
Sums of Squares of Polynomials
and Graphs

Monique Laurent

Joint work with Luis Felipe Vargas (CWI)

Fields Distinguished Lecture Series - May 13, 2021



Computing the stability number α(G )

α = 4 χ = 3 χ = 5

• Stability number α(G ):
maximum cardinality of a set of pairwise
non-adjacent vertices (stable set)

• Clique cover number χ(G ) := χ(G ):

minimum number of cliques covering V

• α(G ) ≤ χ(G )

Optimization over the simplex ∆n Motzkin-Straus (1965)

1
α(G) = min xT(I + AG )x s.t. x ∈ ∆n = {x : x ≥ 0,

∑n
i=1 xi = 1}

S stable with size α(G )  x = χS

α(G) ∈ ∆n with value 1
α(G)

I + AG =

( S V \ S
S I AG [S,V\S]

V \ S AG [V\S,S] I + AG [V\S]

)Optimization over the unit sphere Sn−1 x◦2 = (x2
1 , . . . , x

2
n )

1
α(G) = min (x◦2)T(I + AG )x◦2 s.t. x ∈ Sn−1 = {x :

∑n
i=1 x

2
i = 1}
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Copositive programming formulation

Copositive cone

COPn = {M ∈ Sn : xTMx ≥ 0 ∀x ∈ Rn
+}

Copositive formulation: [de Klerk-Pasechnik 2002]

α(G ) = minλ∈R λ s.t. λ(I + AG )− J ∈ COPn J = eeT

This follows using (Motzkin-Straus) formulation:

1
α(G) = min xT(I + AG )x s.t. x ∈ ∆n = {x : x ≥ 0,

∑n
i=1 xi = 1}

Pf: λ(I +AG )− J ∈ COPn ⇐⇒ xT(λ(I +AG )− J)x ≥ 0 on Rn
+, or ∆n

⇐⇒ λ · xT(I + AG )x − (eTx)2 ≥ 0 on ∆n

⇐⇒ xT(I + AG )x ≥ 1/λ on ∆n
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SoS approximations for α(G )

the cones K
(r)
n

the bounds ϑ(r)(G )



Tractable subcones of COPn

COPn = {M ∈ Sn : xTMx ≥ 0 ∀x ∈ Rn
+}

linear cone C
(r)
n = {M : (

∑
i xi )

rxTMx ∈ R+[x ]} (nonnegative coefficients)

SoS cone K
(r)
n = {M : (

∑
i x

2
i )r (x◦2)TMx◦2 ∈ Σ} (SoS polynomial)

• C
(r)
n ⊆ K

(r)
n ⊆ COPn, C

(r)
n ⊆ C

(r+1)
n , K

(r)
n ⊆ K

(r+1)
n

• int(COPn) ⊆
⋃

r≥0C
(r)
n ⊆

⋃
r≥0K

(r)
n ⊆ COPn

Theorem (Pólya 1974; Powers-Reznick 2001)
If p is a form s.t. p > 0 on ∆n, then there exists an integer r ∈ N s.t.

(
∑

i xi )
rp has nonnegative coefficients

in fact, for any r ≥
(
d
2

) Lp

pmin
− d d = deg(p), Lp = maxα |pα|α!

d!
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Hierarchies of approximations for α(G )

α(G ) = minλ s.t. λ(I + AG )− J ∈ COPn

linear cone C
(r)
n = {M : (

∑
i xi )

rxTMx ∈ R+[x ]} (nonnegative coefficients)

SoS cone K
(r)
n = {M : (

∑
i x

2
i )r (x◦2)TMx◦2 ∈ Σ} (SoS polynomial)

linear bound ζ(r)(G ) = minλ λ s.t. λ(I + AG )− J ∈ C
(r)
n

SoS bound ϑ(r)(G ) = minλ λ s.t. λ(I + AG )− J ∈ K
(r)
n

• α(G ) ≤ ϑ(r)(G ) ≤ ζ(r)(G ) < α(G ) + 1 if r ≥ α(G )2

[de Klerk-Pasechnik 2002]
• So bζ(r)(G )c = α(G ) if r ≥ α(G )2

But strict inequality: α(G ) < ζ(r)(G ) for all r (if G 6= Kn)
[Vera-Pena-Zuluaga 2007]

• Equality: ϑ(r)(G ) = α(G ) for r = α(G )− 1 if α(G ) ≤ 8
[Gvozdenović-L 2007]
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Hierarchies of approximations for α(G )

α(G ) = minλ s.t. λ(I + AG )− J ∈ COPn

linear cone C
(r)
n = {M : (

∑
i xi )

rxTMx ∈ R+[x ]} (nonnegative coefficients)

SoS cone K
(r)
n = {M : (

∑
i x

2
i )r (x◦2)TMx◦2 ∈ Σ} (SoS polynomial)

linear bound ζ(r)(G ) = minλ λ s.t. λ(I + AG )− J ∈ C
(r)
n

SoS bound ϑ(r)(G ) = minλ λ s.t. λ(I + AG )− J ∈ K
(r)
n

• α(G ) ≤ ϑ(r)(G ) ≤ ζ(r)(G ) < α(G ) + 1 if r ≥ α(G )2

[de Klerk-Pasechnik 2002]
• So bζ(r)(G )c = α(G ) if r ≥ α(G )2

But strict inequality: α(G ) < ζ(r)(G ) for all r (if G 6= Kn)
[Vera-Pena-Zuluaga 2007]

• Equality: ϑ(r)(G ) = α(G ) for r = α(G )− 1 if α(G ) ≤ 8
[Gvozdenović-L 2007]
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De Klerk-Pasechnik

Conjecture

on ϑ(r)(G )



De Klerk-Pasechnik conjecture
Conjecture

(1) ϑ(r)(G ) = α(G ) for r = α(G )− 1 [de Klerk-Pasechnik 2002]

(2) ϑ(r)(G ) = α(G ) for some r [weaker form]

Equivalently, setting ϑrank(G ):= smallest r s.t. ϑ(r)(G ) = α(G )

ϑrank(G ) ≤ α(G )− 1 (is finite)

Equivalently, setting MG = α(G )(I + AG )− J, pG = (x◦2)TMGx
◦2

The polynomial (
∑

i x
2
i )rpG is SoS for r = α(G )− 1 (for some r)

Recall: The polynomial pG is nonnegative on Rn since MG ∈ COPn

If true:

• this would give a class of polynomials for which most known
sufficient conditions for finite convergence do not apply

[Reznick 1995] form p > 0 on Rn \ {0}  ∃r s.t. (
∑

i x
2
i )rp is SoS• this shows that the continuous copositive-based hierarchy has the

same convergence behaviour as the discrete SoS hierarchy for α(G )

Recall: Conjecture (1) holds for graphs with α(G ) ≤ 8
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The cone K
(0)
n and the bound ϑ(0)(G )

• K
(0)
n = PSDn + Rn×n

+ [Parrilo 2000]

(x◦2)TMx◦2 is SoS ⇐⇒ M = P + N, with P � 0 and N ≥ 0

• ϑ(0)(G ) = ϑ′(G ), the strengthening of Lovász theta number ϑ(G )
(with nonnegativity) [dK-P 2002]

• ’Sandwich’ inequalities: α(G ) ≤ ϑ(0)(G ) ≤ ϑ(G ) ≤ χ(G )

• If χ(G ) = α(G ) (e.g., G is perfect) then ϑrank(G ) = 0

This is not an equivalence!

ϑrank(G ) = 0 for the Petersen graph

but α = 4 < χ = 5
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A link to matrix completion

For a graph G the following are equivalent:

(1) ϑ(0)(G ) = α(G ); that is, ϑrank(G ) = 0; that is,

pG = (x◦2)T(α(G )(I + AG )− J)x◦2 is a sum of squares

(2) ∃P � 0 s.t. Pii = α(G )− 1 (i ∈ V ),. Pij ≤ −1 ({i , j} ∈ E )

 psd matrix completion problem

Special instance: Assume α(G ) = 3 and G is a planar graph.

Then, 3 ≤ χ(G ) ≤ 4  hard to test if χ(G ) = 3

I If G is a planar triangulation then

χ(G ) = 3 ⇐⇒ G Eulerian [Haewood 1898]

⇐⇒ ϑ(G ) = 3 ⇐⇒ ϑ(0)(G ) = 3
 easy instance of psd matrix completion

I χ(G ) = 3 ⇐⇒ ϑ(G ) = 3 with certificate P of rank 2

 hard instance of psd matrix completion with rank constraint
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Examples with ϑrank(G ) = 1

• For the 5-cycle C5, pC5 = (x◦2)T(2(I + AC5 )− J)x◦2

MC5 = 2(I+AC5)−J =


1 1 −1 −1 1
1 1 1 −1 −1
−1 1 1 1 −1
−1 −1 1 1 1
1 −1 −1 1 1

 is the Horn matrix

MC5 6∈ K
(0)
5 (as pC5 is not SoS), but MC5 ∈ K

(1)
5

[Parrilo 2000]

(
∑

i x
2
i )pC5

=
∑

circular

x2
1 (x2

5 + x2
1 + x2

2 − x2
3 − x2

4 )2

+
∑

circular

4x2
1 x

2
2 x

2
3

• Odd cycles have rank 1: ϑrank(C2n+1) = 1 [dK-P 2002]
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Partial solution to the

weak conjecture:

ϑrank(G ) <∞ if G has no critical edges



Main steps

• Role of critical edges

• Link the bounds ϑ(r)(G ) to the Lasserre hierarchy for
Motzkin-Straus (MS) formulation

• Characterize the minimizers of (MS)



Role of critical edges



Critical / a-critical graphs

• An edge e is critical if α(G\e) = α(G ) + 1

G is critical if all edges are critical; G a-critical if no edge is critical

odd cycles are critical Even cycles, Petersen are a-critical

• Observe: If e is not critical then ϑrank(G ) ≤ ϑrank(G\e) =: r

Indeed: α(I +AG )− J = α(I + AG\e)− J︸ ︷︷ ︸
∈K (r)

+ αAe︸︷︷︸
∈K (r) as nonnegative

∈ K (r)

Hence:

It suffices to prove the (weak) conjecture for critical graphs

But: We can prove the weak conjecture for a-critical graphs
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Link to Lasserre

hierarchy for other

formulations of α(G )



Motzkin-Straus formulation (MS)

1
α(G) = min xT(I + AG )x s.t. x ∈ ∆n = {x : x ≥ 0,

∑n
i=1 xi = 1}

las∆
r (G ) = supλ s.t. xT(I+AG )x−λ = σ0︸︷︷︸

SoS, deg 2r

+
∑
i

xi σi︸︷︷︸
deg 2r−2

+u(1−
∑
i

xi )

1
α(G) = min (x◦2)T(I + AG )x◦2 s.t. x ∈ Sn−1 = {x :

∑n
i=1 x

2
i = 1}

lasSr (G ) = supλ s.t. (x◦2)T (I + AG )x◦2 − λ = σ0︸︷︷︸
SoS, deg 2r

+u(1−
∑
i

x2
i )

Relation with ϑ(r)(G ): [L-V 2021]

α(G ) ≤ ϑ(2r)(G ) = 1
lasS2r+2(G)

≤ 1
las∆

r+1(G)

 It suffices to show finite convergence of Lasserre hierarchy for (MS)

las∆
r (G ) = 1

α(G) for some r ?
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Finite convergence for
a-critical graphs



The weak conjecture holds for a-critical graphs

Theorem (L-Vargas 2021)
If G is a-critical then ∃r las∆

r (G ) = 1
α(G) ,

thus ∃r ϑ(r)(G ) = α(G )

Sketch of proof: Assume G is a-critical.

1. The minimizers of (MS) are χS

α(G) , where S is a maximum stable set

2. The sufficient optimality conditions hold at all minimzers of (MS)

3. Use a real-algebraic result of Marshall/Nie to conclude finite
convergence of Lasserre hierarchy las∆

r (G ) for (MS)

Theorem (global minimizers of (MS))
Let x ∈ ∆n, with support S = {i : xi > 0}, and C1, . . . ,Ck the connected
components of G [S ]. Then x is a global minimizer of (MS) ⇐⇒

I k = α(G )

I Each of C1, . . . ,Ck is a clique, consisting of critical edges

I
∑

i∈Ch
xi = 1

α(G) , for h ∈ [k]

Hence: (MS) has finitely many minimizers ⇐⇒ G is a-critical.

Ex: For C5, x = (t, 1
2 − t, 0, 1

2 , 0) is a minimizer for any t ∈ [0, 1
2 ]
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Perturbed hierarchy

Ac : adjacency matrix of the critical edges of G , ε > 0

1
α(G) = min xT(I + AG + εAc)x s.t. x ∈ ∆n

For any graph G :

• The global minimizers are χS

α(G) with S maximum stable, and the

optimality conditions hold at all of them

 The perturbed hierarchy has finite convergence

• But, it is not clear how to use this to conclude finite convergence of
the original (unperturbed) hierarchy for any G ... since there is no
uniform degree bound (independent of ε)

Theorem (L-Vargas 2021)
If there is a polynomial time algorithm for deciding whether a standard
quadratic program has finitely many minimizers then P=NP

Key: Reduce to the (hard) problem of testing whether an edge is critical
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More about ϑrank = 0



Critical graphs with ϑrank = 0

I If G is critical, ϑrank(G ) = 0 ⇐⇒ G is a disjoint union of cliques
[L-V’21]

C5 critical, ϑrank=1 Even cycle, Petersen: a-critical, ϑrank=0

This characterization does not hold for general graphs

I One can reduce algorithmically deciding if ϑrank(G ) = 0 to the
same question for a-critical graphs (in poly-time for fixed α)

[L-V’21]

I Complexity of deciding whether ϑrank = 0?
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What makes the analysis of

ϑrank(G ) so difficult?



Tentative induction proof
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Theorem (L-V 2021)
If M̂ ∈ Sn+1 is obtained by adding a zero row/column to M ∈ Sn then

M 6∈ K (0)
n =⇒ M̂ 6∈

⋃
r

K
(r)
n+1

Example: M := MC5 ∈ COP5 \ K (0)
5 =⇒ M̂ ∈ COP6 \

⋃
r K

(r)
6

Hence: for n ≥ 6, the inclusion
⋃

r≥0 K
(r)
n ⊂ COPn is strict

Recall:

I For n ≤ 4, COPn = K
(0)
n

I For n ≥ 5, COPn 6⊆ K
(r)
n for any r [Dickinson et al. 2013]

Open question: For n = 5,
⋃

r≥0 K
(r)
5 = COP5 ?
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Adding isolated nodes to graphs with ϑrank = 1

Theorem (L-Vargas 2021)
Let H = G ⊕ p isolated nodes, where ϑrank(G ) = 1. If the subgraph
Gc = (V ,Ec) of critical edges in G is connected, then

ϑrank(H) = 1 =⇒ p ≤ 4 +
4

α(G )− 1

Example: C2n+1⊕ p isolated nodes has rank = 1 ⇐⇒ p ≤ 4 + 4
n−1

Hence p ≤ 8 for C5, p ≤ 6 for C7, p ≤ 5 for C9, C11, else p ≤ 4

Tools: Use the characterization of the cone K (1) and knowledge about
the zeros of xT(α(I + AG )− J)x (via the minimizers of (MS))

M ∈ K (1) ⇐⇒ there exist matrices P(i) � 0 (i ∈ [n]) such that
(1) P(i)ii = Mii for i ∈ [n]
(2) P(j)ii + 2P(i)ij = Mii + 2Mij for i 6= j ∈ [n]
(3) P(i)jk + P(j)ik + P(k)ij ≤ Mij + Mik + Mjk for i 6= j 6= k ∈ [n]

[Parrilo 2000]
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Concluding remarks

I It would suffice to show the (weak) conjecture for critical graphs.
We can show the weak conjecture holds for a-critical graphs.

I How/why can criticality help?

I We can characterize critical graphs with ϑrank 0

I Critical edges may be used to show ’unicity’ of SoS decompositions

• C5 is critical and (
∑

i x
2
i )pC5 has unique SoS decomposition

• Use this ’unicity’ idea to characterize which diagonal scalings

of MC5 lie in K (1)

or to show that the following two graphs has ϑrank ≥ 2:

only critical graphs on 8 nodes with ϑrank = 2

I The de Klerk-Pasechnik Conjecture offers a rich playground where
real algebra (sums of squares), optimization and graph theory meet
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