability number $\alpha(G)$

$\alpha=4 \quad \chi=3 \quad \bar{\chi}=5$

- Stability number $\alpha(G)$:
maximum cardinality of a set of pairwise non-adjacent vertices (stable set)
- Clique cover number $\bar{\chi}(G):=\chi(\bar{G})$: minimum number of cliques covering V
- $\alpha(G) \leq \bar{\chi}(G)$

Computing the stability number $\alpha(G)$

- Stability number $\alpha(G)$: maximum cardinality of a set of pairwise non-adjacent vertices (stable set)
- Clique cover number $\bar{\chi}(G):=\chi(\bar{G})$: minimum number of cliques covering V
$\alpha=4 \quad \chi=3 \quad \bar{\chi}=5$
- $\alpha(G) \leq \bar{\chi}(G)$

Optimization over the simplex Δ_{n}
Motzkin-Straus (1965)

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

Computing the stability number $\alpha(G)$

- Stability number $\alpha(G)$:
maximum cardinality of a set of pairwise non-adjacent vertices (stable set)
- Clique cover number $\bar{\chi}(G):=\chi(\bar{G})$: minimum number of cliques covering V
$\alpha=4 \quad \chi=3 \quad \bar{\chi}=5$
- $\alpha(G) \leq \bar{\chi}(G)$

Optimization over the simplex Δ_{n}
Motzkin-Straus (1965)

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

S stable with size $\alpha(G) \rightsquigarrow x=\frac{\chi^{s}}{\alpha(G)} \in \Delta_{n}$ with value $\frac{1}{\alpha(G)}$

$$
I+A_{G}=\stackrel{S}{V \backslash S}\left(\begin{array}{cc}
S & V \backslash S \\
I & A_{G[S, V \backslash S]} \\
A_{G[V \backslash S, S]} & I+A_{G[V \backslash S]}
\end{array}\right)
$$

Computing the stability number $\alpha(G)$

$\alpha=4 \quad \chi=3 \quad \bar{\chi}=5$

- Stability number $\alpha(G)$: maximum cardinality of a set of pairwise non-adjacent vertices (stable set)
- Clique cover number $\bar{\chi}(G):=\chi(\bar{G})$: minimum number of cliques covering V
- $\alpha(G) \leq \bar{\chi}(G)$

Optimization over the simplex Δ_{n}
Motzkin-Straus (1965)

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

Optimization over the unit sphere \mathbb{S}^{n-1}

$$
x^{\circ 2}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)
$$

$$
\frac{1}{\alpha(G)}=\min \left(x^{\circ 2}\right)^{\top}\left(I+A_{G}\right) x^{\circ 2} \text { s.t. } x \in \mathbb{S}^{n-1}=\left\{x: \sum_{i=1}^{n} x_{i}^{2}=1\right\}
$$

Copositive programming formulation

Copositive cone

$$
\operatorname{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

Copositive programming formulation

Copositive cone

$$
\mathrm{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

Copositive formulation:
[de Klerk-Pasechnik 2002]

$$
\alpha(G)=\min _{\lambda \in \mathbb{R}} \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in C O P_{n} \quad J=e e^{\top}
$$

Copositive programming formulation

Copositive cone

$$
\mathrm{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

Copositive formulation:
[de Klerk-Pasechnik 2002]

$$
\alpha(G)=\min _{\lambda \in \mathbb{R}} \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in C O P_{n} \quad J=e e^{\top}
$$

This follows using (Motzkin-Straus) formulation:

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

Copositive programming formulation

Copositive cone

$$
\operatorname{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

Copositive formulation:
[de Klerk-Pasechnik 2002]

$$
\alpha(G)=\min _{\lambda \in \mathbb{R}} \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in C O P_{n} \quad J=e e^{\top}
$$

This follows using (Motzkin-Straus) formulation:

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

Pf: $\lambda\left(I+A_{G}\right)-J \in \operatorname{COP}_{n} \Longleftrightarrow x^{\top}\left(\lambda\left(I+A_{G}\right)-J\right) x \geq 0$ on \mathbb{R}_{+}^{n},

Copositive programming formulation

Copositive cone

$$
\operatorname{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

Copositive formulation:
[de Klerk-Pasechnik 2002]

$$
\alpha(G)=\min _{\lambda \in \mathbb{R}} \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in C O P_{n} \quad J=e e^{\top}
$$

This follows using (Motzkin-Straus) formulation:

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

Pf: $\lambda\left(I+A_{G}\right)-J \in \operatorname{COP}_{n} \Longleftrightarrow x^{\top}\left(\lambda\left(I+A_{G}\right)-J\right) x \geq 0$ on \mathbb{R}_{+}^{n}, or Δ_{n}

Copositive programming formulation

Copositive cone

$$
\mathrm{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

Copositive formulation:
[de Klerk-Pasechnik 2002]

$$
\alpha(G)=\min _{\lambda \in \mathbb{R}} \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in C O P_{n} \quad J=e e^{\top}
$$

This follows using (Motzkin-Straus) formulation:

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

Pf: $\lambda\left(I+A_{G}\right)-J \in \operatorname{COP}_{n} \Longleftrightarrow x^{\top}\left(\lambda\left(I+A_{G}\right)-J\right) x \geq 0$ on \mathbb{R}_{+}^{n}, or Δ_{n}

$$
\Longleftrightarrow \lambda \cdot x^{\top}\left(I+A_{G}\right) x-\left(e^{\top} x\right)^{2} \geq 0 \text { on } \Delta_{n}
$$

Copositive programming formulation

Copositive cone

$$
\mathrm{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

Copositive formulation:
[de Klerk-Pasechnik 2002]

$$
\alpha(G)=\min _{\lambda \in \mathbb{R}} \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in C O P_{n} \quad J=e e^{\top}
$$

This follows using (Motzkin-Straus) formulation:

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

Pf: $\lambda\left(I+A_{G}\right)-J \in \operatorname{COP}_{n} \Longleftrightarrow x^{\top}\left(\lambda\left(I+A_{G}\right)-J\right) x \geq 0$ on \mathbb{R}_{+}^{n}, or Δ_{n}

$$
\begin{aligned}
& \Longleftrightarrow \lambda \cdot x^{\top}\left(I+A_{G}\right) x-\left(e^{\top} x\right)^{2} \geq 0 \text { on } \Delta_{n} \\
& \Longleftrightarrow x^{\top}\left(I+A_{G}\right) x \geq 1 / \lambda \text { on } \Delta_{n}
\end{aligned}
$$

SoS Approximations for $\alpha(G)$ THE CONES $K_{n}^{(r)}$ THE BOUNDS $\vartheta^{(r)}(G)$

Tractable subcones of COP_{n}

$$
\operatorname{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

linear cone $C_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}\right)^{r} x^{\top} M x \in \mathbb{R}_{+}[x]\right\} \quad$ (nonnegative coefficients)
SoS cone $K_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{\top} M x^{\circ 2} \in \Sigma\right\} \quad$ (SoS polynomial)

Tractable subcones of COP_{n}

$$
\operatorname{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

linear cone $C_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}\right)^{r} x^{\top} M x \in \mathbb{R}_{+}[x]\right\} \quad$ (nonnegative coefficients)
SoS cone $K_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{\top} M x^{\circ 2} \in \Sigma\right\} \quad$ (SoS polynomial)

- $C_{n}^{(r)} \subseteq K_{n}^{(r)} \subseteq \mathrm{COP}_{n}, \quad C_{n}^{(r)} \subseteq C_{n}^{(r+1)}, \quad K_{n}^{(r)} \subseteq K_{n}^{(r+1)}$

Tractable subcones of COP_{n}

$$
\operatorname{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

linear cone $C_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}\right)^{r} x^{\top} M x \in \mathbb{R}_{+}[x]\right\} \quad$ (nonnegative coefficients)
SoS cone $K_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{\top} M x^{\circ 2} \in \Sigma\right\} \quad$ (SoS polynomial)

- $C_{n}^{(r)} \subseteq K_{n}^{(r)} \subseteq \mathrm{COP}_{n}, \quad C_{n}^{(r)} \subseteq C_{n}^{(r+1)}, \quad K_{n}^{(r)} \subseteq K_{n}^{(r+1)}$
- $\operatorname{int}\left(\mathrm{COP}_{n}\right) \subseteq \bigcup_{r \geq 0} C_{n}^{(r)} \subseteq \bigcup_{r \geq 0} K_{n}^{(r)} \subseteq \operatorname{COP}_{n}$

Tractable subcones of COP_{n}

$$
\operatorname{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

linear cone $C_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}\right)^{r} x^{\top} M x \in \mathbb{R}_{+}[x]\right\} \quad$ (nonnegative coefficients)
SoS cone $K_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{\top} M x^{\circ 2} \in \Sigma\right\} \quad$ (SoS polynomial)

- $C_{n}^{(r)} \subseteq K_{n}^{(r)} \subseteq \mathrm{COP}_{n}, \quad C_{n}^{(r)} \subseteq C_{n}^{(r+1)}, \quad K_{n}^{(r)} \subseteq K_{n}^{(r+1)}$
- $\operatorname{int}\left(\mathrm{COP}_{n}\right) \subseteq \bigcup_{r \geq 0} C_{n}^{(r)} \subseteq \bigcup_{r \geq 0} K_{n}^{(r)} \subseteq \operatorname{COP}_{n}$

Theorem (Pólya 1974; Powers-Reznick 2001)
If p is a form s.t. $p>0$ on Δ_{n}, then there exists an integer $r \in \mathbb{N}$ s.t.
$\left(\sum_{i} x_{i}\right)^{r} p$ has nonnegative coefficients

Tractable subcones of COP_{n}

$$
\mathrm{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0 \quad \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

linear cone $C_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}\right)^{r} x^{\top} M x \in \mathbb{R}_{+}[x]\right\} \quad$ (nonnegative coefficients)
SoS cone $K_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{\top} M x^{\circ 2} \in \Sigma\right\} \quad$ (SoS polynomial)

- $C_{n}^{(r)} \subseteq K_{n}^{(r)} \subseteq \mathrm{COP}_{n}, \quad C_{n}^{(r)} \subseteq C_{n}^{(r+1)}, \quad K_{n}^{(r)} \subseteq K_{n}^{(r+1)}$
- $\operatorname{int}\left(\operatorname{COP}_{n}\right) \subseteq \bigcup_{r \geq 0} C_{n}^{(r)} \subseteq \bigcup_{r \geq 0} K_{n}^{(r)} \subseteq \operatorname{COP}_{n}$

Theorem (Pólya 1974; Powers-Reznick 2001)
If p is a form s.t. $p>0$ on Δ_{n}, then there exists an integer $r \in \mathbb{N}$ s.t. $\left(\sum_{i} x_{i}\right)^{r} p$ has nonnegative coefficients
in fact, for any $r \geq\binom{ d}{2} \frac{L_{p}}{p_{\text {min }}}-d$

$$
d=\operatorname{deg}(p), L_{p}=\max _{\alpha}\left|p_{\alpha}\right| \frac{\alpha!}{d!}
$$

Hierarchies of approximations for $\alpha(G)$

$$
\alpha(G)=\min \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in \mathrm{COP}_{n}
$$

$$
\begin{array}{ll}
\text { linear cone } C_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}\right)^{r} x^{\top} M x \in \mathbb{R}_{+}[x]\right\} & \text { (nonnegative coefficients) } \\
\text { SoS cone } K_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{\top} M x^{\circ 2} \in \Sigma\right\} & \text { (SoS polynomial) }
\end{array}
$$

linear bound $\zeta^{(r)}(G)=\min _{\lambda} \lambda$ s.t. $\lambda\left(I+A_{G}\right)-J \in C_{n}^{(r)}$
SoS bound $\vartheta^{(r)}(G)=\min _{\lambda} \lambda$ s.t. $\lambda\left(I+A_{G}\right)-J \in K_{n}^{(r)}$

Hierarchies of approximations for $\alpha(G)$

$$
\alpha(G)=\min \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in \operatorname{COP}_{n}
$$

$$
\begin{array}{ll}
\text { linear cone } C_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}\right)^{r} x^{\top} M x \in \mathbb{R}_{+}[x]\right\} & \text { (nonnegative coefficients) } \\
\text { SoS cone } K_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{\top} M x^{\circ 2} \in \Sigma\right\} & \text { (SoS polynomial) }
\end{array}
$$

linear bound $\zeta^{(r)}(G)=\min _{\lambda} \lambda$ s.t. $\lambda\left(I+A_{G}\right)-J \in C_{n}^{(r)}$
SoS bound $\vartheta^{(r)}(G)=\min _{\lambda} \lambda$ s.t. $\lambda\left(I+A_{G}\right)-J \in K_{n}^{(r)}$

- $\alpha(G) \leq \vartheta^{(r)}(G) \leq \zeta^{(r)}(G)$

Hierarchies of approximations for $\alpha(G)$

$$
\alpha(G)=\min \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in \operatorname{COP}_{n}
$$

$$
\begin{array}{ll}
\text { linear cone } C_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}\right)^{r} x^{\top} M x \in \mathbb{R}_{+}[x]\right\} & \text { (nonnegative coefficients) } \\
\text { SoS cone } K_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{\top} M x^{\circ 2} \in \Sigma\right\} & \text { (SoS polynomial) }
\end{array}
$$

linear bound $\zeta^{(r)}(G)=\min _{\lambda} \lambda$ s.t. $\lambda\left(I+A_{G}\right)-J \in C_{n}^{(r)}$
SoS bound $\vartheta^{(r)}(G)=\min _{\lambda} \lambda$ s.t. $\lambda\left(I+A_{G}\right)-J \in K_{n}^{(r)}$

- $\alpha(G) \leq \vartheta^{(r)}(G) \leq \zeta^{(r)}(G)<\alpha(G)+1$ if $r \geq \alpha(G)^{2}$
[de Klerk-Pasechnik 2002]

Hierarchies of approximations for $\alpha(G)$

$$
\alpha(G)=\min \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in \operatorname{COP}_{n}
$$

linear cone $C_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}\right)^{r} x^{\top} M x \in \mathbb{R}_{+}[x]\right\} \quad$ (nonnegative coefficients)
SoS cone $K_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{\top} M x^{\circ 2} \in \Sigma\right\} \quad$ (SoS polynomial)
linear bound $\zeta^{(r)}(G)=\min _{\lambda} \lambda$ s.t. $\lambda\left(I+A_{G}\right)-J \in C_{n}^{(r)}$
SoS bound $\vartheta^{(r)}(G)=\min _{\lambda} \lambda$ s.t. $\lambda\left(I+A_{G}\right)-J \in K_{n}^{(r)}$

- $\alpha(G) \leq \vartheta^{(r)}(G) \leq \zeta^{(r)}(G)<\alpha(G)+1 \quad$ if $r \geq \alpha(G)^{2}$
[de Klerk-Pasechnik 2002]
- So $\left\lfloor\zeta^{(r)}(G)\right\rfloor=\alpha(G) \quad$ if $r \geq \alpha(G)^{2}$

Hierarchies of approximations for $\alpha(G)$

$$
\alpha(G)=\min \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in \mathrm{COP}_{n}
$$

linear cone $C_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}\right)^{r} x^{\top} M x \in \mathbb{R}_{+}[x]\right\} \quad$ (nonnegative coefficients)
SoS cone $K_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{\top} M x^{\circ 2} \in \Sigma\right\} \quad$ (SoS polynomial)

$$
\begin{aligned}
& \text { linear bound } \zeta^{(r)}(G)=\min _{\lambda} \lambda \text { s.t. } \quad \lambda\left(I+A_{G}\right)-J \in C_{n}^{(r)} \\
& \text { SoS bound } \vartheta^{(r)}(G)=\min _{\lambda} \lambda \text { s.t. } \quad \lambda\left(I+A_{G}\right)-J \in K_{n}^{(r)}
\end{aligned}
$$

- $\alpha(G) \leq \vartheta^{(r)}(G) \leq \zeta^{(r)}(G)<\alpha(G)+1 \quad$ if $r \geq \alpha(G)^{2}$
[de Klerk-Pasechnik 2002]
- So $\left\lfloor\zeta^{(r)}(G)\right\rfloor=\alpha(G) \quad$ if $r \geq \alpha(G)^{2}$

But strict inequality: $\alpha(G)<\zeta^{(r)}(G)$ for all r
[Vera-Pena-Zuluaga 2007]

Hierarchies of approximations for $\alpha(G)$

$$
\alpha(G)=\min \lambda \text { s.t. } \lambda\left(I+A_{G}\right)-J \in \mathrm{COP}_{n}
$$

linear cone $C_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}\right)^{r} x^{\top} M x \in \mathbb{R}_{+}[x]\right\} \quad$ (nonnegative coefficients)
SoS cone $K_{n}^{(r)}=\left\{M:\left(\sum_{i} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{\top} M x^{\circ 2} \in \Sigma\right\} \quad$ (SoS polynomial)

$$
\begin{aligned}
& \text { linear bound } \zeta^{(r)}(G)=\min _{\lambda} \lambda \text { s.t. } \quad \lambda\left(I+A_{G}\right)-J \in C_{n}^{(r)} \\
& \text { SoS bound } \vartheta^{(r)}(G)=\min _{\lambda} \lambda \text { s.t. } \quad \lambda\left(I+A_{G}\right)-J \in K_{n}^{(r)}
\end{aligned}
$$

- $\alpha(G) \leq \vartheta^{(r)}(G) \leq \zeta^{(r)}(G)<\alpha(G)+1 \quad$ if $r \geq \alpha(G)^{2}$
[de Klerk-Pasechnik 2002]
- So $\left\lfloor\zeta^{(r)}(G)\right\rfloor=\alpha(G) \quad$ if $r \geq \alpha(G)^{2}$

But strict inequality: $\alpha(G)<\zeta^{(r)}(G)$ for all r
[Vera-Pena-Zuluaga 2007]

- Equality: $\vartheta^{(r)}(G)=\alpha(G)$ for $r=\alpha(G)-1 \quad$ if $\alpha(G) \leq 8$
[Gvozdenović-L 2007]

De Klerk-Pasechnik

Conjecture

$$
\text { ON } \vartheta^{(r)}(G)
$$

De Klerk-Pasechnik conjecture

Conjecture

(1) $\vartheta^{(r)}(G)=\alpha(G)$ for $r=\alpha(G)-1 \quad$ [de Klerk-Pasechnik 2002]

De Klerk-Pasechnik conjecture

Conjecture

(1) $\vartheta^{(r)}(G)=\alpha(G)$ for $r=\alpha(G)-1 \quad$ [de Klerk-Pasechnik 2002]
(2) $\vartheta^{(r)}(G)=\alpha(G) \quad$ for some r
[weaker form]

De Klerk-Pasechnik conjecture

Conjecture

(1) $\vartheta^{(r)}(G)=\alpha(G)$ for $r=\alpha(G)-1 \quad$ [de Klerk-Pasechnik 2002]
(2) $\vartheta^{(r)}(G)=\alpha(G) \quad$ for some r [weaker form]

Equivalently, setting $\vartheta \operatorname{rank}(G):=$ smallest r s.t. $\vartheta^{(r)}(G)=\alpha(G)$

$$
\vartheta \operatorname{rank}(G) \leq \alpha(G)-1 \quad \text { (is finite) }
$$

De Klerk-Pasechnik conjecture

Conjecture

(1) $\vartheta^{(r)}(G)=\alpha(G)$ for $r=\alpha(G)-1 \quad$ [de Klerk-Pasechnik 2002]
(2) $\vartheta^{(r)}(G)=\alpha(G) \quad$ for some r [weaker form]

Equivalently, setting $\vartheta \operatorname{rank}(G):=$ smallest r s.t. $\vartheta^{(r)}(G)=\alpha(G)$

$$
\vartheta \operatorname{rank}(G) \leq \alpha(G)-1 \quad \text { (is finite) }
$$

Equivalently, setting $M_{G}=\alpha(G)\left(I+A_{G}\right)-J, p_{G}=\left(x^{\circ 2}\right)^{T} M_{G} x^{\circ 2}$
The polynomial $\left(\sum_{i} x_{i}^{2}\right)^{r} p_{G}$ is SoS for $r=\alpha(G)-1 \quad$ (for some r)

De Klerk-Pasechnik conjecture

Conjecture

(1) $\vartheta^{(r)}(G)=\alpha(G)$ for $r=\alpha(G)-1 \quad$ [de Klerk-Pasechnik 2002]
(2) $\vartheta^{(r)}(G)=\alpha(G) \quad$ for some r [weaker form]

Equivalently, setting $\vartheta \operatorname{rank}(G):=$ smallest r s.t. $\vartheta^{(r)}(G)=\alpha(G)$
$\vartheta \operatorname{rank}(G) \leq \alpha(G)-1 \quad$ (is finite)
Equivalently, setting $M_{G}=\alpha(G)\left(I+A_{G}\right)-J, p_{G}=\left(x^{\circ 2}\right)^{T} M_{G} x^{\circ 2}$
The polynomial $\left(\sum_{i} x_{i}^{2}\right)^{r} p_{G}$ is SoS for $r=\alpha(G)-1 \quad$ (for some r)
Recall: The polynomial p_{G} is nonnegative on \mathbb{R}^{n} since $M_{G} \in \operatorname{COP}_{n}$

De Klerk-Pasechnik conjecture

Conjecture

(1) $\vartheta^{(r)}(G)=\alpha(G)$ for $r=\alpha(G)-1 \quad$ [de Klerk-Pasechnik 2002]
(2) $\vartheta^{(r)}(G)=\alpha(G) \quad$ for some r [weaker form]

Equivalently, setting $\vartheta \operatorname{rank}(G):=$ smallest r s.t. $\vartheta^{(r)}(G)=\alpha(G)$
$\vartheta \operatorname{rank}(G) \leq \alpha(G)-1 \quad$ (is finite)
Equivalently, setting $M_{G}=\alpha(G)\left(I+A_{G}\right)-J, p_{G}=\left(x^{\circ 2}\right)^{T} M_{G} x^{\circ 2}$
The polynomial $\left(\sum_{i} x_{i}^{2}\right)^{r} p_{G}$ is SoS for $r=\alpha(G)-1 \quad$ (for some r)
Recall: The polynomial p_{G} is nonnegative on \mathbb{R}^{n} since $M_{G} \in \operatorname{COP}_{n}$ If true:

De Klerk-Pasechnik conjecture

Conjecture

(1) $\vartheta^{(r)}(G)=\alpha(G)$ for $r=\alpha(G)-1 \quad$ [de Klerk-Pasechnik 2002]
(2) $\vartheta^{(r)}(G)=\alpha(G) \quad$ for some r [weaker form]

Equivalently, setting $\vartheta \operatorname{rank}(G):=$ smallest r s.t. $\vartheta^{(r)}(G)=\alpha(G)$
$\vartheta \operatorname{rank}(G) \leq \alpha(G)-1 \quad$ (is finite)
Equivalently, setting $M_{G}=\alpha(G)\left(I+A_{G}\right)-J, p_{G}=\left(x^{\circ 2}\right)^{T} M_{G} x^{\circ 2}$
The polynomial $\left(\sum_{i} x_{i}^{2}\right)^{r} p_{G}$ is SoS for $r=\alpha(G)-1 \quad$ (for some r)
Recall: The polynomial p_{G} is nonnegative on \mathbb{R}^{n} since $M_{G} \in \operatorname{COP}_{n}$ If true:

- this would give a class of polynomials for which most known sufficient conditions for finite convergence do not apply

De Klerk-Pasechnik conjecture

Conjecture

(1) $\vartheta^{(r)}(G)=\alpha(G)$ for $r=\alpha(G)-1 \quad$ [de Klerk-Pasechnik 2002]
(2) $\vartheta^{(r)}(G)=\alpha(G) \quad$ for some r [weaker form]

Equivalently, setting $\vartheta \operatorname{rank}(G):=$ smallest r s.t. $\vartheta^{(r)}(G)=\alpha(G)$
$\vartheta \operatorname{rank}(G) \leq \alpha(G)-1 \quad$ (is finite)
Equivalently, setting $M_{G}=\alpha(G)\left(I+A_{G}\right)-J, p_{G}=\left(x^{\circ 2}\right)^{T} M_{G} x^{\circ 2}$
The polynomial $\left(\sum_{i} x_{i}^{2}\right)^{r} p_{G}$ is SoS for $r=\alpha(G)-1 \quad$ (for some r)
Recall: The polynomial p_{G} is nonnegative on \mathbb{R}^{n} since $M_{G} \in \operatorname{COP}_{n}$ If true:

- this would give a class of polynomials for which most known sufficient conditions for finite convergence do not apply [Reznick 1995] form $p>0$ on $\mathbb{R}^{n} \backslash\{0\} \rightsquigarrow \exists r$ s.t. $\left(\sum_{i} x_{i}^{2}\right)^{r} p$ is SoS

De Klerk-Pasechnik conjecture

Conjecture

(1) $\vartheta^{(r)}(G)=\alpha(G)$ for $r=\alpha(G)-1 \quad$ [de Klerk-Pasechnik 2002]
(2) $\vartheta^{(r)}(G)=\alpha(G) \quad$ for some r [weaker form]

Equivalently, setting $\vartheta \operatorname{rank}(G):=$ smallest r s.t. $\vartheta^{(r)}(G)=\alpha(G)$
$\vartheta \operatorname{rank}(G) \leq \alpha(G)-1 \quad$ (is finite)
Equivalently, setting $M_{G}=\alpha(G)\left(I+A_{G}\right)-J, p_{G}=\left(x^{\circ 2}\right)^{T} M_{G} x^{\circ 2}$
The polynomial $\left(\sum_{i} x_{i}^{2}\right)^{r} p_{G}$ is SoS for $r=\alpha(G)-1 \quad$ (for some r)
Recall: The polynomial p_{G} is nonnegative on \mathbb{R}^{n} since $M_{G} \in \operatorname{COP}_{n}$ If true:

- this would give a class of polynomials for which most known sufficient conditions for finite convergence do not apply
- this shows that the continuous copositive-based hierarchy has the same convergence behaviour as the discrete SoS hierarchy for $\alpha(G)$

De Klerk-Pasechnik conjecture

Conjecture

(1) $\vartheta^{(r)}(G)=\alpha(G)$ for $r=\alpha(G)-1 \quad$ [de Klerk-Pasechnik 2002]
(2) $\vartheta^{(r)}(G)=\alpha(G) \quad$ for some r [weaker form]

Equivalently, setting $\vartheta \operatorname{rank}(G):=$ smallest r s.t. $\vartheta^{(r)}(G)=\alpha(G)$
$\vartheta \operatorname{rank}(G) \leq \alpha(G)-1 \quad$ (is finite)
Equivalently, setting $M_{G}=\alpha(G)\left(I+A_{G}\right)-J, p_{G}=\left(x^{\circ 2}\right)^{T} M_{G} x^{\circ 2}$
The polynomial $\left(\sum_{i} x_{i}^{2}\right)^{r} p_{G}$ is SoS for $r=\alpha(G)-1 \quad$ (for some r)
Recall: The polynomial p_{G} is nonnegative on \mathbb{R}^{n} since $M_{G} \in \operatorname{COP}_{n}$

Recall: Conjecture (1) holds for graphs with $\alpha(G) \leq 8$

The cone $K_{n}^{(0)}$ and the bound $\vartheta^{(0)}(G)$

- $K_{n}^{(0)}=\mathrm{PSD}_{n}+\mathbb{R}_{+}^{n \times n}$
[Parrilo 2000]
$\left(x^{\circ 2}\right)^{T} M x^{\circ 2}$ is $\mathrm{SoS} \Longleftrightarrow M=P+N$, with $P \succeq 0$ and $N \geq 0$

The cone $K_{n}^{(0)}$ and the bound $\vartheta^{(0)}(G)$

- $K_{n}^{(0)}=\mathrm{PSD}_{n}+\mathbb{R}_{+}^{n \times n}$
[Parrilo 2000]
$\left(x^{\circ 2}\right)^{T} M x^{\circ 2}$ is $\mathrm{SoS} \Longleftrightarrow M=P+N$, with $P \succeq 0$ and $N \geq 0$
- $\vartheta^{(0)}(G)=\vartheta^{\prime}(G)$, the strengthening of Lovász theta number $\vartheta(G)$ (with nonnegativity) [dK-P 2002]

The cone $K_{n}^{(0)}$ and the bound $\vartheta^{(0)}(G)$

- $K_{n}^{(0)}=\mathrm{PSD}_{n}+\mathbb{R}_{+}^{n \times n}$
[Parrilo 2000]
$\left(x^{\circ 2}\right)^{T} M x^{\circ 2}$ is $\mathrm{SoS} \Longleftrightarrow M=P+N$, with $P \succeq 0$ and $N \geq 0$
- $\vartheta^{(0)}(G)=\vartheta^{\prime}(G)$, the strengthening of Lovász theta number $\vartheta(G)$ (with nonnegativity) [dK-P 2002]
- 'Sandwich' inequalities: $\alpha(G) \leq \vartheta^{(0)}(G) \leq \vartheta(G) \leq \bar{\chi}(G)$

The cone $K_{n}^{(0)}$ and the bound $\vartheta^{(0)}(G)$

- $K_{n}^{(0)}=\mathrm{PSD}_{n}+\mathbb{R}_{+}^{n \times n}$
[Parrilo 2000]
$\left(x^{\circ 2}\right)^{T} M x^{\circ 2}$ is $\mathrm{SoS} \Longleftrightarrow M=P+N$, with $P \succeq 0$ and $N \geq 0$
- $\vartheta^{(0)}(G)=\vartheta^{\prime}(G)$, the strengthening of Lovász theta number $\vartheta(G)$ (with nonnegativity) [dK-P 2002]
- 'Sandwich' inequalities: $\alpha(G) \leq \vartheta^{(0)}(G) \leq \vartheta(G) \leq \bar{\chi}(G)$
- If $\bar{\chi}(G)=\alpha(G)$ (e.g., G is perfect) then $\vartheta \operatorname{rank}(G)=0$

The cone $K_{n}^{(0)}$ and the bound $\vartheta^{(0)}(G)$

- $K_{n}^{(0)}=\mathrm{PSD}_{n}+\mathbb{R}_{+}^{n \times n}$
[Parrilo 2000]
$\left(x^{\circ 2}\right)^{T} M x^{\circ 2}$ is $\mathrm{SoS} \Longleftrightarrow M=P+N$, with $P \succeq 0$ and $N \geq 0$
- $\vartheta^{(0)}(G)=\vartheta^{\prime}(G)$, the strengthening of Lovász theta number $\vartheta(G)$ (with nonnegativity) [dK-P 2002]
- 'Sandwich' inequalities: $\alpha(G) \leq \vartheta^{(0)}(G) \leq \vartheta(G) \leq \bar{\chi}(G)$
- If $\bar{\chi}(G)=\alpha(G)$ (e.g., G is perfect) then $\vartheta \operatorname{rank}(G)=0$

This is not an equivalence!

$\vartheta \operatorname{rank}(G)=0$ for the Petersen graph
but $\alpha=4<\bar{\chi}=5$

A link to matrix completion

For a graph G the following are equivalent:
(1) $\vartheta^{(0)}(G)=\alpha(G)$; that is, $\vartheta \operatorname{rank}(G)=0$; that is, $p_{G}=\left(x^{02}\right)^{\top}\left(\alpha(G)\left(I+A_{G}\right)-J\right) x^{02}$ is a sum of squares

A link to matrix completion

For a graph G the following are equivalent:
(1) $\vartheta^{(0)}(G)=\alpha(G)$; that is, $\vartheta \operatorname{rank}(G)=0$; that is, $p_{G}=\left(x^{\circ 2}\right)^{\top}\left(\alpha(G)\left(I+A_{G}\right)-J\right) x^{\circ 2}$ is a sum of squares
(2) $\exists P \succeq 0$ s.t. $\quad P_{i i}=\alpha(G)-1(i \in V), . \quad P_{i j} \leq-1 \quad(\{i, j\} \in \bar{E})$

A link to matrix completion

For a graph G the following are equivalent:
(1) $\vartheta^{(0)}(G)=\alpha(G)$; that is, $\vartheta \operatorname{rank}(G)=0$; that is, $p_{G}=\left(x^{\circ 2}\right)^{\top}\left(\alpha(G)\left(I+A_{G}\right)-J\right) x^{\circ 2}$ is a sum of squares
(2) $\exists P \succeq 0$ s.t. $\quad P_{i i}=\alpha(G)-1(i \in V), . \quad P_{i j} \leq-1 \quad(\{i, j\} \in \bar{E})$
\rightsquigarrow psd matrix completion problem

A link to matrix completion

For a graph G the following are equivalent:
(1) $\vartheta^{(0)}(G)=\alpha(G)$; that is, $\vartheta \operatorname{rank}(G)=0$; that is, $p_{G}=\left(x^{\circ 2}\right)^{\top}\left(\alpha(G)\left(I+A_{G}\right)-J\right) x^{\circ 2}$ is a sum of squares
(2) $\exists P \succeq 0$ s.t. $\quad P_{i i}=\alpha(G)-1(i \in V), . \quad P_{i j} \leq-1 \quad(\{i, j\} \in \bar{E})$
\rightsquigarrow psd matrix completion problem
Special instance: Assume $\alpha(G)=3$ and \bar{G} is a planar graph.
Then, $3 \leq \chi(\bar{G}) \leq 4$
\rightsquigarrow hard to test if $\chi(\bar{G})=3$

A link to matrix completion

For a graph G the following are equivalent:
(1) $\vartheta^{(0)}(G)=\alpha(G)$; that is, $\vartheta \operatorname{rank}(G)=0$; that is, $p_{G}=\left(x^{\circ 2}\right)^{\top}\left(\alpha(G)\left(I+A_{G}\right)-J\right) x^{\circ 2}$ is a sum of squares
(2) $\exists P \succeq 0$ s.t. $\quad P_{i i}=\alpha(G)-1(i \in V), . \quad P_{i j} \leq-1 \quad(\{i, j\} \in \bar{E})$
\rightsquigarrow psd matrix completion problem
Special instance: Assume $\alpha(G)=3$ and \bar{G} is a planar graph.
Then, $3 \leq \chi(\bar{G}) \leq 4$
\rightsquigarrow hard to test if $\chi(\bar{G})=3$

- If \bar{G} is a planar triangulation then
$\chi(\bar{G})=3 \Longleftrightarrow \bar{G}$ Eulerian
[Haewood 1898]

A link to matrix completion

For a graph G the following are equivalent:
(1) $\vartheta^{(0)}(G)=\alpha(G)$; that is, $\vartheta \operatorname{rank}(G)=0$; that is, $p_{G}=\left(x^{\circ 2}\right)^{\top}\left(\alpha(G)\left(I+A_{G}\right)-J\right) x^{\circ 2}$ is a sum of squares
(2) $\exists P \succeq 0$ s.t. $\quad P_{i i}=\alpha(G)-1(i \in V), . \quad P_{i j} \leq-1 \quad(\{i, j\} \in \bar{E})$
\rightsquigarrow psd matrix completion problem
Special instance: Assume $\alpha(G)=3$ and \bar{G} is a planar graph.
Then, $3 \leq \chi(\bar{G}) \leq 4$
\rightsquigarrow hard to test if $\chi(\bar{G})=3$

- If \bar{G} is a planar triangulation then
$\chi(\bar{G})=3 \Longleftrightarrow \bar{G}$ Eulerian
[Haewood 1898]

$$
\begin{aligned}
\Longleftrightarrow \vartheta(G)=3 \Longleftrightarrow & \vartheta^{(0)}(G)=3 \\
& \rightsquigarrow \text { easy instance of psd matrix completion }
\end{aligned}
$$

A link to matrix completion

For a graph G the following are equivalent:
(1) $\vartheta^{(0)}(G)=\alpha(G)$; that is, $\vartheta \operatorname{rank}(G)=0$; that is, $p_{G}=\left(x^{\circ 2}\right)^{\top}\left(\alpha(G)\left(I+A_{G}\right)-J\right) x^{\circ 2}$ is a sum of squares
(2) $\exists P \succeq 0$ s.t. $\quad P_{i i}=\alpha(G)-1(i \in V), . \quad P_{i j} \leq-1 \quad(\{i, j\} \in \bar{E})$
\rightsquigarrow psd matrix completion problem
Special instance: Assume $\alpha(G)=3$ and \bar{G} is a planar graph.
Then, $3 \leq \chi(\bar{G}) \leq 4$
\rightsquigarrow hard to test if $\chi(\bar{G})=3$

- If \bar{G} is a planar triangulation then
$\chi(\bar{G})=3 \Longleftrightarrow \bar{G}$ Eulerian
[Haewood 1898]
$\Longleftrightarrow \vartheta(G)=3 \Longleftrightarrow \vartheta^{(0)}(G)=3$
\rightsquigarrow easy instance of psd matrix completion
- $\chi(\bar{G})=3 \Longleftrightarrow \vartheta(G)=3$ with certificate P of rank 2
\rightsquigarrow hard instance of psd matrix completion with rank constraint

Examples with $\vartheta \operatorname{rank}(G)=1$

- For the 5-cycle $C_{5}, \quad p_{C_{5}}=\left(x^{\circ 2}\right)^{\top}\left(2\left(I+A_{C_{5}}\right)-J\right) x^{\circ 2}$

$$
M_{C_{5}}=2\left(I+A_{C_{5}}\right)-J=\left(\begin{array}{ccccc}
1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 \\
-1 & 1 & 1 & 1 & -1 \\
-1 & -1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 & 1
\end{array}\right) \text { is the Horn matrix }
$$

Examples with $\vartheta \operatorname{rank}(G)=1$

- For the 5-cycle $C_{5}, \quad p_{C_{5}}=\left(x^{\circ 2}\right)^{\top}\left(2\left(I+A_{C_{5}}\right)-J\right) x^{02}$

$$
M_{C_{5}}=2\left(I+A_{C_{5}}\right)-J=\left(\begin{array}{ccccc}
1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 \\
-1 & 1 & 1 & 1 & -1 \\
-1 & -1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 & 1
\end{array}\right) \text { is the Horn matrix }
$$

$M_{C_{5}} \notin K_{5}^{(0)} \quad$ (as $p_{C_{5}}$ is not SoS), but $M_{C_{5}} \in K_{5}^{(1)}$
[Parrilo 2000]

Examples with $\vartheta \operatorname{rank}(G)=1$

- For the 5-cycle $C_{5}, \quad p_{C_{5}}=\left(x^{02}\right)^{\top}\left(2\left(I+A_{C_{5}}\right)-J\right) x^{02}$

$$
M_{C_{5}}=2\left(I+A_{C_{5}}\right)-J=\left(\begin{array}{ccccc}
1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 \\
-1 & 1 & 1 & 1 & -1 \\
-1 & -1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 & 1
\end{array}\right) \text { is the Horn matrix }
$$

$M_{C_{5}} \notin K_{5}^{(0)} \quad$ (as $p_{C_{5}}$ is not SoS), but $M_{C_{5}} \in K_{5}^{(1)}$
[Parrilo 2000]

$$
\begin{gathered}
\left(\sum_{i} x_{i}^{2}\right) p_{C_{5}} \\
=\sum_{\text {circular }} x_{1}^{2}\left(x_{5}^{2}+x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}\right)^{2} \\
+\sum_{\text {circular }} 4 x_{1}^{2} x_{2}^{2} x_{3}^{2}
\end{gathered}
$$

Examples with $\vartheta \operatorname{rank}(G)=1$

- For the 5-cycle $C_{5}, \quad p_{C_{5}}=\left(x^{02}\right)^{\top}\left(2\left(I+A_{C_{5}}\right)-J\right) x^{02}$
$M_{C_{5}}=2\left(I+A_{C_{5}}\right)-J=\left(\begin{array}{ccccc}1 & 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & -1 & -1 \\ -1 & 1 & 1 & 1 & -1 \\ -1 & -1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 & 1\end{array}\right)$ is the Horn matrix
$M_{C_{5}} \notin K_{5}^{(0)} \quad$ (as $p_{C_{5}}$ is not SoS), but $M_{C_{5}} \in K_{5}^{(1)}$
[Parrilo 2000]

$$
=\begin{gathered}
\left(\sum_{i} x_{i}^{2}\right) p_{c_{5}} \\
\sum_{\text {circular }} x_{1}^{2}\left(x_{5}^{2}+x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}\right)^{2} \\
+\sum_{\text {circular }} 4 x_{1}^{2} x_{2}^{2} x_{3}^{2}
\end{gathered}
$$

- Odd cycles have rank 1: $\vartheta \operatorname{rank}\left(C_{2 n+1}\right)=1$

Partial solution to the

WEAK CONJECTURE:

$\vartheta \operatorname{rank}(G)<\infty$ IF G HAS NO CRITICAL EDGES

Main steps

- Role of critical edges
- Link the bounds $\vartheta^{(r)}(G)$ to the Lasserre hierarchy for Motzkin-Straus (MS) formulation
- Characterize the minimizers of (MS)

Role of critical edges

Critical / a-critical graphs

- An edge e is critical if $\alpha(G \backslash e)=\alpha(G)+1$
G is critical if all edges are critical; G a-critical if no edge is critical

Critical / a-critical graphs

- An edge e is critical if $\alpha(G \backslash e)=\alpha(G)+1$
G is critical if all edges are critical; G a-critical if no edge is critical

odd cycles are critical

Even cycles, Petersen are a-critical

Critical / a-critical graphs

- An edge e is critical if $\alpha(G \backslash e)=\alpha(G)+1$
G is critical if all edges are critical; G a-critical if no edge is critical

odd cycles are critical

Even cycles, Petersen are a-critical

- Observe: If e is not critical then $\vartheta \operatorname{rank}(G) \leq \vartheta \operatorname{rank}(G \backslash e)$

Critical / a-critical graphs

- An edge e is critical if $\alpha(G \backslash e)=\alpha(G)+1$
G is critical if all edges are critical; G a-critical if no edge is critical

odd cycles are critical

Even cycles, Petersen are a-critical

- Observe: If e is not critical then $\vartheta \operatorname{rank}(G) \leq \vartheta \operatorname{rank}(G \backslash e)=: r$ Indeed: $\alpha\left(I+A_{G}\right)-J=\underbrace{\alpha\left(I+A_{G \backslash e}\right)-J}_{\in K^{(r)}}+\underbrace{\alpha A_{e}}_{\in K^{(r)} \text { as nonnegative }} \in K^{(r)}$

Critical / a-critical graphs

- An edge e is critical if $\alpha(G \backslash e)=\alpha(G)+1$
G is critical if all edges are critical; G a-critical if no edge is critical

odd cycles are critical

Even cycles, Petersen are a-critical

- Observe: If e is not critical then $\vartheta \operatorname{rank}(G) \leq \vartheta \operatorname{rank}(G \backslash e)=: r$ Indeed: $\alpha\left(I+A_{G}\right)-J=\underbrace{\alpha\left(I+A_{G \backslash e}\right)-J}_{\in K^{(r)}}+\underbrace{\alpha A_{e}}_{\in K^{(r)} \text { as nonnegative }} \in K^{(r)}$
Hence:
It suffices to prove the (weak) conjecture for critical graphs

Critical / a-critical graphs

- An edge e is critical if $\alpha(G \backslash e)=\alpha(G)+1$
G is critical if all edges are critical; G a-critical if no edge is critical

odd cycles are critical

Even cycles, Petersen are a-critical

- Observe: If e is not critical then $\vartheta \operatorname{rank}(G) \leq \vartheta \operatorname{rank}(G \backslash e)=: r$ Indeed: $\alpha\left(I+A_{G}\right)-J=\underbrace{\alpha\left(I+A_{G \backslash e}\right)-J}_{\in K^{(r)}}+\underbrace{\alpha A_{e}}_{\in K^{(r)} \text { as nonnegative }} \in K^{(r)}$
Hence:
It suffices to prove the (weak) conjecture for critical graphs

But:
We can prove the weak conjecture for a-critical graphs

Link to Lasserre

HIERARCHY FOR OTHER

FORMULATIONS OF $\alpha(G)$

Motzkin-Straus formulation (MS)

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

Motzkin-Straus formulation (MS)

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

$$
\operatorname{las}_{r}^{\Delta}(G)=\sup \lambda \text { s.t. } x^{\top}\left(I+A_{G}\right) x-\lambda=\underbrace{\sigma_{0}}_{\text {SoS, } \operatorname{deg} 2 r}+\sum_{i} x_{i} \underbrace{\sigma_{i}}_{\operatorname{deg} 2 r-2}+u\left(1-\sum_{i} x_{i}\right)
$$

Motzkin-Straus formulation (MS)

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

$$
\operatorname{las}_{r}^{\Delta}(G)=\sup \lambda \text { s.t. } x^{\top}\left(I+A_{G}\right) x-\lambda=\underbrace{\sigma_{0}}_{\text {Sos, deg } 2 r}+\sum_{i} x_{i} \underbrace{\sigma_{i}}_{\operatorname{deg} 2 r-2}+u\left(1-\sum_{i} x_{i}\right)
$$

$$
\frac{1}{\alpha(G)}=\min \left(x^{\circ 2}\right)^{\top}\left(I+A_{G}\right) x^{\circ 2} \text { s.t. } x \in \mathbb{S}^{n-1}=\left\{x: \sum_{i=1}^{n} x_{i}^{2}=1\right\}
$$

$\operatorname{las}_{r}^{\mathbb{S}}(G)=\sup \lambda$ s.t. $\left(x^{\circ 2}\right)^{T}\left(I+A_{G}\right) x^{\circ 2}-\lambda=\underbrace{\sigma_{0}}_{\text {SoS, deg } 2 r}+u\left(1-\sum_{i} x_{i}^{2}\right)$

Motzkin-Straus formulation (MS)

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

$$
\operatorname{las}_{r}^{\Delta}(G)=\sup \lambda \text { s.t. } x^{\top}\left(I+A_{G}\right) x-\lambda=\underbrace{\sigma_{0}}_{\text {Sos, deg } 2 r}+\sum_{i} x_{i} \underbrace{\sigma_{i}}_{\operatorname{deg} 2 r-2}+u\left(1-\sum_{i} x_{i}\right)
$$

$$
\frac{1}{\alpha(G)}=\min \left(x^{\circ 2}\right)^{\top}\left(I+A_{G}\right) x^{\circ 2} \text { s.t. } x \in \mathbb{S}^{n-1}=\left\{x: \sum_{i=1}^{n} x_{i}^{2}=1\right\}
$$

$$
\operatorname{las}_{r}^{\mathbb{S}}(G)=\sup \lambda \text { s.t. }\left(x^{\circ 2}\right)^{T}\left(I+A_{G}\right) x^{\circ 2}-\lambda=\underbrace{\sigma_{0}}_{\text {SoS, deg } 2 r}+u\left(1-\sum_{i} x_{i}^{2}\right)
$$

Relation with $\vartheta^{(r)}(G)$:
[L-V 2021]

$$
\alpha(G) \leq \vartheta^{(2 r)}(G)=\frac{1}{\operatorname{las}_{2 r+2}^{S}(G)}
$$

Motzkin-Straus formulation (MS)

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

$$
\operatorname{las}_{r}^{\Delta}(G)=\sup \lambda \text { s.t. } x^{\top}\left(I+A_{G}\right) x-\lambda=\underbrace{\sigma_{0}}_{\text {SoS, deg } 2 r}+\sum_{i} x_{i} \underbrace{\sigma_{i}}_{\operatorname{deg} 2 r-2}+u\left(1-\sum_{i} x_{i}\right)
$$

$$
\frac{1}{\alpha(G)}=\min \left(x^{\circ 2}\right)^{\top}\left(I+A_{G}\right) x^{\circ 2} \text { s.t. } x \in \mathbb{S}^{n-1}=\left\{x: \sum_{i=1}^{n} x_{i}^{2}=1\right\}
$$

$\operatorname{las}_{r}^{\mathbb{S}}(G)=\sup \lambda$ s.t. $\left(x^{\circ 2}\right)^{T}\left(I+A_{G}\right) x^{\circ 2}-\lambda=\underbrace{\sigma_{0}}_{\text {SoS, deg } 2 r}+u\left(1-\sum_{i} x_{i}^{2}\right)$
Relation with $\vartheta^{(r)}(G)$:
[L-V 2021]

$$
\alpha(G) \leq \vartheta^{(2 r)}(G)=\frac{1}{\operatorname{las}_{2 r+2}^{5}(G)} \leq \frac{1}{\operatorname{las}_{r+1}(G)}
$$

Motzkin-Straus formulation (MS)

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

$\operatorname{las}_{r}^{\Delta}(G)=\sup \lambda$ s.t. $x^{\top}\left(I+A_{G}\right) x-\lambda=\underbrace{\sigma_{0}}_{\text {Sos, deg } 2 r}+\sum_{i} x_{i} \underbrace{\sigma_{i}}_{\operatorname{deg} 2 r-2}+u\left(1-\sum_{i} x_{i}\right)$

$$
\frac{1}{\alpha(G)}=\min \left(x^{\circ 2}\right)^{\top}\left(I+A_{G}\right) x^{\circ 2} \text { s.t. } x \in \mathbb{S}^{n-1}=\left\{x: \sum_{i=1}^{n} x_{i}^{2}=1\right\}
$$

$\operatorname{las}_{r}^{\mathbb{S}}(G)=\sup \lambda$ s.t. $\left(x^{\circ 2}\right)^{T}\left(I+A_{G}\right) x^{\circ 2}-\lambda=\underbrace{\sigma_{0}}_{\text {SoS, deg } 2 r}+u\left(1-\sum_{i} x_{i}^{2}\right)$
Relation with $\vartheta^{(r)}(G)$:
[L-V 2021]

$$
\alpha(G) \leq \vartheta^{(2 r)}(G)=\frac{1}{\operatorname{las}_{2 r+2}^{5}(G)} \leq \frac{1}{\operatorname{las}_{r+1}(G)}
$$

\rightsquigarrow
It suffices to show finite convergence of Lasserre hierarchy for (MS)

Motzkin-Straus formulation (MS)

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}\right) x \text { s.t. } x \in \Delta_{n}=\left\{x: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

$\operatorname{las}_{r}^{\Delta}(G)=\sup \lambda$ s.t. $x^{\top}\left(I+A_{G}\right) x-\lambda=\underbrace{\sigma_{0}}_{\text {Sos, deg } 2 r}+\sum_{i} x_{i} \underbrace{\sigma_{i}}_{\operatorname{deg} 2 r-2}+u\left(1-\sum_{i} x_{i}\right)$

$$
\frac{1}{\alpha(G)}=\min \left(x^{\circ 2}\right)^{\top}\left(I+A_{G}\right) x^{\circ 2} \text { s.t. } x \in \mathbb{S}^{n-1}=\left\{x: \sum_{i=1}^{n} x_{i}^{2}=1\right\}
$$

$\operatorname{las}_{r}^{\mathbb{S}}(G)=\sup \lambda$ s.t. $\left(x^{\circ 2}\right)^{T}\left(I+A_{G}\right) x^{\circ 2}-\lambda=\underbrace{\sigma_{0}}_{\text {SoS, deg } 2 r}+u\left(1-\sum_{i} x_{i}^{2}\right)$
Relation with $\vartheta^{(r)}(G)$:
[L-V 2021]

$$
\alpha(G) \leq \vartheta^{(2 r)}(G)=\frac{1}{\operatorname{las}_{2 r+2}^{5}(G)} \leq \frac{1}{\operatorname{las}_{r+1}(G)}
$$

$\rightsquigarrow \quad$ It suffices to show finite convergence of Lasserre hierarchy for (MS)

$$
\operatorname{las}_{r}^{\Delta}(G)=\frac{1}{\alpha(G)} \text { for some } r \text { ? }
$$

Finite convergence for A-CRITICAL GRAPHS

The weak conjecture holds for a-critical graphs
Theorem (L-Vargas 2021)
If G is a-critical then $\exists r \operatorname{las}_{r}^{\Delta}(G)=\frac{1}{\alpha(G)}$,

The weak conjecture holds for a-critical graphs
Theorem (L-Vargas 2021)
If G is a-critical then $\exists r \operatorname{las}_{r}^{\Delta}(G)=\frac{1}{\alpha(G)}$, thus $\exists r \vartheta^{(r)}(G)=\alpha(G)$

The weak conjecture holds for a-critical graphs
Theorem (L-Vargas 2021)
If G is a-critical then $\exists r \operatorname{las}_{r}^{\Delta}(G)=\frac{1}{\alpha(G)}$, thus $\exists r \vartheta^{(r)}(G)=\alpha(G)$
Sketch of proof: Assume G is a-critical.

1. The minimizers of (MS) are $\frac{\chi^{s}}{\alpha(G)}$, where S is a maximum stable set

The weak conjecture holds for a-critical graphs
Theorem (L-Vargas 2021)
If G is a-critical then $\exists r \operatorname{las}_{r}^{\Delta}(G)=\frac{1}{\alpha(G)}$, thus $\exists r \vartheta^{(r)}(G)=\alpha(G)$
Sketch of proof: Assume G is a-critical.

1. The minimizers of $(M S)$ are $\frac{\chi^{s}}{\alpha(G)}$, where S is a maximum stable set
2. The sufficient optimality conditions hold at all minimzers of (MS)

Theorem (L-Vargas 2021)
If G is a-critical then $\exists r \operatorname{las}_{r}^{\Delta}(G)=\frac{1}{\alpha(G)}$, thus $\exists r \vartheta^{(r)}(G)=\alpha(G)$
Sketch of proof: Assume G is a-critical.

1. The minimizers of $(M S)$ are $\frac{\chi^{s}}{\alpha(G)}$, where S is a maximum stable set
2. The sufficient optimality conditions hold at all minimzers of (MS)
3. Use a real-algebraic result of Marshall/Nie to conclude finite convergence of Lasserre hierarchy $\operatorname{las}_{r}^{\Delta}(G)$ for (MS)

The weak conjecture holds for a-critical graphs

Theorem (L-Vargas 2021)
If G is a-critical then $\exists r \operatorname{las}_{r}^{\Delta}(G)=\frac{1}{\alpha(G)}$, thus $\exists r \vartheta^{(r)}(G)=\alpha(G)$
Sketch of proof: Assume G is a-critical.

1. The minimizers of (MS) are $\frac{\chi^{S}}{\alpha(G)}$, where S is a maximum stable set
2. The sufficient optimality conditions hold at all minimzers of (MS)
3. Use a real-algebraic result of Marshall/Nie to conclude finite convergence of Lasserre hierarchy $\operatorname{las}_{r}^{\Delta}(G)$ for (MS)

Theorem (global minimizers of (MS))
Let $x \in \Delta_{n}$, with support $S=\left\{i: x_{i}>0\right\}$, and C_{1}, \ldots, C_{k} the connected components of $G[S]$.

The weak conjecture holds for a-critical graphs

Theorem (L-Vargas 2021)
If G is a-critical then $\exists r \operatorname{las}_{r}^{\Delta}(G)=\frac{1}{\alpha(G)}$, thus $\exists r \vartheta^{(r)}(G)=\alpha(G)$
Sketch of proof: Assume G is a-critical.

1. The minimizers of $(M S)$ are $\frac{\chi^{s}}{\alpha(G)}$, where S is a maximum stable set
2. The sufficient optimality conditions hold at all minimzers of (MS)
3. Use a real-algebraic result of Marshall/Nie to conclude finite convergence of Lasserre hierarchy $\operatorname{las}_{r}^{\Delta}(G)$ for (MS)

Theorem (global minimizers of (MS))
Let $x \in \Delta_{n}$, with support $S=\left\{i: x_{i}>0\right\}$, and C_{1}, \ldots, C_{k} the connected components of $G[S]$. Then x is a global minimizer of $(M S) \Longleftrightarrow$

- $k=\alpha(G)$
- Each of C_{1}, \ldots, C_{k} is a clique, consisting of critical edges
- $\sum_{i \in C_{h}} x_{i}=\frac{1}{\alpha(G)}$, for $h \in[k]$

The weak conjecture holds for a-critical graphs

Theorem (L-Vargas 2021)
If G is a-critical then $\exists r \operatorname{las}_{r}^{\Delta}(G)=\frac{1}{\alpha(G)}$, thus $\exists r \vartheta^{(r)}(G)=\alpha(G)$
Sketch of proof: Assume G is a-critical.

1. The minimizers of $(M S)$ are $\frac{\chi^{s}}{\alpha(G)}$, where S is a maximum stable set
2. The sufficient optimality conditions hold at all minimzers of (MS)
3. Use a real-algebraic result of Marshall/Nie to conclude finite convergence of Lasserre hierarchy $\operatorname{las}_{r}^{\Delta}(G)$ for (MS)

Theorem (global minimizers of (MS))
Let $x \in \Delta_{n}$, with support $S=\left\{i: x_{i}>0\right\}$, and C_{1}, \ldots, C_{k} the connected components of $G[S]$. Then x is a global minimizer of $(M S) \Longleftrightarrow$

- $k=\alpha(G)$
- Each of C_{1}, \ldots, C_{k} is a clique, consisting of critical edges
- $\sum_{i \in C_{h}} x_{i}=\frac{1}{\alpha(G)}$, for $h \in[k]$

Hence: (MS) has finitely many minimizers $\Longleftrightarrow G$ is a-critical.

The weak conjecture holds for a-critical graphs

Theorem (L-Vargas 2021)
If G is a-critical then $\exists r \operatorname{las}_{r}^{\Delta}(G)=\frac{1}{\alpha(G)}$, thus $\exists r \vartheta^{(r)}(G)=\alpha(G)$
Sketch of proof: Assume G is a-critical.

1. The minimizers of $(M S)$ are $\frac{\chi^{s}}{\alpha(G)}$, where S is a maximum stable set
2. The sufficient optimality conditions hold at all minimzers of (MS)
3. Use a real-algebraic result of Marshall/Nie to conclude finite convergence of Lasserre hierarchy $\operatorname{las}_{r}^{\Delta}(G)$ for (MS)

Theorem (global minimizers of (MS))
Let $x \in \Delta_{n}$, with support $S=\left\{i: x_{i}>0\right\}$, and C_{1}, \ldots, C_{k} the connected components of $G[S]$. Then x is a global minimizer of $(M S) \Longleftrightarrow$

- $k=\alpha(G)$
- Each of C_{1}, \ldots, C_{k} is a clique, consisting of critical edges
- $\sum_{i \in C_{h}} x_{i}=\frac{1}{\alpha(G)}$, for $h \in[k]$

Hence: (MS) has finitely many minimizers $\Longleftrightarrow G$ is a-critical.
Ex: For $C_{5}, x=\left(t, \frac{1}{2}-t, 0, \frac{1}{2}, 0\right)$ is a minimizer for any $t \in\left[0, \frac{1}{2}\right]$

Perturbed hierarchy

A_{c} : adjacency matrix of the critical edges of $G, \epsilon>0$

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}+\epsilon A_{c}\right) x \text { s.t. } x \in \Delta_{n}
$$

Perturbed hierarchy

A_{c} : adjacency matrix of the critical edges of $G, \epsilon>0$

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}+\epsilon A_{c}\right) x \text { s.t. } x \in \Delta_{n}
$$

For any graph G :

- The global minimizers are $\frac{\chi^{s}}{\alpha(G)}$ with S maximum stable, and the optimality conditions hold at all of them
\rightsquigarrow The perturbed hierarchy has finite convergence

Perturbed hierarchy

A_{c} : adjacency matrix of the critical edges of $G, \epsilon>0$

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}+\epsilon A_{c}\right) x \text { s.t. } x \in \Delta_{n}
$$

For any graph G :

- The global minimizers are $\frac{\chi^{s}}{\alpha(G)}$ with S maximum stable, and the optimality conditions hold at all of them
\rightsquigarrow The perturbed hierarchy has finite convergence
- But, it is not clear how to use this to conclude finite convergence of the original (unperturbed) hierarchy for any $G \ldots$ since there is no uniform degree bound (independent of ϵ)

Perturbed hierarchy

A_{c} : adjacency matrix of the critical edges of $G, \epsilon>0$

$$
\frac{1}{\alpha(G)}=\min x^{\top}\left(I+A_{G}+\epsilon A_{c}\right) x \text { s.t. } x \in \Delta_{n}
$$

For any graph G :

- The global minimizers are $\frac{\chi^{s}}{\alpha(G)}$ with S maximum stable, and the optimality conditions hold at all of them
\rightsquigarrow The perturbed hierarchy has finite convergence
- But, it is not clear how to use this to conclude finite convergence of the original (unperturbed) hierarchy for any $G \ldots$... since there is no uniform degree bound (independent of ϵ)

Theorem (L-Vargas 2021)
If there is a polynomial time algorithm for deciding whether a standard quadratic program has finitely many minimizers then $P=N P$

Key: Reduce to the (hard) problem of testing whether an edge is critical

More ABOUT ϑ rank $=0$

Critical graphs with ϑ rank $=0$

- If G is critical, $\vartheta \operatorname{rank}(G)=0 \Longleftrightarrow G$ is a disjoint union of cliques
[L-V'21]

Critical graphs with ϑ rank $=0$

- If G is critical, $\vartheta \operatorname{rank}(G)=0 \Longleftrightarrow G$ is a disjoint union of cliques
[L-V'21]

C_{5} critical, ϑ rank $=1$

Even cycle, Petersen: a-critical, ϑ rank $=0$

This characterization does not hold for general graphs

Critical graphs with ϑ rank $=0$

- If G is critical, $\vartheta \operatorname{rank}(G)=0 \Longleftrightarrow G$ is a disjoint union of cliques
[L-V'21]

C_{5} critical, ϑ rank $=1$

Even cycle, Petersen: a-critical, ϑ rank $=0$

This characterization does not hold for general graphs

- One can reduce algorithmically deciding if $\vartheta \operatorname{rank}(G)=0$ to the same question for a-critical graphs (in poly-time for fixed α)
[L-V'21]
- Complexity of deciding whether ϑ rank $=0$?

What makes the analysis of $\vartheta \operatorname{rank}(G)$ SO DIFFICULT?

Tentative induction proof

$G, i \in V$

$G_{i}:=G \backslash i^{\perp}$

$H_{i}:=G_{i} \oplus i$

Tentative induction proof

$G, i \in V$

$G_{i}:=G \backslash i^{\perp}$

$H_{i}:=G_{i} \oplus i$

Lemma: [G-L'07] $\vartheta \operatorname{rank}(G) \leq 1+\max _{i \in V} \vartheta \operatorname{rank}\left(H_{i}\right)$

Tentative induction proof

$G, i \in V$

$G_{i}:=G \backslash i^{\perp}$

$H_{i}:=G_{i} \oplus i$

Lemma: [G-L'07] $\vartheta \operatorname{rank}(G) \leq 1+\max _{i \in V} \vartheta \operatorname{rank}\left(H_{i}\right)$

Observation: If (*) adding an isolated node does not increase $\vartheta \mathrm{rank}$ then Conjecture 1 holds

Tentative induction proof

$G, i \in V$

$G_{i}:=G \backslash i^{\perp}$

$H_{i}:=G_{i} \oplus i$

Lemma: [G-L'07] $\vartheta \operatorname{rank}(G) \leq 1+\max _{i \in V} \vartheta \operatorname{rank}\left(H_{i}\right)$

Observation: If (*) adding an isolated node does not increase $\vartheta \mathrm{rank}$ then Conjecture 1 holds

Pf: Use induction on $\alpha=\alpha(G)$.

Tentative induction proof

$G, i \in V$

$G_{i}:=G \backslash i^{\perp}$

$H_{i}:=G_{i} \oplus i$

Lemma: [G-L'07] $\vartheta \operatorname{rank}(G) \leq 1+\max _{i \in V} \vartheta \operatorname{rank}\left(H_{i}\right)$

Observation: If (*) adding an isolated node does not increase $\vartheta \mathrm{rank}$ then Conjecture 1 holds

Pf: Use induction on $\alpha=\alpha(G)$. As $\alpha_{i}:=\alpha\left(G_{i}\right) \leq \alpha-1$ $\vartheta \operatorname{rank}\left(G_{i}\right) \leq \alpha_{i}-1 \leq \alpha-2$

Tentative induction proof

$G, i \in V$

$G_{i}:=G \backslash i^{\perp}$

$H_{i}:=G_{i} \oplus i$

Lemma: [G-L'07] $\vartheta \operatorname{rank}(G) \leq 1+\max _{i \in V} \vartheta \operatorname{rank}\left(H_{i}\right)$

Observation: If (*) adding an isolated node does not increase $\vartheta \mathrm{rank}$ then Conjecture 1 holds

Pf: Use induction on $\alpha=\alpha(G)$. As $\alpha_{i}:=\alpha\left(G_{i}\right) \leq \alpha-1$
$\vartheta \operatorname{rank}\left(G_{i}\right) \leq \alpha_{i}-1 \leq \alpha-2 \Longrightarrow \vartheta \operatorname{rank}\left(H_{i}\right) \leq \alpha-2$

Tentative induction proof

$G, i \in V$

$G_{i}:=G \backslash i^{\perp}$

$H_{i}:=G_{i} \oplus i$

Lemma: [G-L'07] $\vartheta \operatorname{rank}(G) \leq 1+\max _{i \in V} \vartheta \operatorname{rank}\left(H_{i}\right)$

Observation: If (*) adding an isolated node does not increase $\vartheta \mathrm{rank}$ then Conjecture 1 holds

Pf: Use induction on $\alpha=\alpha(G)$. As $\alpha_{i}:=\alpha\left(G_{i}\right) \leq \alpha-1$ $\vartheta \operatorname{rank}\left(G_{i}\right) \leq \alpha_{i}-1 \leq \alpha-2 \Longrightarrow \vartheta \operatorname{rank}\left(H_{i}\right) \leq \alpha-2$

$$
\begin{equation*}
\Longrightarrow \vartheta \operatorname{rank}(G) \leq \alpha-1 \tag{*}
\end{equation*}
$$

(by Lemma)

Tentative induction proof

$G, i \in V$

$G_{i}:=G \backslash i^{\perp}$

$H_{i}:=G_{i} \oplus i$

Lemma: [G-L'07] $\vartheta \operatorname{rank}(G) \leq 1+\max _{i \in V} \vartheta \operatorname{rank}\left(H_{i}\right)$

Observation: If (*) adding an isolated node does not increase $\vartheta \mathrm{rank}$ then Conjecture 1 holds

Fact: $\left({ }^{*}\right)$ holds for ϑ rank $=0$.

Tentative induction proof

$G, i \in V$

$G_{i}:=G \backslash i^{\perp}$

$$
H_{i}:=G_{i} \oplus i
$$

Lemma: [G-L'07] $\vartheta \operatorname{rank}(G) \leq 1+\max _{i \in V} \vartheta \operatorname{rank}\left(H_{i}\right)$

Observation: If (*) adding an isolated node does not increase $\vartheta \mathrm{rank}$ then Conjecture 1 holds

Fact: $\left(^{*}\right)$ holds for ϑ rank $=0$. If $H=G \oplus i, \alpha(H)=\alpha+1, \alpha=\alpha(G)$

$$
M_{H}=\underbrace{\left(\begin{array}{cc}
\alpha & -1 \\
-1 & \frac{1}{\alpha} J
\end{array}\right)}_{\succeq 0}+\frac{\alpha+1}{\alpha}\left(\begin{array}{cc}
0 & 0 \\
0 & M_{G}
\end{array}\right)
$$

Tentative induction proof

$G, i \in V$

$G_{i}:=G \backslash i^{\perp}$

$$
H_{i}:=G_{i} \oplus i
$$

Lemma: [G-L'07] $\vartheta \operatorname{rank}(G) \leq 1+\max _{i \in V} \vartheta \operatorname{rank}\left(H_{i}\right)$

Observation: If (*) adding an isolated node does not increase $\vartheta \mathrm{rank}$ then Conjecture 1 holds

Fact: $\left(^{*}\right)$ holds for ϑ rank $=0$. If $H=G \oplus i, \alpha(H)=\alpha+1, \alpha=\alpha(G)$

$$
M_{H}=\underbrace{\left(\begin{array}{cc}
\alpha & -1 \\
-1 & \frac{1}{\alpha} J
\end{array}\right)}_{\succeq 0}+\frac{\alpha+1}{\alpha}\left(\begin{array}{cc}
0 & 0 \\
0 & M_{G}
\end{array}\right) \in K^{(0)} \quad \text { if } M_{G} \in K^{(0)}
$$

Tentative induction proof

$G, i \in V$

$G_{i}:=G \backslash i^{\perp}$

$H_{i}:=G_{i} \oplus i$

Lemma: [G-L'07] $\vartheta \operatorname{rank}(G) \leq 1+\max _{i \in V} \vartheta \operatorname{rank}\left(H_{i}\right)$

Observation: If (*) adding an isolated node does not increase $\vartheta \mathrm{rank}$ then Conjecture 1 holds

Fact: $\left({ }^{*}\right)$ holds for ϑ rank $=0$.
But: (*) does not hold in general because $K^{(r)}(r \geq 1)$ is not closed under adding a zero row/column

Theorem (L-V 2021)
If $\widehat{M} \in \mathcal{S}^{n+1}$ is obtained by adding a zero row/column to $M \in \mathcal{S}^{n}$ then

$$
M \notin K_{n}^{(0)} \Longrightarrow \widehat{M} \notin \bigcup_{r} K_{n+1}^{(r)}
$$

Theorem (L-V 2021)
If $\widehat{M} \in \mathcal{S}^{n+1}$ is obtained by adding a zero row/column to $M \in \mathcal{S}^{n}$ then

$$
M \notin K_{n}^{(0)} \Longrightarrow \widehat{M} \notin \bigcup_{r} K_{n+1}^{(r)}
$$

Example: $M:=M_{C_{5}} \in \operatorname{COP}_{5} \backslash K_{5}^{(0)} \Longrightarrow \widehat{M} \in \operatorname{COP}_{6} \backslash \bigcup_{r} K_{6}^{(r)}$

Theorem (L-V 2021)
If $\widehat{M} \in \mathcal{S}^{n+1}$ is obtained by adding a zero row/column to $M \in \mathcal{S}^{n}$ then

$$
M \notin K_{n}^{(0)} \Longrightarrow \widehat{M} \notin \bigcup_{r} K_{n+1}^{(r)}
$$

Example: $M:=M_{C_{5}} \in \operatorname{COP}_{5} \backslash K_{5}^{(0)} \Longrightarrow \widehat{M} \in \operatorname{COP}_{6} \backslash \bigcup_{r} K_{6}^{(r)}$
Hence: for $n \geq 6$, the inclusion $\bigcup_{r \geq 0} K_{n}^{(r)} \subset \operatorname{COP}_{n}$ is strict

Theorem (L-V 2021)
If $\widehat{M} \in \mathcal{S}^{n+1}$ is obtained by adding a zero row/column to $M \in \mathcal{S}^{n}$ then

$$
M \notin K_{n}^{(0)} \Longrightarrow \widehat{M} \notin \bigcup_{r} K_{n+1}^{(r)}
$$

Example: $M:=M_{C_{5}} \in \operatorname{COP}_{5} \backslash K_{5}^{(0)} \Longrightarrow \widehat{M} \in \operatorname{COP}_{6} \backslash \bigcup_{r} K_{6}^{(r)}$
Hence: for $n \geq 6$, the inclusion $\bigcup_{r \geq 0} K_{n}^{(r)} \subset \operatorname{COP}_{n}$ is strict

Recall:

- For $n \leq 4, \operatorname{COP}_{n}=K_{n}^{(0)}$

Theorem (L-V 2021)
If $\widehat{M} \in \mathcal{S}^{n+1}$ is obtained by adding a zero row/column to $M \in \mathcal{S}^{n}$ then

$$
M \notin K_{n}^{(0)} \Longrightarrow \widehat{M} \notin \bigcup_{r} K_{n+1}^{(r)}
$$

Example: $M:=M_{C_{5}} \in \operatorname{COP}_{5} \backslash K_{5}^{(0)} \Longrightarrow \widehat{M} \in \operatorname{COP}_{6} \backslash \bigcup_{r} K_{6}^{(r)}$
Hence: for $n \geq 6$, the inclusion $\bigcup_{r \geq 0} K_{n}^{(r)} \subset \operatorname{COP}_{n}$ is strict

Recall:

- For $n \leq 4, \operatorname{COP}_{n}=K_{n}^{(0)}$
- For $n \geq 5, \operatorname{COP}_{n} \nsubseteq K_{n}^{(r)}$ for any r
[Dickinson et al. 2013]

Theorem (L-V 2021)
If $\widehat{M} \in \mathcal{S}^{n+1}$ is obtained by adding a zero row/column to $M \in \mathcal{S}^{n}$ then

$$
M \notin K_{n}^{(0)} \Longrightarrow \widehat{M} \notin \bigcup_{r} K_{n+1}^{(r)}
$$

Example: $M:=M_{C_{5}} \in \operatorname{COP}_{5} \backslash K_{5}^{(0)} \Longrightarrow \widehat{M} \in \operatorname{COP}_{6} \backslash \bigcup_{r} K_{6}^{(r)}$
Hence: for $n \geq 6$, the inclusion $\bigcup_{r \geq 0} K_{n}^{(r)} \subset \operatorname{COP}_{n}$ is strict

Recall:

- For $n \leq 4, \operatorname{COP}_{n}=K_{n}^{(0)}$
- For $n \geq 5, \mathrm{COP}_{n} \nsubseteq K_{n}^{(r)}$ for any r
[Dickinson et al. 2013]

Open question: For $n=5, \bigcup_{r \geq 0} K_{5}^{(r)}=\mathrm{COP}_{5}$?

Adding isolated nodes to graphs with ϑ rank $=1$

Theorem (L-Vargas 2021)
Let $H=G \oplus p$ isolated nodes, where $\vartheta \operatorname{rank}(G)=1$. If the subgraph $G_{c}=\left(V, E_{c}\right)$ of critical edges in G is connected, then

$$
\vartheta \operatorname{rank}(H)=1 \Longrightarrow p \leq 4+\frac{4}{\alpha(G)-1}
$$

Adding isolated nodes to graphs with ϑ rank $=1$

Theorem (L-Vargas 2021)
Let $H=G \oplus p$ isolated nodes, where $\vartheta \operatorname{rank}(G)=1$. If the subgraph $G_{c}=\left(V, E_{c}\right)$ of critical edges in G is connected, then

$$
\vartheta \operatorname{rank}(H)=1 \Longrightarrow p \leq 4+\frac{4}{\alpha(G)-1}
$$

Example: $C_{2 n+1} \oplus p$ isolated nodes has rank $=1 \Longleftrightarrow p \leq 4+\frac{4}{n-1}$

Adding isolated nodes to graphs with ϑ rank $=1$

Theorem (L-Vargas 2021)
Let $H=G \oplus p$ isolated nodes, where $\vartheta \operatorname{rank}(G)=1$. If the subgraph $G_{c}=\left(V, E_{c}\right)$ of critical edges in G is connected, then

$$
\vartheta \operatorname{rank}(H)=1 \Longrightarrow p \leq 4+\frac{4}{\alpha(G)-1}
$$

Example: $C_{2 n+1} \oplus p$ isolated nodes has rank $=1 \Longleftrightarrow p \leq 4+\frac{4}{n-1}$ Hence $p \leq 8$ for $C_{5}, p \leq 6$ for $C_{7}, p \leq 5$ for C_{9}, C_{11}, else $p \leq 4$

Adding isolated nodes to graphs with ϑ rank $=1$

Theorem (L-Vargas 2021)
Let $H=G \oplus p$ isolated nodes, where $\vartheta \operatorname{rank}(G)=1$. If the subgraph $G_{c}=\left(V, E_{c}\right)$ of critical edges in G is connected, then

$$
\vartheta \operatorname{rank}(H)=1 \Longrightarrow p \leq 4+\frac{4}{\alpha(G)-1}
$$

Example: $C_{2 n+1} \oplus p$ isolated nodes has rank $=1 \Longleftrightarrow p \leq 4+\frac{4}{n-1}$ Hence $p \leq 8$ for $C_{5}, p \leq 6$ for $C_{7}, p \leq 5$ for C_{9}, C_{11}, else $p \leq 4$

Tools: Use the characterization of the cone $K^{(1)}$ and knowledge about the zeros of $x^{\top}\left(\alpha\left(I+A_{G}\right)-J\right) x$ (via the minimizers of (MS))
$M \in K^{(1)} \Longleftrightarrow$ there exist matrices $P(i) \succeq 0(i \in[n])$ such that
(1) $P(i)_{i i}=M_{i i}$ for $i \in[n]$
(2) $P(j)_{i i}+2 P(i)_{i j}=M_{i i}+2 M_{i j}$ for $i \neq j \in[n]$
(3) $P(i)_{j k}+P(j)_{i k}+P(k)_{i j} \leq M_{i j}+M_{i k}+M_{j k}$ for $i \neq j \neq k \in[n]$
[Parrilo 2000]

Concluding remarks

- It would suffice to show the (weak) conjecture for critical graphs. We can show the weak conjecture holds for a-critical graphs.

Concluding remarks

- It would suffice to show the (weak) conjecture for critical graphs. We can show the weak conjecture holds for a-critical graphs.
- How/why can criticality help?

Concluding remarks

- It would suffice to show the (weak) conjecture for critical graphs. We can show the weak conjecture holds for a-critical graphs.
- How/why can criticality help?
- We can characterize critical graphs with ϑ rank 0

Concluding remarks

- It would suffice to show the (weak) conjecture for critical graphs. We can show the weak conjecture holds for a-critical graphs.
- How/why can criticality help?
- We can characterize critical graphs with ϑ rank 0
- Critical edges may be used to show 'unicity' of SoS decompositions - C_{5} is critical and $\left(\sum_{i} x_{i}^{2}\right) p_{C_{5}}$ has unique SoS decomposition

Concluding remarks

- It would suffice to show the (weak) conjecture for critical graphs. We can show the weak conjecture holds for a-critical graphs.
- How/why can criticality help?
- We can characterize critical graphs with ϑ rank 0
- Critical edges may be used to show 'unicity' of SoS decompositions - C_{5} is critical and $\left(\sum_{i} x_{i}^{2}\right) p_{C_{5}}$ has unique SoS decomposition
- Use this 'unicity' idea to characterize which diagonal scalings of $M_{C_{5}}$ lie in $K^{(1)}$

Concluding remarks

- It would suffice to show the (weak) conjecture for critical graphs. We can show the weak conjecture holds for a-critical graphs.
- How/why can criticality help?
- We can characterize critical graphs with ϑ rank 0
- Critical edges may be used to show 'unicity' of SoS decompositions - C_{5} is critical and $\left(\sum_{i} x_{i}^{2}\right) p_{C_{5}}$ has unique SoS decomposition
- Use this 'unicity' idea to characterize which diagonal scalings of $M_{C_{5}}$ lie in $K^{(1)}$ or to show that the following two graphs has ϑ rank ≥ 2 :

only critical graphs on 8 nodes with ϑ rank $=2$

Concluding remarks

- It would suffice to show the (weak) conjecture for critical graphs. We can show the weak conjecture holds for a-critical graphs.
- How/why can criticality help?
- We can characterize critical graphs with ϑ rank 0
- Critical edges may be used to show 'unicity' of SoS decompositions - C_{5} is critical and $\left(\sum_{i} x_{i}^{2}\right) p_{C_{5}}$ has unique SoS decomposition
- Use this 'unicity' idea to characterize which diagonal scalings of $M_{C_{5}}$ lie in $K^{(1)}$ or to show that the following two graphs has ϑ rank ≥ 2 :

only critical graphs on 8 nodes with ϑ rank $=2$
- The de Klerk-Pasechnik Conjecture offers a rich playground where real algebra (sums of squares), optimization and graph theory meet

Some references

P. Parrilo: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, PhD thesis, CalTech, 2000.
E. de Klerk and D. Pasechnik. Approximation of the stability number of a graph via copositive programming. SIOPT, 2002
N. Gvozdenović and M. Laurent. Semidefinite bounds for the stability number of a graph via sums of squares of polynomials. Mathematical Programming, 2007
J. Pena, J. Vera and L. Zuluaga. Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optimization, 2007
P. Dickinson, M. Dür, L. Gijben and R. Hildebrand. Scaling relationship between the copositive cone and Parrilo's first level approximation Optimization Letters, 2013
M. Laurent and L.F. Vargas. Finite convergence of sum-of-squares hierarchies for the stability number of a graph. arXiv:2103.01574, 2021

