Performance analysis of approximation hierarchies for polynomial optimization

CWI

Monique Laurent

Joint works with Lucas Slot and Etienne de Klerk
Fields Distinguished Lecture Series - May 12, 2021

Minimize a polynomial f over a compact (semialgebraic) set K

$$
f_{\text {min }}=\min _{x \in K} f(x)
$$

Minimize a polynomial f over a compact (semialgebraic) set K

$$
f_{\text {min }}=\min _{x \in K} f(x)
$$

NP-hard problem: it captures hard combinatorial problems (like computing $\alpha(G)$: the maximum size of a stable set in a graph G) when K is a hypercube or a simplex and $\operatorname{deg}(f)=2$,
or K is a sphere and $\operatorname{deg}(f)=3$

Minimize a polynomial f over a compact (semialgebraic) set K

$$
f_{\min }=\min _{x \in K} f(x)
$$

$$
\alpha(G)=\max _{x \in[0,1]^{n}} \sum_{i=1}^{n} x_{i}-\sum_{i j \in E} x_{i} x_{j} \quad \frac{1}{\alpha(G)}=\min _{x \in \Delta_{n}} \sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i j \in E} x_{i} x_{j}
$$

Minimize a polynomial f over a compact (semialgebraic) set K

$$
f_{\min }=\min _{x \in K} f(x)
$$

$$
\alpha(G)=\max _{x \in[0,1]^{n}} \sum_{i=1}^{n} x_{i}-\sum_{i j \in E} x_{i} x_{j} \quad \frac{1}{\alpha(G)}=\min _{x \in \Delta_{n}} \sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i j \in E} x_{i} x_{j}
$$

$$
\frac{2 \sqrt{2}}{3 \sqrt{3}} \sqrt{1-\frac{1}{\alpha(G)}}=\max _{(x, y) \in \mathbb{S}^{n+|\bar{E}|-1}} 2 \sum_{i j \in \bar{E}} x_{i} x_{j} y_{i j}
$$

[Motzkin-Straus'65, Nesterov'03]

Two hierarchies of lower/upper bounds for polynomial optimization:

$$
f_{\min }=\min _{x \in K} f(x)
$$

(1) Lasserre/Parrilo sums-of-squares based lower bounds:

$$
f_{(r)} \leq f_{\min }
$$

(2) Lasserre measure-based upper bounds:

$$
f_{\min } \leq f^{(r)}
$$

Common feature:

- For fixed r the bounds can be computed via a semidefinite program (SDP) with matrix size $O\left(n^{r}\right)$ (since sum-of-squares polynomials can be modelled with SDP)
- the bounds converge asymptotically to $f_{\min }$ as $r \rightarrow \infty$

This lecture: Main focus on the error analysis of these bounds

Lasserre/Parrilo SUMS-OF-SQUARES BASED LOWER BOUNDS

‘Sums-of-squares’ (SoS) lower bounds

(P) $\quad f_{\text {min }}=\min _{x \in K} f(x)=\sup _{\lambda \in \mathbb{R}} \lambda$ s.t. $f(x)-\lambda \geq 0$ on K

'Sums-of-squares' (SoS) lower bounds

(P) $\quad f_{\min }=\min _{x \in K} f(x)=\sup _{\lambda \in \mathbb{R}} \lambda$ s.t. $f(x)-\lambda \geq 0$ on K

When $K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \quad$ with $g_{j} \in \mathbb{R}[x]$
one can replace the hard condition: " $f(x)-\lambda \geq 0$ on K "
by the easier condition:
" $f(x)-\lambda$ is a 'weighted sum' of sum-of-squares polynomials"
\rightsquigarrow Get the SoS bounds:

$$
f_{(r)}=\sup \lambda \text { s.t. } f-\lambda=\underbrace{s_{0}}_{\operatorname{deg} \leq 2 r}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 r}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 r}, s_{j} \operatorname{SoS}
$$

'Sums-of-squares' (SoS) lower bounds

(P) $\quad f_{\min }=\min _{x \in K} f(x)=\sup _{\lambda \in \mathbb{R}} \lambda$ s.t. $f(x)-\lambda \geq 0$ on K

When $K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \quad$ with $g_{j} \in \mathbb{R}[x]$
one can replace the hard condition: " $f(x)-\lambda \geq 0$ on K "
by the easier condition:
" $f(x)-\lambda$ is a 'weighted sum' of sum-of-squares polynomials"
\rightsquigarrow Get the SoS bounds:

$$
f_{(r)}=\sup \lambda \text { s.t. } f-\lambda=\underbrace{s_{0}}_{\operatorname{deg} \leq 2 r}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 r}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 r}, s_{j} \operatorname{SoS}
$$

- $f_{(r)} \leq f_{(r+1)} \leq f_{\min }, \quad f_{(r)} \nearrow f_{\min }$ as $r \rightarrow \infty$
- Can compute $f_{(r)}$ with semidefinite programming

Error analysis in terms of the relaxation order r

- [Nie-Schweighofer 2007] Let K semi-algebraic compact (+technical condition). There exists a constant $c=c_{K}$ such that for any degree d polynomial f :

$$
f_{\min }-f_{(r)} \leq 6 d^{3} n^{2 d} L_{f} \frac{1}{\sqrt[c]{\log \frac{r}{c}}} \quad \text { for all } r \geq c \cdot e^{\left(2 d^{2} n^{d}\right)^{c}}
$$

Error analysis in terms of the relaxation order r

- [Nie-Schweighofer 2007] Let K semi-algebraic compact (+technical condition). There exists a constant $c=c_{K}$ such that for any degree d polynomial f :

$$
f_{\min }-f_{(r)} \leq 6 d^{3} n^{2 d} L_{f} \frac{1}{\sqrt[c]{\log \frac{r}{c}}} \quad \text { for all } r \geq c \cdot e^{\left(2 d^{2} n^{d}\right)^{c}}
$$

- [Fang-Fawzi 2020] Improved error analysis in $O\left(1 / r^{2}\right)$ for the unit sphere $K=\mathbb{S}^{n-1}$, for f homogeneous with degree $2 d$:

$$
f_{\min }-f_{(r)} \leq\left(f_{\max }-f_{\min }\right) \frac{C_{d}^{2} n^{2}}{r^{2}} \quad \text { for } r \geq C_{d} \cdot n
$$

This improves the earlier $O(1 / r)$ result of [Faybusovich 2003], [Doherty-Wehner 2012]

Error analysis in terms of the relaxation order r

- [Nie-Schweighofer 2007] Let K semi-algebraic compact (+technical condition). There exists a constant $c=c_{K}$ such that for any degree d polynomial f :

$$
f_{\min }-f_{(r)} \leq 6 d^{3} n^{2 d} L_{f} \frac{1}{\sqrt[c]{\log \frac{r}{c}}} \quad \text { for all } r \geq c \cdot e^{\left(2 d^{2} n^{d}\right)^{c}}
$$

- [Fang-Fawzi 2020] Improved error analysis in $O\left(1 / r^{2}\right)$ for the unit sphere $K=\mathbb{S}^{n-1}$, for f homogeneous with degree $2 d$:

$$
f_{\min }-f_{(r)} \leq\left(f_{\max }-f_{\min }\right) \frac{C_{d}^{2} n^{2}}{r^{2}} \quad \text { for } r \geq C_{d} \cdot n
$$

This improves the earlier $O(1 / r)$ result of [Faybusovich 2003], [Doherty-Wehner 2012]

There is an intimate link with the analysis of the upper bounds

LASSERRE MEASURE-BASED UPPER BOUNDS

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\text {min }}=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Theorem (Lasserre 2011)
For K compact, one may restrict to $d \nu(x)=h(x) d \mu(x)$, where μ is a fixed measure with support K and σ is a sum-of-squares density:

$$
f_{\min }=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1
$$

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d \nu(x)=h(x) d \mu(x)$, where μ is a fixed measure with support K and σ is a sum-of-squares density:

$$
f_{\text {min }}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1
$$

Bound degree: $\operatorname{deg}(\sigma) \leq 2 r \rightsquigarrow$ upper bounds $f^{(r)}$ converging to $f_{\min }$:

$$
f^{(r)}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \quad \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d \nu(x)=h(x) d \mu(x)$, where μ is a fixed measure with support K and σ is a sum-of-squares density:

$$
f_{\text {min }}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1
$$

Bound degree: $\operatorname{deg}(\sigma) \leq 2 r \rightsquigarrow$ upper bounds $f^{(r)}$ converging to $f_{\min }$:

$$
f^{(r)}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \quad \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

- $f_{\text {min }} \leq f^{(r+1)} \leq f^{(r)}, \quad f^{(r)} \searrow f_{\text {min }}, \quad f^{(r)}$ can be computed via SDP

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d \nu(x)=h(x) d \mu(x)$, where
μ is a fixed measure with support K and σ is a sum-of-squares density:

$$
f_{\text {min }}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1
$$

Bound degree: $\operatorname{deg}(\sigma) \leq 2 r \rightsquigarrow$ upper bounds $f^{(r)}$ converging to $f_{\min }$:

$$
f^{(r)}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \quad \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

- $f_{\text {min }} \leq f^{(r+1)} \leq f^{(r)}, \quad f^{(r)} \searrow f_{\text {min }}, \quad f^{(r)}$ can be computed via SDP
- but one needs to know the moments of μ : $m_{\alpha}=\int_{K} x^{\alpha} d \mu(x)$ to compute $\int_{K} f(x) d \mu=\int_{K}\left(\sum_{\alpha} f_{\alpha} x^{\alpha}\right) d \mu=\sum_{\alpha} f_{\alpha} m_{\alpha}$

Basic observation: identify points $x \in K$ with Dirac measures on K

$$
f_{\min }=\min _{x \in K} f(x)=\min _{\nu \text { probability measure on } K} \int_{K} f(x) d \nu(x)
$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d \nu(x)=h(x) d \mu(x)$, where
μ is a fixed measure with support K and σ is a sum-of-squares density:

$$
f_{\text {min }}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1
$$

Bound degree: $\operatorname{deg}(\sigma) \leq 2 r \rightsquigarrow$ upper bounds $f^{(r)}$ converging to $f_{\min }$:

$$
f^{(r)}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \quad \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

- $f_{\text {min }} \leq f^{(r+1)} \leq f^{(r)}, \quad f^{(r)} \searrow f_{\text {min }}, \quad f^{(r)}$ can be computed via SDP
- but one needs to know the moments of μ : $m_{\alpha}=\int_{K} x^{\alpha} d \mu(x)$
- m_{α} known if μ Lebesgue on cube, ball, simplex; Haar on sphere,...

Example: Motzkin polynomial on $K=[-2,2]^{2}$

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}-3 x_{1}^{2} x_{2}^{2}+1
$$

Four global minimizers: $(-1,-1),(-1,1),(1,-1),(1,1)$

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density σ of degree 12

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density σ of degree 16

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density σ of degree 20

Example: Motzkin polynomial on $[-2,2]^{2}$ (ctd.)

Optimal SoS density σ of degree 24

Goal: Analyze rate of convergence of error range:

$$
E^{(r)}(f)=E_{\mu, K}^{(r)}(f):=f^{(r)}-f_{\text {min }}
$$

Goal: Analyze rate of convergence of error range:

$$
E^{(r)}(f)=E_{\mu, K}^{(r)}(f):=f^{(r)}-f_{\text {min }}
$$

compact K	$E^{(r)}(f)$	μ			
Hypercube f linear any f any f	$\Theta\left(1 / r^{2}\right)$ $O\left(1 / r^{2}\right)$	$\left(1-x^{2}\right)^{\lambda}, \lambda>-1$ Chebyshev: $\lambda=-1 / 2$ $\lambda \geq-1 / 2$	de Klerk-L 2020		
Sphere					
fhomogeneous any f	$O\left(1 / r^{2}\right)$	Slot-L 2020			
Ball any f	$O\left(1 / r^{2}\right)$	Haar Haar	Doherty-Wehner'12 de Klerk-L 2020		
Simplex, 'round' convex body	$O\left(1 / r^{2}\right)$	$\left(1-\\|x\\|^{2}\right)^{\lambda}, \lambda \geq 0$	Slot-L 2020		
Convex body, fat semialgebraic	$O\left((\log r)^{2} / r^{2}\right)$	Lebesgue	Slot-L 2020		

Key proof strategies

(1) Design 'nice' SoS polynomial densities
'that look like the Dirac delta at a global minimizer' and reduce to the univariate case in order to get the $O\left((\log r)^{2} / r^{2}\right)$ rate for general K

Key proof strategies

(1) Design 'nice' SoS polynomial densities
'that look like the Dirac delta at a global minimizer'
and reduce to the univariate case
in order to get the $O\left((\log r)^{2} / r^{2}\right)$ rate for general K
(2) Reformulate $f^{(r)}$ as an eigenvalue problem and relate $f^{(r)}$ to extremal roots of orthogonal polynomials
$\rightsquigarrow O\left(1 / r^{2}\right)$ rate for the Chebyshev measure on $[-1,1]$,
and other measures (with Jacobi weight) for linear polynomials
Basic trick: suffices to analyse polynomials with degree ≤ 2

Key proof strategies

(1) Design 'nice' SoS polynomial densities
'that look like the Dirac delta at a global minimizer'
and reduce to the univariate case
in order to get the $O\left((\log r)^{2} / r^{2}\right)$ rate for general K
(2) Reformulate $f^{(r)}$ as an eigenvalue problem and relate $f^{(r)}$ to extremal roots of orthogonal polynomials
$\rightsquigarrow O\left(1 / r^{2}\right)$ rate for the Chebyshev measure on $[-1,1]$, and other measures (with Jacobi weight) for linear polynomials Basic trick: suffices to analyse polynomials with degree ≤ 2
(3) Use more tricks (Taylor approx., integration, 'local similarity') to transport the $O\left(1 / r^{2}\right)$ rate for $[-1,1]$ to more sets (and measures): hypercube, simplex, ball, sphere, 'round' convex bodies

Strategy 1:

Use SoS approximations of Dirac measures

$\rightsquigarrow O\left(\frac{\log ^{2} r}{r^{2}}\right)$ Rate for general K

Step 1: Analyse cheaper (univariate) bounds

Instead of the multivariate upper bounds:

$$
f^{(r)}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

Step 1: Analyse cheaper (univariate) bounds

Instead of the multivariate upper bounds:

$$
f^{(r)}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \quad \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

Consider the weaker univariate upper bounds:
$f_{p f m}^{(r)}=\min _{s} \int_{K} f(x) s(f(x)) d \mu(x)$ s.t. $\quad \int_{K} s(f(x)) d \mu(x)=1, \operatorname{deg}(s) \leq 2 r$ s univariate sum-of-squares

Step 1: Analyse cheaper (univariate) bounds

Instead of the multivariate upper bounds:

$$
f^{(r)}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \quad \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

Consider the weaker univariate upper bounds:

$$
\begin{array}{rll}
f_{p f m}^{(r)} & =\min _{s} \int_{K} f(x) s(f(x)) d \mu(x) \text { s.t. } & \begin{array}{l}
\int_{K} s(f(x)) d \mu(x)=1, \operatorname{deg}(s) \leq 2 r \\
\\
\\
\text { s univariate sum-of-squares }
\end{array} \\
=\min _{s} \int_{f(K)} t \cdot s(t) d \mu_{f}(t) \text { s.t. } & & \begin{array}{l}
\int_{f(K)} s(t) d \mu_{f}(t)=1, \operatorname{deg}(s) \leq 2 r \\
\\
\text { s univariate sum-of-squares }
\end{array}
\end{array}
$$

with μ_{f} is the push-forward of μ by f, supported by $\left[f_{\text {min }}, f_{\text {max }}\right] \subseteq \mathbb{R}$

Step 1: Analyse cheaper (univariate) bounds

Instead of the multivariate upper bounds:

$$
f^{(r)}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

Consider the weaker univariate upper bounds:

$$
\begin{array}{rll}
f_{p f m}^{(r)} & =\min _{s} \int_{K} f(x) s(f(x)) d \mu(x) \text { s.t. } & \begin{array}{l}
\int_{K} s(f(x)) d \mu(x)=1, \operatorname{deg}(s) \leq 2 r \\
\\
\\
\text { s univariate sum-of-squares }
\end{array} \\
=\min _{s} \int_{f(K)} t \cdot s(t) d \mu_{f}(t) \text { s.t. } & \begin{array}{l}
\int_{f(K)} s(t) d \mu_{f}(t)=1, \operatorname{deg}(s) \leq 2 r \\
\\
\text { s univariate sum-of-squares }
\end{array}
\end{array}
$$

with μ_{f} is the push-forward of μ by f, supported by $\left[f_{\text {min }}, f_{\max }\right] \subseteq \mathbb{R}$
Then: $f_{\text {min }} \leq f^{(r d)} \leq f_{p f m}^{(r)} \quad$ if $d=\operatorname{deg}(f)$

$$
f_{p f m}^{(r)} \searrow f_{\text {min }}
$$

Step 1: Analyse cheaper (univariate) bounds

Instead of the multivariate upper bounds:

$$
f^{(r)}=\inf _{\sigma} \int_{K} f(x) \sigma(x) d \mu \text { s.t. } \sigma \text { SoS, } \int_{K} \sigma(x) d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

Consider the weaker univariate upper bounds:

$$
\begin{array}{rll}
f_{p f m}^{(r)} & =\min _{s} \int_{K} f(x) s(f(x)) d \mu(x) \text { s.t. } & \begin{array}{l}
\int_{K} s(f(x)) d \mu(x)=1, \operatorname{deg}(s) \leq 2 r \\
\\
\\
\text { s univariate sum-of-squares }
\end{array} \\
=\min _{s} \int_{f(K)} t \cdot s(t) d \mu_{f}(t) \text { s.t. } & \begin{array}{l}
\int_{f(K)} s(t) d \mu_{f}(t)=1, \operatorname{deg}(s) \leq 2 r \\
\\
\text { s univariate sum-of-squares }
\end{array}
\end{array}
$$

with μ_{f} is the push-forward of μ by f, supported by $\left[f_{\text {min }}, f_{\max }\right] \subseteq \mathbb{R}$
Then: $f_{\text {min }} \leq f^{(r d)} \leq f_{p f m}^{(r)} \quad$ if $d=\operatorname{deg}(f)$

$$
f_{p f m}^{(r)} \searrow f_{\text {min }}
$$

Step 2: Use SoS approximations of the Dirac delta

Use the degree $4 r$ (half-)needle polynomials $s_{r}^{h}(t)$ of [Kroó-Swetits'92] ($h>0, r \in \mathbb{N}$, defined as squares of Chebyshev polynomials)

$$
s_{r}^{h}(t) \begin{cases}=1 & \text { at } t=0 \\ \leq 1 & \text { at } t \in[0,1] \\ \leq 4 e^{-\frac{1}{2} \sqrt{h} r} & \text { at } t \in[h, 1]\end{cases}
$$

as univariate SoS density (with $h=(\log r)^{2} / r^{2}$)

Step 2: Use SoS approximations of the Dirac delta

Use the degree $4 r$ (half-)needle polynomials $s_{r}^{h}(t)$ of [Kroó-Swetits'92] ($h>0, r \in \mathbb{N}$, defined as squares of Chebyshev polynomials)

$$
s_{r}^{h}(t) \begin{cases}=1 & \text { at } t=0 \\ \leq 1 & \text { at } t \in[0,1] \\ \leq 4 e^{-\frac{1}{2} \sqrt{h} r} & \text { at } t \in[h, 1]\end{cases}
$$

as univariate SoS density (with $h=(\log r)^{2} / r^{2}$)

In green, the half-needle polynomial with $h=1 / 5$

Theorem (Slot-L 2020)
Assume K is a convex body, or K is a compact semialgebraic set with a dense interior (aka fat). Then

$$
f_{p f m}^{(r)}-f_{\min }=O\left(\frac{(\log r)^{2}}{r^{2}}\right)
$$

Theorem (Slot-L 2020)
Assume K is a convex body, or K is a compact semialgebraic set with a dense interior (aka fat). Then

$$
f_{p f m}^{(r)}-f_{\min }=O\left(\frac{(\log r)^{2}}{r^{2}}\right)
$$

- The analysis is almost tight

There can be a separation between the multivariate and univariate bounds:
For $f(x)=x^{2 d}$ and $K=[-1,1]$:

$$
f_{\min }=0 \leq f^{(2 d r)}=O\left(\frac{(\log r)^{2 d}}{r^{2 d}}\right) \leq f_{p f m}^{(r)}=\Omega\left(\frac{1}{r^{2}}\right)
$$

Theorem (Slot-L 2020)

Assume K is a convex body, or K is a compact semialgebraic set with a dense interior (aka fat). Then

$$
f_{p f m}^{(r)}-f_{\min }=O\left(\frac{(\log r)^{2}}{r^{2}}\right)
$$

- The analysis is almost tight

There can be a separation between the multivariate and univariate bounds:
For $f(x)=x^{2 d}$ and $K=[-1,1]$:

$$
f_{\min }=0 \leq f^{(2 d r)}=O\left(\frac{(\log r)^{2 d}}{r^{2 d}}\right) \leq f_{p f m}^{(r)}=\Omega\left(\frac{1}{r^{2}}\right)
$$

- Can one get rid of the factor $(\log r)^{2}$?

Yes for the multivariate bounds $f^{(r)}$, for some nice sets K

First Basic TRICK:
 SUFFICES TO ANALYZE QUADRATIC POLYNOMIALS

Analyze simpler upper estimators

Lemma
Let $\mathbf{a} \in K$ be a global minimizer of f in K.
Set $\gamma=\max _{x \in K}\left\|\nabla^{2} f(x)\right\|$.
By Taylor's theorem, f has a quadratic, separable upper estimator:

$$
f(x) \leq f(\mathbf{a})+\langle\nabla f(\mathbf{a}), x-\mathbf{a}\rangle+\gamma\|x-\mathbf{a}\|^{2}:=g(x),
$$

where $f(\mathbf{a})=g(\mathbf{a}) \quad \rightsquigarrow \quad f_{\text {min }}=g_{\text {min }}$.

Analyze simpler upper estimators

Lemma
Let $\mathbf{a} \in K$ be a global minimizer of f in K.
Set $\gamma=\max _{x \in K}\left\|\nabla^{2} f(x)\right\|$.
By Taylor's theorem, f has a quadratic, separable upper estimator:

$$
f(x) \leq f(\mathbf{a})+\langle\nabla f(\mathbf{a}), x-\mathbf{a}\rangle+\gamma\|x-\mathbf{a}\|^{2}:=g(x),
$$

where $f(\mathbf{a})=g(\mathbf{a}) \quad \rightsquigarrow \quad f_{\text {min }}=g_{\text {min }}$.
Hence, for all $r \in \mathbb{N}$,

$$
E^{(r)}(f) \leq E^{(r)}(g)
$$

Analyze simpler upper estimators

Lemma

Let $\mathbf{a} \in K$ be a global minimizer of f in K.
Set $\gamma=\max _{x \in K}\left\|\nabla^{2} f(x)\right\|$.
By Taylor's theorem, f has a quadratic, separable upper estimator:

$$
f(x) \leq f(\mathbf{a})+\langle\nabla f(\mathbf{a}), x-\mathbf{a}\rangle+\gamma\|x-\mathbf{a}\|^{2}:=g(x),
$$

where $f(\mathbf{a})=g(\mathbf{a}) \quad \rightsquigarrow \quad f_{\text {min }}=g_{\text {min }}$.
Hence, for all $r \in \mathbb{N}$,

$$
E^{(r)}(f) \leq E^{(r)}(g)
$$

\rightsquigarrow It suffices to analyze quadratic (separable) polynomials and sometimes we may even obtain a linear upper estimator!
(e.g. for the sphere)

Eigenvalue reformulation

$$
f^{(r)}=\min \int_{K} f \sigma d \mu \text { s.t. } \sigma \operatorname{SoS}, \int_{K} \sigma d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

μ given measure with support K

$$
f^{(r)}=\min \int_{K} f \sigma d \mu \text { s.t. } \sigma \operatorname{SoS}, \int_{K} \sigma d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

Choose an orthonormal basis $\left\{p_{\alpha}:|\alpha| \leq 2 r\right\}$ of $\mathbb{R}[x]_{2 r}$ w.r.t. μ

Then: σ SoS $\Longleftrightarrow \sigma=\left(\left(p_{\alpha}\right)_{|\alpha| \leq r}\right)^{\top} X\left(p_{\alpha}\right)_{|\alpha| \leq r} \quad$ for some $\left(X_{\alpha, \beta}\right) \succeq 0$
μ given measure with support K

$$
f^{(r)}=\min \int_{K} f \sigma d \mu \text { s.t. } \sigma \operatorname{SoS}, \int_{K} \sigma d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

Choose an orthonormal basis $\left\{p_{\alpha}:|\alpha| \leq 2 r\right\}$ of $\mathbb{R}[x]_{2 r}$ w.r.t. μ

Then: σ SoS $\Longleftrightarrow \sigma=\left(\left(p_{\alpha}\right)_{|\alpha| \leq r}\right)^{\top} X\left(p_{\alpha}\right)_{|\alpha| \leq r} \quad$ for some $\left(X_{\alpha, \beta}\right) \succeq 0$

$$
\rightsquigarrow \int_{K} \sigma d \mu=\operatorname{Tr}(X) \quad \text { as } \int_{K} \sigma d \mu=\sum_{\alpha, \beta} X_{\alpha, \beta} \int_{K} p_{\alpha} p_{\beta} d \mu
$$

μ given measure with support K

$$
f^{(r)}=\min \int_{K} f \sigma d \mu \text { s.t. } \sigma \operatorname{SoS}, \int_{K} \sigma d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

Choose an orthonormal basis $\left\{p_{\alpha}:|\alpha| \leq 2 r\right\}$ of $\mathbb{R}[x]_{2 r}$ w.r.t. μ

Then: σ SoS $\Longleftrightarrow \sigma=\left(\left(p_{\alpha}\right)_{|\alpha| \leq r}\right)^{\top} X\left(p_{\alpha}\right)_{|\alpha| \leq r} \quad$ for some $\left(X_{\alpha, \beta}\right) \succeq 0$

$$
\begin{array}{rlrl}
\rightsquigarrow \int_{K} \sigma d \mu & =\operatorname{Tr}(X) & & \text { as } \int_{K} \sigma d \mu=\sum_{\alpha, \beta} X_{\alpha, \beta} \int_{K} p_{\alpha} p_{\beta} d \mu \\
\rightsquigarrow \int_{K} f \sigma d \mu=\left\langle M_{r}(f), X\right\rangle & & \text { as } \int_{K} f \sigma d \mu=\sum_{\alpha, \beta} X_{\alpha, \beta} \int_{K} f p_{\alpha} p_{\beta} d \mu
\end{array}
$$

$$
M_{r}(f):=\left(\int_{K} f p_{\alpha} p_{\beta} d \mu\right)_{|\alpha|,|\beta| \leq r} \quad \text { (moment) Hankel-type matrix }
$$

μ given measure with support K

$$
f^{(r)}=\min \int_{K} f \sigma d \mu \text { s.t. } \sigma \operatorname{SoS}, \int_{K} \sigma d \mu=1, \operatorname{deg}(\sigma) \leq 2 r
$$

Choose an orthonormal basis $\left\{p_{\alpha}:|\alpha| \leq 2 r\right\}$ of $\mathbb{R}[x]_{2 r}$ w.r.t. μ

Then: $\quad \sigma \mathrm{SoS} \Longleftrightarrow \sigma=\left(\left(p_{\alpha}\right)_{|\alpha| \leq r}\right)^{\top} X\left(p_{\alpha}\right)_{|\alpha| \leq r} \quad$ for some $\left(X_{\alpha, \beta}\right) \succeq 0$

$$
\begin{array}{rlrl}
\rightsquigarrow \int_{K} \sigma d \mu & =\operatorname{Tr}(X) & & \text { as } \int_{K} \sigma d \mu=\sum_{\alpha, \beta} X_{\alpha, \beta} \int_{K} p_{\alpha} p_{\beta} d \mu \\
\rightsquigarrow \int_{K} f \sigma d \mu=\left\langle M_{r}(f), X\right\rangle & & \text { as } \int_{K} f \sigma d \mu=\sum_{\alpha, \beta} X_{\alpha, \beta} \int_{K} f p_{\alpha} p_{\beta} d \mu
\end{array}
$$

$$
M_{r}(f):=\left(\int_{K} f p_{\alpha} p_{\beta} d \mu\right)_{|\alpha|,|\beta| \leq r} \quad \text { (moment) Hankel-type matrix }
$$

$$
f^{(r)}=\min \left\{\left\langle M_{r}(f), X\right\rangle: \operatorname{Tr}(X)=1, X \succeq 0\right\}=\lambda_{\min }\left(M_{r}(f)\right)
$$

ANALYSIS IN THE

$$
\text { UNIVARIATE CASE: } K=[-1,1]
$$

SUFFICES TO CONSIDER:

f LINEAR, OR QUADRATIC

$$
K=[-1,1], \text { linear case: } f(x)=x
$$

$K=[-1,1]$, linear case: $f(x)=x$

Theorem (classical theory of orthogonal polynomials) Let $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ. Then the polynomials p_{k} satisfy a 3-term recurrence:

$$
x p_{k}=a_{k} p_{k+1}+b_{k} p_{k}+a_{k-1} p_{k-1} \quad \text { for } k \geq 0, \quad p_{0} \text { constant }
$$

\rightsquigarrow the (Jacobi) matrix $M_{r}(x)=\left(\int_{-1}^{1} x p_{i} p_{j} d \mu\right)_{i, j=0}^{r}$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

$$
M_{r}(x)=\left(\begin{array}{cccccc}
b_{0} & a_{0} & & & & \\
a_{0} & b_{1} & a_{1} & & & \\
& a_{1} & b_{2} & a_{2} & & \\
& & a_{2} & b_{3} & a_{3} & \\
& & & \ddots & \ddots & \ddots \\
& & & & a_{r-2} & b_{r-1}
\end{array} a_{r-1} .\right.
$$

$K=[-1,1]$, linear case: $f(x)=x$

Theorem (classical theory of orthogonal polynomials) Let $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ. Then the polynomials p_{k} satisfy a 3-term recurrence:

$$
x p_{k}=a_{k} p_{k+1}+b_{k} p_{k}+a_{k-1} p_{k-1} \quad \text { for } k \geq 0, \quad p_{0} \text { constant }
$$

\rightsquigarrow the (Jacobi) matrix $M_{r}(x)=\left(\int_{-1}^{1} x p_{i} p_{j} d \mu\right)_{i, j=0}^{r}$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

$K=[-1,1]$, linear case: $f(x)=x$

Theorem (classical theory of orthogonal polynomials) Let $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ. Then the polynomials p_{k} satisfy a 3-term recurrence:

$$
x p_{k}=a_{k} p_{k+1}+b_{k} p_{k}+a_{k-1} p_{k-1} \quad \text { for } k \geq 0, \quad p_{0} \text { constant }
$$

\rightsquigarrow the (Jacobi) matrix $M_{r}(x)=\left(\int_{-1}^{1} x p_{i} p_{j} d \mu\right)_{i, j=0}^{r}$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

Theorem (de Klerk-L 2020)
For $f(x)=x$:

$$
f^{(r)}=\lambda_{\min }\left(M_{r}(x)\right)
$$

$K=[-1,1]$, linear case: $f(x)=x$

Theorem (classical theory of orthogonal polynomials) Let $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ. Then the polynomials p_{k} satisfy a 3-term recurrence:

$$
x p_{k}=a_{k} p_{k+1}+b_{k} p_{k}+a_{k-1} p_{k-1} \quad \text { for } k \geq 0, \quad p_{0} \text { constant }
$$

\rightsquigarrow the (Jacobi) matrix $M_{r}(x)=\left(\int_{-1}^{1} x p_{i} p_{j} d \mu\right)_{i, j=0}^{r}$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

Theorem (de Klerk-L 2020)
For $f(x)=x$:
$f^{(r)}=\lambda_{\text {min }}\left(M_{r}(x)\right)=$ smallest root of p_{r+1}

$K=[-1,1]$, linear case: $f(x)=x$

Theorem (classical theory of orthogonal polynomials) Let $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ. Then the polynomials p_{k} satisfy a 3-term recurrence:

$$
x p_{k}=a_{k} p_{k+1}+b_{k} p_{k}+a_{k-1} p_{k-1} \quad \text { for } k \geq 0, \quad p_{0} \text { constant }
$$

\rightsquigarrow the (Jacobi) matrix $M_{r}(x)=\left(\int_{-1}^{1} x p_{i} p_{j} d \mu\right)_{i, j=0}^{r}$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

Theorem (de Klerk-L 2020)
For $f(x)=x$:
$f^{(r)}=\lambda_{\text {min }}\left(M_{r}(x)\right)=$ smallest root of $p_{r+1}=-1+\Theta\left(1 / r^{2}\right)$
for the Jacobi measure $d \mu=\left(1-x^{2}\right)^{\lambda} d x$ with $\lambda>-1$

$K=[-1,1]$, linear case: $f(x)=x$

Theorem (classical theory of orthogonal polynomials) Let $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ. Then the polynomials p_{k} satisfy a 3-term recurrence:

$$
x p_{k}=a_{k} p_{k+1}+b_{k} p_{k}+a_{k-1} p_{k-1} \quad \text { for } k \geq 0, \quad p_{0} \text { constant }
$$

\rightsquigarrow the (Jacobi) matrix $M_{r}(x)=\left(\int_{-1}^{1} x p_{i} p_{j} d \mu\right)_{i, j=0}^{r}$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

Theorem (de Klerk-L 2020)
For $f(x)=x$:
$f^{(r)}=\lambda_{\min }\left(M_{r}(x)\right)=$ smallest root of $p_{r+1}=-1+\Theta\left(1 / r^{2}\right)=f_{\text {min }}+\Theta\left(1 / r^{2}\right)$
for the Jacobi measure $d \mu=\left(1-x^{2}\right)^{\lambda} d x$ with $\lambda>-1$

Chebyshev measure on $K=[-1,1], f(x)=x^{2}+k x$

Chebyshev measure on $K=[-1,1], f(x)=x^{2}+k x$
(1) Minimizer on boundary (i.e., $k \notin[-2,2]$): Then f has a linear upper estimator: $\quad f(x) \leq g(x):=k x+1 \quad \rightsquigarrow \quad E^{(r)}(f) \leq E^{(r)}(g)=O\left(1 / r^{2}\right)$
NB: This holds for any Jacobi measure $\left(1-x^{2}\right)^{\lambda} d x, \lambda>-1$

Chebyshev measure on $K=[-1,1], f(x)=x^{2}+k x$
(1) Minimizer on boundary (i.e., $k \notin[-2,2]$): Then f has a linear upper estimator: $\quad f(x) \leq g(x):=k x+1 \quad \rightsquigarrow \quad E^{(r)}(f) \leq E^{(r)}(g)=O\left(1 / r^{2}\right)$
NB: This holds for any Jacobi measure $\left(1-x^{2}\right)^{\lambda} d x, \lambda>-1$
(2) Minimizer in interior: Then, $f^{(r)}=\lambda_{\text {min }}\left(M_{r}(f)\right)$ where

Chebyshev measure on $K=[-1,1], f(x)=x^{2}+k x$
(1) Minimizer on boundary (i.e., $k \notin[-2,2]$): Then f has a linear upper estimator: $\quad f(x) \leq g(x):=k x+1 \quad \rightsquigarrow \quad E^{(r)}(f) \leq E^{(r)}(g)=O\left(1 / r^{2}\right)$ NB: This holds for any Jacobi measure $\left(1-x^{2}\right)^{\lambda} d x, \lambda>-1$
(2) Minimizer in interior: Then, $f^{(r)}=\lambda_{\text {min }}\left(M_{r}(f)\right)$ where
$M_{r}(f)=\left(\int_{-1}^{1}\left(x^{2}+k x\right) p_{i} p_{j} d \mu\right)_{i, j=0}^{r}$ is 5 -diagonal 'almost' Toeplitz:

$$
a=\frac{1}{2}, b=\frac{k}{2}, c=\frac{1}{4}
$$

Write $M_{r}(f)=\left(\begin{array}{ccc}* & * & \ldots \\ * & * & \ldots \\ \vdots & \vdots & B\end{array}\right)$, with B 5-diagonal Toeplitz of size $r-1$

Write $M_{r}(f)=\left(\begin{array}{ccc}* & * & \ldots \\ * & * & \ldots \\ \vdots & \vdots & B\end{array}\right)$, with B 5-diagonal Toeplitz of size $r-1$
Embed B in a symmetric circulant matrix C of size $r+1$

Write $M_{r}(f)=\left(\begin{array}{ccc}* & * & \ldots \\ * & * & \ldots \\ \vdots & \vdots & B\end{array}\right)$, with B 5-diagonal Toeplitz of size $r-1$
Embed B in a symmetric circulant matrix C of size $r+1$
By interlacing of eigenvalues:
$\lambda_{\text {min }}\left(M_{r}(f)\right) \leq \lambda_{\text {min }}(B) \leq \lambda_{3}(C)$

Write $M_{r}(f)=\left(\begin{array}{ccc}* & * & \ldots \\ * & * & \ldots \\ \vdots & \vdots & B\end{array}\right)$, with B 5-diagonal Toeplitz of size $r-1$
Embed B in a symmetric circulant matrix C of size $r+1$
By interlacing of eigenvalues:
$\lambda_{\text {min }}\left(M_{r}(f)\right) \leq \lambda_{\text {min }}(B) \leq \lambda_{3}(C)=-\frac{k^{2}}{4}+O\left(1 / r^{2}\right)=f_{\text {min }}+O\left(1 / r^{2}\right)$

Write $M_{r}(f)=\left(\begin{array}{ccc}* & * & \ldots \\ * & * & \ldots \\ \vdots & \vdots & B\end{array}\right)$, with B 5-diagonal Toeplitz of size $r-1$
Embed B in a symmetric circulant matrix C of size $r+1$
By interlacing of eigenvalues:
$\lambda_{\text {min }}\left(M_{r}(f)\right) \leq \lambda_{\text {min }}(B) \leq \lambda_{3}(C)=-\frac{k^{2}}{4}+O\left(1 / r^{2}\right)=f_{\text {min }}+O\left(1 / r^{2}\right)$

Theorem (de Klerk-L 2020)
For the Chebyshev measure $\prod_{i}\left(1-x_{i}^{2}\right)^{-1 / 2}$ on $[-1,1]^{n}$ and for any polynomial f :

$$
f^{(r)}-f_{\min }=O\left(1 / r^{2}\right)
$$

Write $M_{r}(f)=\left(\begin{array}{ccc}* & * & \ldots \\ * & * & \ldots \\ \vdots & \vdots & B\end{array}\right)$, with B 5-diagonal Toeplitz of size $r-1$
Embed B in a symmetric circulant matrix C of size $r+1$
By interlacing of eigenvalues:
$\lambda_{\text {min }}\left(M_{r}(f)\right) \leq \lambda_{\text {min }}(B) \leq \lambda_{3}(C)=-\frac{k^{2}}{4}+O\left(1 / r^{2}\right)=f_{\text {min }}+O\left(1 / r^{2}\right)$

Theorem (de Klerk-L 2020)
For the Chebyshev measure $\prod_{i}\left(1-x_{i}^{2}\right)^{-1 / 2}$ on $[-1,1]^{n}$ and for any polynomial f :

$$
f^{(r)}-f_{\min }=O\left(1 / r^{2}\right)
$$

Next: extend to the Jacobi measure $\left(1-x^{2}\right)^{\lambda}$ on $[-1,1]$ with $\lambda \geq-1 / 2$ and to other sets

Extension:

$O\left(\frac{1}{r^{2}}\right)$ CONVERGENCE RATE FOR THE SPHERE

USING AN INTEGRATION TRICK

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a quadratic upper estimator:

$$
f(x) \leq f(\mathbf{a})+\nabla f(\mathbf{a})^{T}(x-\mathbf{a})+\gamma\|x-\mathbf{a}\|^{2}
$$

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(\mathbf{a})+\nabla f(\mathbf{a})^{T}(x-\mathbf{a})+\gamma\left(2-2 x^{\top} \mathbf{a}\right)$

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(\mathbf{a})+\nabla f(\mathbf{a})^{T}(x-\mathbf{a})+\gamma\left(2-2 x^{\top} \mathbf{a}\right)$
Up to rotation and translation, we may assume $f(x)=x_{1}$

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(\mathbf{a})+\nabla f(\mathbf{a})^{T}(x-\mathbf{a})+\gamma\left(2-2 x^{\top} \mathbf{a}\right)$
Up to rotation and translation, we may assume $f(x)=x_{1}$
(2) Reduce to the analysis for the interval $[-1,1]$:

Key fact: Let $\sigma\left(x_{1}\right)$ be a degree $2 r$ univariate optimal SoS density for the univariate problem $\min _{x_{1} \in[-1,1]} x_{1}\left(\right.$ with $d \mu=\left(1-x_{1}^{2}\right)^{(n-3) / 2} d x_{1}$)

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(\mathbf{a})+\nabla f(\mathbf{a})^{T}(x-\mathbf{a})+\gamma\left(2-2 x^{T} \mathbf{a}\right)$
Up to rotation and translation, we may assume $f(x)=x_{1}$
(2) Reduce to the analysis for the interval $[-1,1]$:

Key fact: Let $\sigma\left(x_{1}\right)$ be a degree $2 r$ univariate optimal SoS density for the univariate problem $\min _{x_{1} \in[-1,1]} x_{1}\left(\right.$ with $\left.d \mu=\left(1-x_{1}^{2}\right)^{(n-3) / 2} d x_{1}\right)$
Then $\sigma\left(x_{1}\right)$ (rescaled) gives a (good) SoS density for the multivariate problem: $\min _{x \in \mathbb{S}^{n-1}} x_{1} \quad$ (on \mathbb{S}^{n-1} with μ Haar measure)

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(\mathbf{a})+\nabla f(\mathbf{a})^{T}(x-\mathbf{a})+\gamma\left(2-2 x^{T} \mathbf{a}\right)$
Up to rotation and translation, we may assume $f(x)=x_{1}$
(2) Reduce to the analysis for the interval $[-1,1]$:

Key fact: Let $\sigma\left(x_{1}\right)$ be a degree $2 r$ univariate optimal SoS density for the univariate problem $\min _{x_{1} \in[-1,1]} x_{1}\left(\right.$ with $\left.d \mu=\left(1-x_{1}^{2}\right)^{(n-3) / 2} d x_{1}\right)$
Then $\sigma\left(x_{1}\right)$ (rescaled) gives a (good) SoS density for the multivariate problem: $\min _{x \in \mathbb{S}^{n-1}} x_{1} \quad$ (on \mathbb{S}^{n-1} with μ Haar measure)
This is based on the integration trick:

$$
\begin{aligned}
& \int_{-1}^{1} \sigma\left(x_{1}\right)\left(1-x_{1}^{2}\right)^{\frac{n-3}{2}} d x_{1}=C \int_{S^{n-1}} \sigma\left(x_{1}\right) d \mu \\
& \quad \int_{-1}^{1} x_{1} \sigma\left(x_{1}\right)\left(1-x_{1}^{2}\right)^{\frac{n-3}{2}} d x_{1}=C \int_{S^{n-1}} x_{1} \sigma\left(x_{1}\right) d \mu
\end{aligned}
$$

Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:
$f(x) \leq f(\mathbf{a})+\nabla f(\mathbf{a})^{T}(x-\mathbf{a})+\gamma\left(2-2 x^{T} \mathbf{a}\right)$
Up to rotation and translation, we may assume $f(x)=x_{1}$
(2) Reduce to the analysis for the interval $[-1,1]$:

Key fact: Let $\sigma\left(x_{1}\right)$ be a degree $2 r$ univariate optimal SoS density for the univariate problem $\min _{x_{1} \in[-1,1]} x_{1}\left(\right.$ with $\left.d \mu=\left(1-x_{1}^{2}\right)^{(n-3) / 2} d x_{1}\right)$
Then $\sigma\left(x_{1}\right)$ (rescaled) gives a (good) SoS density for the multivariate problem: $\min _{x \in \mathbb{S}^{n-1}} x_{1} \quad$ (on \mathbb{S}^{n-1} with μ Haar measure)
This is based on the integration trick:

$$
\begin{gathered}
1=\int_{-1}^{1} \sigma\left(x_{1}\right)\left(1-x_{1}^{2}\right)^{\frac{n-3}{2}} d x_{1}=C \int_{S^{n-1}} \sigma\left(x_{1}\right) d \mu \\
-1+O\left(\frac{1}{r^{2}}\right)=\int_{-1}^{1} x_{1} \sigma\left(x_{1}\right)\left(1-x_{1}^{2}\right)^{\frac{n-3}{2}} d x_{1}=C \int_{S^{n-1}} x_{1} \sigma\left(x_{1}\right) d \mu
\end{gathered}
$$

[de Klerk-L 2020]

Extension:

O $\left(\frac{1}{r^{2}}\right)$ CONVERGENCE RATE FOR

> BOX, BALL, SIMPLEX, ROUND CONVEX BODY

USING 'LOCAL SIMILARITY' TRICK

'Local similarity': lift results from $(\widehat{K}, \widehat{w})$ to (K, w)

Lemma (Slot-L 2020)

Let $\mathbf{a} \in K$ be a global minimizer of f in K. Assume:
$K \subseteq \widehat{K}, w$ a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:

'Local similarity': lift results from $(\widehat{K}, \widehat{w})$ to (K, w)

Lemma (Slot-L 2020)

Let $\mathbf{a} \in K$ be a global minimizer of f in K. Assume:
$K \subseteq \widehat{K}, w$ a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:
(1) K, \widehat{K} are 'locally similar' at a:

$$
K \cap B_{\epsilon}(\mathbf{a})=\widehat{K} \cap B_{\epsilon}(\mathbf{a}) \quad \text { for some } \epsilon>0 .
$$

'Local similarity': lift results from $(\widehat{K}, \widehat{w})$ to (K, w)

Lemma (Slot-L 2020)

Let $\mathbf{a} \in K$ be a global minimizer of f in K. Assume:
$K \subseteq \widehat{K}, w$ a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:
(1) K, \widehat{K} are 'locally similar' at a:

$$
K \cap B_{\epsilon}(\mathbf{a})=\widehat{K} \cap B_{\epsilon}(\mathbf{a}) \quad \text { for some } \epsilon>0 .
$$

(2) w, \widehat{w} are 'locally similar' at a :

$$
m \cdot \widehat{w}(x) \leq w(x) \text { on } \operatorname{int}(K) \cap B_{\epsilon}(\mathbf{a}) \quad \text { for some } \epsilon, m>0 .
$$

(3) $w(x) \leq \widehat{w}(x)$ for all $x \in \operatorname{int}(K)$.

'Local similarity': lift results from $(\widehat{K}, \widehat{w})$ to (K, w)

Lemma (Slot-L 2020)

Let $\mathbf{a} \in K$ be a global minimizer of f in K. Assume:
$K \subseteq \widehat{K}, w$ a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:
(1) K, \widehat{K} are 'locally similar' at a:

$$
K \cap B_{\epsilon}(\mathbf{a})=\widehat{K} \cap B_{\epsilon}(\mathbf{a}) \quad \text { for some } \epsilon>0 .
$$

(2) w, \widehat{w} are 'locally similar' at a :

$$
m \cdot \widehat{w}(x) \leq w(x) \text { on } \operatorname{int}(K) \cap B_{\epsilon}(\mathbf{a}) \quad \text { for some } \epsilon, m>0 .
$$

(3) $w(x) \leq \widehat{w}(x)$ for all $x \in \operatorname{int}(K)$.

Then, f has an upper estimator g on \widehat{K}, exact at a, satisfying

$$
E_{K, w}^{(r)}(f) \leq E_{\widehat{K}, \widehat{w}}^{(r)}(g)
$$

'Local similarity': lift results from $(\widehat{K}, \widehat{w})$ to (K, w)

Lemma (Slot-L 2020)

Let $\mathbf{a} \in K$ be a global minimizer of f in K. Assume:
$K \subseteq \widehat{K}, w$ a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:
(1) K, \widehat{K} are 'locally similar' at a:

$$
K \cap B_{\epsilon}(\mathbf{a})=\widehat{K} \cap B_{\epsilon}(\mathbf{a}) \quad \text { for some } \epsilon>0 .
$$

(2) w, \widehat{w} are 'locally similar' at a :

$$
m \cdot \widehat{w}(x) \leq w(x) \text { on } \operatorname{int}(K) \cap B_{\epsilon}(\mathbf{a}) \quad \text { for some } \epsilon, m>0 .
$$

(3) $w(x) \leq \widehat{w}(x)$ for all $x \in \operatorname{int}(K)$.

Then, f has an upper estimator g on \widehat{K}, exact at a, satisfying

$$
E_{K, w}^{(r)}(f) \leq E_{\widehat{K}, \widehat{w}}^{(r)}(g) .
$$

Note: (1), (2) clearly hold if $\mathbf{a} \in \operatorname{int}(K)$

Lift known $O\left(1 / r^{2}\right)$ rate for $\widehat{K}=[-1,1], \lambda=-\frac{1}{2}$
(1) to $K=[-1,1]$, with $w(x)=\left(1-x^{2}\right)^{\lambda}, \lambda \geq-1 / 2$, any f [using Chebyshev weight $\widehat{w}(x)=\left(1-x^{2}\right)^{-1 / 2}$], to $K=[-1,1]^{n}$
(2) to any K, with $w=1$, when minimizer a lies in the interior of K [using $K \subseteq \widehat{K}=[-1,1]^{n}$ with $\left.\widehat{w}=1\right]$
(3) to K simplex, with $w=1$, when minimizer lies on the boundary [after applying affine mapping and using $\widehat{K}=[-1,1]^{n}$ with $\widehat{w}=1$]

Lift known $O\left(1 / r^{2}\right)$ rate for $\widehat{K}=[-1,1], \lambda=-\frac{1}{2}$
(1) to $K=[-1,1]$, with $w(x)=\left(1-x^{2}\right)^{\lambda}, \lambda \geq-1 / 2$, any f [using Chebyshev weight $\widehat{w}(x)=\left(1-x^{2}\right)^{-1 / 2}$], to $K=[-1,1]^{n}$
(2) to any K, with $w=1$, when minimizer a lies in the interior of K [using $K \subseteq \widehat{K}=[-1,1]^{n}$ with $\left.\widehat{w}=1\right]$
(3) to K simplex, with $w=1$, when minimizer lies on the boundary [after applying affine mapping and using $\widehat{K}=[-1,1]^{n}$ with $\widehat{w}=1$]
(4) to K ball, with $w(x)=\left(1-\|x\|^{2}\right)^{\lambda}, \lambda \geq 0$
[using a linear upper estimator and an integration trick, when the minimizer lies on the boundary]
(5) to K 'round' convex body, with $w=1$ (i.e., K has inscribed and circumscribed tangent balls at any boundary point) [using the result for the ball \widehat{K} with $\widehat{w}=1$]

BACK TO ANALYZING THE LOWER BOUNDS

FOR THE UNIT SPHERE

Polynomial kernel approach for the unit sphere

Goal: Let $f \in \mathcal{P}_{d}$: polynomial of degree d on \mathbb{S}^{n-1}
$f_{(r)}=\sup \lambda$ s.t. $f(x)-\lambda=\sigma(x)$ on \mathbb{S}^{n-1}, where $\sigma \operatorname{SoS}, \operatorname{deg}(\sigma) \leq 2 r$

Theorem: [Fang-Fawzi 2020] $f_{\text {min }}-f_{(r)}=O\left(\frac{1}{r^{2}}\right)$

Polynomial kernel approach for the unit sphere

Goal: Let $f \in \mathcal{P}_{d}$: polynomial of degree d on \mathbb{S}^{n-1}
$f_{(r)}=\sup \lambda$ s.t. $f(x)-\lambda=\sigma(x)$ on \mathbb{S}^{n-1}, where $\sigma \operatorname{SoS}, \operatorname{deg}(\sigma) \leq 2 r$

Theorem: [Fang-Fawzi 2020] $f_{\text {min }}-f_{(r)}=O\left(\frac{1}{r^{2}}\right)$
Strategy: Construct a 'nice' polynomial kernel $K(x, y)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
\rightsquigarrow kernel operator $\mathbf{K}: p \in \mathcal{P} \mapsto \mathbf{K} p(x)=\int_{\mathbb{S}^{n-1}} p(y) K(x, y) d \mu(y) \in \mathcal{P}$

Polynomial kernel approach for the unit sphere

Goal: Let $f \in \mathcal{P}_{d}$: polynomial of degree d on \mathbb{S}^{n-1}
$f_{(r)}=\sup \lambda$ s.t. $f(x)-\lambda=\sigma(x)$ on \mathbb{S}^{n-1}, where $\sigma \operatorname{SoS}, \operatorname{deg}(\sigma) \leq 2 r$

Theorem: [Fang-Fawzi 2020] $f_{\text {min }}-f_{(r)}=O\left(\frac{1}{r^{2}}\right)$
Strategy: Construct a 'nice' polynomial kernel $K(x, y)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
\rightsquigarrow kernel operator $\mathbf{K}: p \in \mathcal{P} \mapsto \mathbf{K} p(x)=\int_{\mathbb{S}^{n-1}} p(y) K(x, y) d \mu(y) \in \mathcal{P}$
(A1) K1 = 1: $\quad \int_{-1}^{1} K(x, y) d \mu(y)=1 \quad \forall x \in \mathbb{S}^{n-1}$

Polynomial kernel approach for the unit sphere

Goal: Let $f \in \mathcal{P}_{d}$: polynomial of degree d on \mathbb{S}^{n-1}
$f_{(r)}=\sup \lambda$ s.t. $f(x)-\lambda=\sigma(x)$ on \mathbb{S}^{n-1}, where $\sigma \operatorname{SoS}, \operatorname{deg}(\sigma) \leq 2 r$

Theorem: [Fang-Fawzi 2020] $f_{\text {min }}-f_{(r)}=O\left(\frac{1}{r^{2}}\right)$
Strategy: Construct a 'nice' polynomial kernel $K(x, y)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
\rightsquigarrow kernel operator $\mathbf{K}: p \in \mathcal{P} \mapsto \mathbf{K} p(x)=\int_{\mathbb{S}^{n-1}} p(y) K(x, y) d \mu(y) \in \mathcal{P}$
(A1) $\mathrm{K} 1=1$:
$\int_{-1}^{1} K(x, y) d \mu(y)=1 \quad \forall x \in \mathbb{S}^{n-1}$
(A2) \mathbf{K} preserves $\mathcal{P}_{\boldsymbol{d}}: \quad \mathbf{K} \mathcal{P}_{\boldsymbol{d}}=\mathcal{P}_{\boldsymbol{d}}$

Polynomial kernel approach for the unit sphere

Goal: Let $f \in \mathcal{P}_{d}$: polynomial of degree d on \mathbb{S}^{n-1}
$f_{(r)}=\sup \lambda$ s.t. $f(x)-\lambda=\sigma(x)$ on \mathbb{S}^{n-1}, where $\sigma \operatorname{SoS}, \operatorname{deg}(\sigma) \leq 2 r$

Theorem: [Fang-Fawzi 2020] $f_{\text {min }}-f_{(r)}=O\left(\frac{1}{r^{2}}\right)$
Strategy: Construct a 'nice' polynomial kernel $K(x, y)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
\rightsquigarrow kernel operator $\mathbf{K}: p \in \mathcal{P} \mapsto \mathbf{K} p(x)=\int_{\mathbb{S}^{n-1}} p(y) K(x, y) d \mu(y) \in \mathcal{P}$
(A1) $\mathbf{K} 1=1$:
$\int_{-1}^{1} K(x, y) d \mu(y)=1 \quad \forall x \in \mathbb{S}^{n-1}$
(A2) K preserves \mathcal{P}_{d} :
$\mathbf{K} \mathcal{P}_{\boldsymbol{d}}=\mathcal{P}_{\boldsymbol{d}}$
(A3) K close to I :

$$
\|\mathbf{K}-I\|:=\sup _{p \in \mathcal{P}_{d}:\|p\|_{\infty}=1}\|\mathbf{K} p-p\|_{\infty} \leq \epsilon
$$

Polynomial kernel approach for the unit sphere

Goal: Let $f \in \mathcal{P}_{d}$: polynomial of degree d on \mathbb{S}^{n-1}
$f_{(r)}=\sup \lambda$ s.t. $f(x)-\lambda=\sigma(x)$ on \mathbb{S}^{n-1}, where $\sigma \operatorname{SoS}, \operatorname{deg}(\sigma) \leq 2 r$

Theorem: [Fang-Fawzi 2020] $f_{\text {min }}-f_{(r)}=O\left(\frac{1}{r^{2}}\right)$
Strategy: Construct a 'nice' polynomial kernel $K(x, y)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
\rightsquigarrow kernel operator $\mathbf{K}: p \in \mathcal{P} \mapsto \mathbf{K} p(x)=\int_{\mathbb{S}^{n-1}} p(y) K(x, y) d \mu(y) \in \mathcal{P}$
(A1) $\mathrm{K} 1=1$:
$\int_{-1}^{1} K(x, y) d \mu(y)=1 \quad \forall x \in \mathbb{S}^{n-1}$
(A2) \mathbf{K} preserves $\mathcal{P}_{\boldsymbol{d}}$:
$\mathbf{K} \mathcal{P}_{\boldsymbol{d}}=\mathcal{P}_{\boldsymbol{d}}$
(A3) K close to I :

$$
\|\mathbf{K}-I\|:=\sup _{p \in \mathcal{P}_{d}:\|p\|_{\infty}=1}\|\mathbf{K} p-p\|_{\infty} \leq \epsilon
$$

$\rightsquigarrow \mathbf{K}^{-1}$ close to $I: \quad\left\|\mathbf{K}^{-1}-I\right\| \leq 3 \epsilon$

Polynomial kernel approach for the unit sphere

Goal: Let $f \in \mathcal{P}_{d}$: polynomial of degree d on \mathbb{S}^{n-1}

$$
f_{(r)}=\sup \lambda \text { s.t. } f(x)-\lambda=\sigma(x) \text { on } \mathbb{S}^{n-1} \text {, where } \sigma \operatorname{SoS}, \operatorname{deg}(\sigma) \leq 2 r
$$

Theorem: [Fang-Fawzi 2020] $f_{\text {min }}-f_{(r)}=O\left(\frac{1}{r^{2}}\right)$
Strategy: Construct a 'nice' polynomial kernel $K(x, y)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
\rightsquigarrow kernel operator $\mathbf{K}: p \in \mathcal{P} \mapsto \mathbf{K} p(x)=\int_{\mathbb{S}^{n-1}} p(y) K(x, y) d \mu(y) \in \mathcal{P}$
(A1) $\mathbf{K} 1=1$:
$\int_{-1}^{1} K(x, y) d \mu(y)=1 \quad \forall x \in \mathbb{S}^{n-1}$
(A2) \mathbf{K} preserves $\mathcal{P}_{\boldsymbol{d}}: \quad \mathbf{K} \mathcal{P}_{\boldsymbol{d}}=\mathcal{P}_{\boldsymbol{d}}$
(A3) K close to I :

$$
\|\mathbf{K}-I\|:=\sup _{p \in \mathcal{P}_{d}}:\|p\|_{\infty}=1\|\mathbf{K} p-p\|_{\infty} \leq \epsilon
$$

$\rightsquigarrow \mathbf{K}^{-1}$ close to $I: \quad\left\|\mathbf{K}^{-1}-I\right\| \leq 3 \epsilon$
(A4) for fixed $y \in \mathbb{S}^{n-1}, \mathrm{~K}(x, y)$ is SoS with degree $2 r$ on \mathbb{S}^{n-1}

Polynomial kernel approach for the unit sphere

Goal: Let $f \in \mathcal{P}_{d}$: polynomial of degree d on \mathbb{S}^{n-1}

$$
f_{(r)}=\sup \lambda \text { s.t. } f(x)-\lambda=\sigma(x) \text { on } \mathbb{S}^{n-1} \text {, where } \sigma \operatorname{SoS}, \operatorname{deg}(\sigma) \leq 2 r
$$

Theorem: [Fang-Fawzi 2020] $f_{\text {min }}-f_{(r)}=O\left(\frac{1}{r^{2}}\right)$
Strategy: Construct a 'nice' polynomial kernel $K(x, y)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
\rightsquigarrow kernel operator $\mathbf{K}: p \in \mathcal{P} \mapsto \mathbf{K} p(x)=\int_{\mathbb{S}^{n-1}} p(y) K(x, y) d \mu(y) \in \mathcal{P}$
(A1) $\mathrm{K} 1=1$:

$$
\int_{-1}^{1} K(x, y) d \mu(y)=1 \quad \forall x \in \mathbb{S}^{n-1}
$$

(A2) \mathbf{K} preserves $\mathcal{P}_{\boldsymbol{d}}: \quad \mathbf{K} \mathcal{P}_{\boldsymbol{d}}=\mathcal{P}_{\boldsymbol{d}}$
(A3) K close to I :

$$
\|\mathbf{K}-I\|:=\sup _{p \in \mathcal{P}_{d}}:\|p\|_{\infty}=1\|\mathbf{K} p-p\|_{\infty} \leq \epsilon
$$

$\rightsquigarrow \mathbf{K}^{-1}$ close to $I: \quad\left\|\mathbf{K}^{-1}-I\right\| \leq 3 \epsilon$
(A4) for fixed $y \in \mathbb{S}^{n-1}, \mathrm{~K}(x, y)$ is SoS with degree $2 r$ on \mathbb{S}^{n-1} $\rightsquigarrow p \geq 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K} p$ is SoS with degree $2 r$ on \mathbb{S}^{n-1}

Deriving the analysis of $f(r)$

(A1) $\mathrm{K} 1=1$
(A2) K preserves $\mathcal{P}_{\boldsymbol{d}}$
(A3) \mathbf{K} close to I :

$$
\|\mathbf{K}-I\| \leq \epsilon
$$

$\rightsquigarrow \mathbf{K}^{-1}$ close to $I:$

$$
\left\|\mathbf{K}^{-1}-I\right\| \leq 3 \epsilon
$$

(A4) $p \geq 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K} p$ is SoS with degree $2 r$ on \mathbb{S}^{n-1}

Theorem: $f_{\text {min }}-f_{(r)} \leq 3 \epsilon\left(f_{\text {max }}-f_{\text {min }}\right)$

Deriving the analysis of $f(r)$

(A1) $\mathrm{K} 1=1$
(A2) K preserves $\mathcal{P}_{\boldsymbol{d}}$
(A3) \mathbf{K} close to I :

$$
\|\mathbf{K}-I\| \leq \epsilon
$$

$\rightsquigarrow \mathbf{K}^{-1}$ close to $I:$

$$
\left\|\mathbf{K}^{-1}-I\right\| \leq 3 \epsilon
$$

(A4) $p \geq 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K} p$ is SoS with degree $2 r$ on \mathbb{S}^{n-1}

Theorem: $f_{\text {min }}-f_{(r)} \leq 3 \epsilon\left(f_{\text {max }}-f_{\text {min }}\right)$
Proof: Wlog $f_{\text {min }}=0, f_{\text {max }}=1$, so $\|f\|_{\infty}=1$.

Deriving the analysis of $f(r)$

(A1) $\mathrm{K} 1=1$
(A2) K preserves $\mathcal{P}_{\boldsymbol{d}}$
(A3) \mathbf{K} close to I :

$$
\|\mathbf{K}-I\| \leq \epsilon
$$

$\rightsquigarrow \mathbf{K}^{-1}$ close to $I:$

$$
\left\|\mathbf{K}^{-1}-I\right\| \leq 3 \epsilon
$$

(A4) $p \geq 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K} p$ is SoS with degree $2 r$ on \mathbb{S}^{n-1}

Theorem: $f_{\text {min }}-f_{(r)} \leq 3 \epsilon\left(f_{\text {max }}-f_{\text {min }}\right)$
Proof: Wlog $f_{\text {min }}=0, f_{\text {max }}=1$, so $\|f\|_{\infty}=1$.
By (A3): $\left\|\left(\mathbf{K}^{-1}-I\right) f\right\|_{\infty} \leq 3 \epsilon$

Deriving the analysis of $f(r)$

(A1) $\mathrm{K} 1=1$
(A2) K preserves $\mathcal{P}_{\boldsymbol{d}}$
(A3) \mathbf{K} close to I :

$$
\|\mathbf{K}-I\| \leq \epsilon
$$

$\rightsquigarrow \mathbf{K}^{-1}$ close to $I:$

$$
\left\|\mathbf{K}^{-1}-I\right\| \leq 3 \epsilon
$$

(A4) $p \geq 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K} p$ is SoS with degree $2 r$ on \mathbb{S}^{n-1}

Theorem: $f_{\text {min }}-f_{(r)} \leq 3 \epsilon\left(f_{\text {max }}-f_{\text {min }}\right)$
Proof: Wlog $f_{\text {min }}=0, f_{\text {max }}=1$, so $\|f\|_{\infty}=1$.
By (A3): $\left\|\left(\mathbf{K}^{-1}-I\right) f\right\|_{\infty} \leq 3 \epsilon \Longrightarrow \mathbf{K}^{-1} f-f \geq-3 \epsilon$ on \mathbb{S}^{n-1}

Deriving the analysis of $f(r)$

(A1) $\mathrm{K} 1=1$
(A2) K preserves $\mathcal{P}_{\boldsymbol{d}}$
(A3) \mathbf{K} close to I :

$$
\|\mathbf{K}-I\| \leq \epsilon
$$

$\rightsquigarrow \mathbf{K}^{-1}$ close to $I:$

$$
\left\|\mathbf{K}^{-1}-I\right\| \leq 3 \epsilon
$$

(A4) $p \geq 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K} p$ is SoS with degree $2 r$ on \mathbb{S}^{n-1}

Theorem: $f_{\text {min }}-f_{(r)} \leq 3 \epsilon\left(f_{\text {max }}-f_{\text {min }}\right)$
Proof: Wlog $f_{\text {min }}=0, f_{\text {max }}=1$, so $\|f\|_{\infty}=1$.

$$
\begin{aligned}
\text { By (A3): }\left\|\left(\mathbf{K}^{-1}-I\right) f\right\|_{\infty} & \leq 3 \epsilon \Longrightarrow \mathbf{K}^{-1} f-f \geq-3 \epsilon \text { on } \mathbb{S}^{n-1} \\
& \Longrightarrow \mathbf{K}^{-1} f+3 \epsilon \geq f \geq 0 \text { on } \mathbb{S}^{n-1}
\end{aligned}
$$

Deriving the analysis of $f(r)$

(A1) $\mathrm{K} 1=1$
(A2) K preserves $\mathcal{P}_{\boldsymbol{d}}$
(A3) \mathbf{K} close to I :

$$
\|\mathbf{K}-I\| \leq \epsilon
$$

$\rightsquigarrow \mathbf{K}^{-1}$ close to $I:$

$$
\left\|\mathbf{K}^{-1}-I\right\| \leq 3 \epsilon
$$

(A4) $p \geq 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K} p$ is SoS with degree $2 r$ on \mathbb{S}^{n-1}

Theorem: $f_{\text {min }}-f_{(r)} \leq 3 \epsilon\left(f_{\text {max }}-f_{\text {min }}\right)$
Proof: Wlog $f_{\text {min }}=0, f_{\text {max }}=1$, so $\|f\|_{\infty}=1$.
By (A3): $\left\|\left(\mathbf{K}^{-1}-I\right) f\right\|_{\infty} \leq 3 \epsilon \Longrightarrow \mathbf{K}^{-1} f-f \geq-3 \epsilon$ on \mathbb{S}^{n-1} $\Longrightarrow \mathbf{K}^{-1} f+3 \epsilon \geq f \geq 0$ on \mathbb{S}^{n-1}
By (A1), (A4): $f+3 \epsilon=\mathbf{K}\left(\mathbf{K}^{-1} f+3 \epsilon\right)$ is SoS with degree $2 r$ on \mathbb{S}^{n-1}

Deriving the analysis of $f_{(r)}$

(A1) $\mathrm{K} 1=1$
(A2) K preserves $\mathcal{P}_{\boldsymbol{d}}$
(A3) K close to I :
$\rightsquigarrow \mathbf{K}^{-1}$ close to $I: \quad\left\|\mathbf{K}^{-1}-I\right\| \leq 3 \epsilon$

$$
\begin{aligned}
& \|\mathbf{K}-I\| \leq \epsilon \\
& \left\|\mathbf{K}^{-1}-I\right\| \leq 3 \epsilon
\end{aligned}
$$

(A4) $p \geq 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K} p$ is SoS with degree $2 r$ on \mathbb{S}^{n-1}

Theorem: $f_{\text {min }}-f_{(r)} \leq 3 \epsilon\left(f_{\text {max }}-f_{\text {min }}\right)$
Proof: Wlog $f_{\text {min }}=0, f_{\text {max }}=1$, so $\|f\|_{\infty}=1$.

$$
\begin{aligned}
\text { By (A3): }\left\|\left(\mathbf{K}^{-1}-I\right) f\right\|_{\infty} & \leq 3 \epsilon \Longrightarrow \mathbf{K}^{-1} f-f \geq-3 \epsilon \text { on } \mathbb{S}^{n-1} \\
& \Longrightarrow \mathbf{K}^{-1} f+3 \epsilon \geq f \geq 0 \text { on } \mathbb{S}^{n-1}
\end{aligned}
$$

By (A1), (A4): $f+3 \epsilon=\mathbf{K}\left(\mathbf{K}^{-1} f+3 \epsilon\right)$ is SoS with degree $2 r$ on \mathbb{S}^{n-1}
Next: Construct such kernel $K(x, y)$ with $\epsilon=O\left(1 / r^{2}\right)$ using Fourier analysis and reducing to the upper bound approach (in univariate case)

- Select $K(x, y)$ invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Select $K(x, y)$ invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\left.\mathcal{P}=\oplus_{k} \geq 0 \operatorname{Harm}_{k}=\operatorname{span}\left(e_{k, i}\right): i \in\left[h_{k}\right]\right\}$ Select: $K(x, y)=\sum_{k=0}^{2 r} \lambda_{k}\left(\sum_{i=1}^{h_{k}} e_{k i}(x) e_{k i}(y)\right)$
- Select $K(x, y)$ invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\left.\mathcal{P}=\oplus_{k} \geq 0 \operatorname{Harm}_{k}=\operatorname{span}\left(e_{k, i}\right): i \in\left[h_{k}\right]\right\}$ Select: $K(x, y)=\sum_{k=0}^{2 r} \lambda_{k}\left(\sum_{i=1}^{h_{k}} e_{k i}(x) e_{k i}(y)\right)=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}\left(x^{\top} y\right)$
- Select $K(x, y)$ invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\left.\mathcal{P}=\oplus_{k} \geq 0 \operatorname{Harm}_{k}=\operatorname{span}\left(e_{k, i}\right): i \in\left[h_{k}\right]\right\}$

Select: $K(x, y)=\sum_{k=0}^{2 r} \lambda_{k}\left(\sum_{i=1}^{h_{k}} e_{k i}(x) e_{k i}(y)\right)=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}\left(x^{\top} y\right)$

$$
\text { with } \lambda_{0}=1 \text { and } \lambda_{1}, \ldots, \lambda_{d} \neq 0 \quad \rightsquigarrow(\mathrm{~A} 1) \text {, (A2) hold }
$$

- Select $K(x, y)$ invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\left.\mathcal{P}=\oplus_{k} \geq 0 \operatorname{Harm}_{k}=\operatorname{span}\left(e_{k, i}\right): i \in\left[h_{k}\right]\right\}$

Select: $K(x, y)=\sum_{k=0}^{2 r} \lambda_{k}\left(\sum_{i=1}^{h_{k}} e_{k i}(x) e_{k i}(y)\right)=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}\left(x^{\top} y\right)$

$$
\text { with } \lambda_{0}=1 \text { and } \lambda_{1}, \ldots, \lambda_{d} \neq 0 \quad \rightsquigarrow(\mathrm{~A} 1),(\mathrm{A} 2) \text { hold }
$$

- If $p \in \mathcal{P}_{d}$ with $p=\sum_{k=0}^{d} p_{k}$, then $\mathbf{K} p=\sum_{k=0}^{d} \lambda_{k} p_{k}$
- Select $K(x, y)$ invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\left.\mathcal{P}=\oplus_{k} \geq 0 \operatorname{Harm}_{k}=\operatorname{span}\left(e_{k, i}\right): i \in\left[h_{k}\right]\right\}$

Select: $K(x, y)=\sum_{k=0}^{2 r} \lambda_{k}\left(\sum_{i=1}^{h_{k}} e_{k i}(x) e_{k i}(y)\right)=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}\left(x^{\top} y\right)$

$$
\text { with } \lambda_{0}=1 \text { and } \lambda_{1}, \ldots, \lambda_{d} \neq 0 \quad \rightsquigarrow(\mathrm{~A} 1),(\mathrm{A} 2) \text { hold }
$$

- If $p \in \mathcal{P}_{d}$ with $p=\sum_{k=0}^{d} p_{k}$, then $\mathbf{K} p=\sum_{k=0}^{d} \lambda_{k} p_{k}$
- $\|\mathbf{K} p-p\|_{\infty}=\left\|\sum_{k=0}^{d}\left(\lambda_{k}-1\right) p_{k}\right\|_{\infty} \leq \sum_{k=0}^{d}\left\|p_{k}\right\|_{\infty}\left|\lambda_{k}-1\right|$
- Select $K(x, y)$ invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\left.\mathcal{P}=\oplus_{k} \geq 0 \operatorname{Harm}_{k}=\operatorname{span}\left(e_{k, i}\right): i \in\left[h_{k}\right]\right\}$

Select: $K(x, y)=\sum_{k=0}^{2 r} \lambda_{k}\left(\sum_{i=1}^{h_{k}} e_{k i}(x) e_{k i}(y)\right)=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}\left(x^{\top} y\right)$

$$
\text { with } \lambda_{0}=1 \text { and } \lambda_{1}, \ldots, \lambda_{d} \neq 0 \quad \rightsquigarrow(\mathrm{~A} 1),(\mathrm{A} 2) \text { hold }
$$

- If $p \in \mathcal{P}_{d}$ with $p=\sum_{k=0}^{d} p_{k}$, then $\mathbf{K} p=\sum_{k=0}^{d} \lambda_{k} p_{k}$
- $\|\mathbf{K} p-p\|_{\infty}=\left\|\sum_{k=0}^{d}\left(\lambda_{k}-1\right) p_{k}\right\|_{\infty} \leq \sum_{k=0}^{d}\left\|p_{k}\right\|_{\infty}\left|\lambda_{k}-1\right|$

$$
\leq \sum_{k=0}^{d}\left|\lambda_{k}-1\right| \cdot\|p\|_{\infty} C_{d}
$$

- Select $K(x, y)$ invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\left.\mathcal{P}=\oplus_{k} \geq 0 \operatorname{Harm}_{k}=\operatorname{span}\left(e_{k, i}\right): i \in\left[h_{k}\right]\right\}$

Select: $K(x, y)=\sum_{k=0}^{2 r} \lambda_{k}\left(\sum_{i=1}^{h_{k}} e_{k i}(x) e_{k i}(y)\right)=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}\left(x^{\top} y\right)$

$$
\text { with } \lambda_{0}=1 \text { and } \lambda_{1}, \ldots, \lambda_{d} \neq 0 \quad \rightsquigarrow(\mathrm{~A} 1),(\mathrm{A} 2) \text { hold }
$$

- If $p \in \mathcal{P}_{d}$ with $p=\sum_{k=0}^{d} p_{k}$, then $\mathbf{K} p=\sum_{k=0}^{d} \lambda_{k} p_{k}$
- $\|\mathbf{K} p-p\|_{\infty}=\left\|\sum_{k=0}^{d}\left(\lambda_{k}-1\right) p_{k}\right\|_{\infty} \leq \sum_{k=0}^{d}\left\|p_{k}\right\|_{\infty}\left|\lambda_{k}-1\right|$

$$
\leq \sum_{k=0}^{d}\left|\lambda_{k}-1\right| \cdot\|p\|_{\infty} C_{d}
$$

So $\|\mathbf{K}-I\| \leq \sum_{k=1}^{d}\left|\lambda_{k}-1\right| \cdot C_{d}$

- Select $K(x, y)$ invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\left.\mathcal{P}=\oplus_{k} \geq 0 \operatorname{Harm}_{k}=\operatorname{span}\left(e_{k, i}\right): i \in\left[h_{k}\right]\right\}$

Select: $K(x, y)=\sum_{k=0}^{2 r} \lambda_{k}\left(\sum_{i=1}^{h_{k}} e_{k i}(x) e_{k i}(y)\right)=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}\left(x^{\top} y\right)$

$$
\text { with } \lambda_{0}=1 \text { and } \lambda_{1}, \ldots, \lambda_{d} \neq 0 \quad \rightsquigarrow(\mathrm{~A} 1) \text {, (A2) hold }
$$

- If $p \in \mathcal{P}_{d}$ with $p=\sum_{k=0}^{d} p_{k}$, then $\mathbf{K} p=\sum_{k=0}^{d} \lambda_{k} p_{k}$
- $\|\mathbf{K} p-p\|_{\infty}=\left\|\sum_{k=0}^{d}\left(\lambda_{k}-1\right) p_{k}\right\|_{\infty} \leq \sum_{k=0}^{d}\left\|p_{k}\right\|_{\infty}\left|\lambda_{k}-1\right|$

$$
\leq \sum_{k=0}^{d}\left|\lambda_{k}-1\right| \cdot\|p\|_{\infty} C_{d}
$$

So $\|\mathbf{K}-I\| \leq \sum_{k=1}^{d}\left|\lambda_{k}-1\right| \cdot C_{d}$
Therefore: It suffices to select $\lambda_{0}=1, \lambda_{k}$ s.t.
(1) $\sum_{k=1}^{d}\left|1-\lambda_{k}\right|(=\epsilon)$ is small

- Select $K(x, y)$ invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\left.\mathcal{P}=\oplus_{k} \geq 0 \operatorname{Harm}_{k}=\operatorname{span}\left(e_{k, i}\right): i \in\left[h_{k}\right]\right\}$

Select: $K(x, y)=\sum_{k=0}^{2 r} \lambda_{k}\left(\sum_{i=1}^{h_{k}} e_{k i}(x) e_{k i}(y)\right)=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}\left(x^{\top} y\right)$

$$
\text { with } \lambda_{0}=1 \text { and } \lambda_{1}, \ldots, \lambda_{d} \neq 0 \quad \rightsquigarrow(\mathrm{~A} 1),(\mathrm{A} 2) \text { hold }
$$

- If $p \in \mathcal{P}_{d}$ with $p=\sum_{k=0}^{d} p_{k}$, then $\mathbf{K} p=\sum_{k=0}^{d} \lambda_{k} p_{k}$
- $\|\mathbf{K} p-p\|_{\infty}=\left\|\sum_{k=0}^{d}\left(\lambda_{k}-1\right) p_{k}\right\|_{\infty} \leq \sum_{k=0}^{d}\left\|p_{k}\right\|_{\infty}\left|\lambda_{k}-1\right|$

$$
\leq \sum_{k=0}^{d}\left|\lambda_{k}-1\right| \cdot\|p\|_{\infty} C_{d}
$$

So $\|\mathbf{K}-I\| \leq \sum_{k=1}^{d}\left|\lambda_{k}-1\right| \cdot C_{d}$
Therefore: It suffices to select $\lambda_{0}=1, \lambda_{k}$ s.t.
(1) $\sum_{k=1}^{d}\left|1-\lambda_{k}\right|(=\epsilon)$ is small
\rightsquigarrow (A1), (A2), (A3) hold
(2) $K(x, y)=\left(q\left(x^{\top} y\right)\right)^{2}$, where q univariate of degree $r \rightsquigarrow$ (A4) holds

- Select $K(x, y)$ invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\left.\mathcal{P}=\oplus_{k} \geq 0 \operatorname{Harm}_{k}=\operatorname{span}\left(e_{k, i}\right): i \in\left[h_{k}\right]\right\}$

Select: $K(x, y)=\sum_{k=0}^{2 r} \lambda_{k}\left(\sum_{i=1}^{h_{k}} e_{k i}(x) e_{k i}(y)\right)=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}\left(x^{\top} y\right)$

$$
\text { with } \lambda_{0}=1 \text { and } \lambda_{1}, \ldots, \lambda_{d} \neq 0 \quad \rightsquigarrow(\mathrm{~A} 1),(\mathrm{A} 2) \text { hold }
$$

- If $p \in \mathcal{P}_{d}$ with $p=\sum_{k=0}^{d} p_{k}$, then $\mathbf{K} p=\sum_{k=0}^{d} \lambda_{k} p_{k}$
- $\|\mathbf{K} p-p\|_{\infty}=\left\|\sum_{k=0}^{d}\left(\lambda_{k}-1\right) p_{k}\right\|_{\infty} \leq \sum_{k=0}^{d}\left\|p_{k}\right\|_{\infty}\left|\lambda_{k}-1\right|$

$$
\leq \sum_{k=0}^{d}\left|\lambda_{k}-1\right| \cdot\|p\|_{\infty} C_{d}
$$

So $\|\mathbf{K}-I\| \leq \sum_{k=1}^{d}\left|\lambda_{k}-1\right| \cdot C_{d}$
Therefore: It suffices to select $\lambda_{0}=1, \lambda_{k}$ s.t.
(1) $\sum_{k=1}^{d}\left|1-\lambda_{k}\right|(=\epsilon)$ is small \rightsquigarrow (A1), (A2), (A3) hold
(2) $K(x, y)=\left(q\left(x^{\top} y\right)\right)^{2}$, where q univariate of degree $r \rightsquigarrow$ (A4) holds Write: $q(t)^{2}=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}(t)$, where $C_{k}^{n}(t)$ are the Gegenbauer orthogonal polynomials on $[-1,1]$ w.r.t. $d \nu(t)=\left(1-t^{2}\right)^{(n-3) / 2} d t$

Final step: select λ_{k} via the 'upper bound' approach

Want: $q(t)^{2}=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}(t)$, where $\lambda_{0}=1$ and $\sum_{k=1}^{d}\left(1-\lambda_{k}\right)$ is small and $C_{k}^{n}(t)$ orthonormal polynomials on $[-1,1]$ for $d \nu(t)$

Final step: select λ_{k} via the 'upper bound' approach

Want: $q(t)^{2}=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}(t)$, where $\lambda_{0}=1$ and $\sum_{k=1}^{d}\left(1-\lambda_{k}\right)$ is small and $C_{k}^{n}(t)$ orthonormal polynomials on $[-1,1]$ for $d \nu(t)$

Note: $\lambda_{k}=\int_{-1}^{1} q(t)^{2} C_{k}^{n}(t) d \nu(t), \quad 1=\lambda_{0}=\int_{-1}^{1} q(t)^{2} d \nu(t)$

Final step: select λ_{k} via the 'upper bound' approach

Want: $q(t)^{2}=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}(t)$, where $\lambda_{0}=1$ and $\sum_{k=1}^{d}\left(1-\lambda_{k}\right)$ is small and $C_{k}^{n}(t)$ orthonormal polynomials on $[-1,1]$ for $d \nu(t)$

Note: $\lambda_{k}=\int_{-1}^{1} q(t)^{2} C_{k}^{n}(t) d \nu(t), \quad 1=\lambda_{0}=\int_{-1}^{1} q(t)^{2} d \nu(t)$
Hence: $\sum_{k=1}^{d} 1-\lambda_{k}=\int_{-1}^{1} q(t)^{2}(\underbrace{d-\sum_{k=1}^{d} C_{k}^{n}(t)}_{F(t)}) d \nu(t)$

Final step: select λ_{k} via the 'upper bound' approach

Want: $q(t)^{2}=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}(t)$, where $\lambda_{0}=1$ and $\sum_{k=1}^{d}\left(1-\lambda_{k}\right)$ is small and $C_{k}^{n}(t)$ orthonormal polynomials on $[-1,1]$ for $d \nu(t)$

Note: $\lambda_{k}=\int_{-1}^{1} q(t)^{2} C_{k}^{n}(t) d \nu(t), \quad 1=\lambda_{0}=\int_{-1}^{1} q(t)^{2} d \nu(t)$
Hence: $\sum_{k=1}^{d} 1-\lambda_{k}=\int_{-1}^{1} q(t)^{2}(\underbrace{d-\sum_{k=1}^{d} C_{k}^{n}(t)}_{F(t)}) d \nu(t)$
So we arrive at the problem:

$$
F^{(r)}=\min _{q \in \mathbb{R}[t]_{r}} \int_{-1}^{1} q(t)^{2} F(t) d \nu(t) \text { s.t. } \int_{-1}^{1} q(t)^{2} d \nu(t)=1
$$

Final step: select λ_{k} via the 'upper bound' approach

Want: $q(t)^{2}=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}(t)$, where $\lambda_{0}=1$ and $\sum_{k=1}^{d}\left(1-\lambda_{k}\right)$ is small and $C_{k}^{n}(t)$ orthonormal polynomials on $[-1,1]$ for $d \nu(t)$

Note: $\lambda_{k}=\int_{-1}^{1} q(t)^{2} C_{k}^{n}(t) d \nu(t), \quad 1=\lambda_{0}=\int_{-1}^{1} q(t)^{2} d \nu(t)$
Hence: $\sum_{k=1}^{d} 1-\lambda_{k}=\int_{-1}^{1} q(t)^{2}(\underbrace{d-\sum_{k=1}^{d} C_{k}^{n}(t)}_{F(t)}) d \nu(t)$
So we arrive at the problem:

$$
F^{(r)}=\min _{q \in \mathbb{R}[t]_{r}} \int_{-1}^{1} q(t)^{2} F(t) d \nu(t) \text { s.t. } \int_{-1}^{1} q(t)^{2} d \nu(t)=1
$$

By the analysis for the upper bounds (univariate case): $F^{(r)}=O\left(1 / r^{2}\right)$

Final step: select λ_{k} via the 'upper bound' approach

Want: $q(t)^{2}=\sum_{k=0}^{2 r} \lambda_{k} C_{k}^{n}(t)$, where $\lambda_{0}=1$ and $\sum_{k=1}^{d}\left(1-\lambda_{k}\right)$ is small and $C_{k}^{n}(t)$ orthonormal polynomials on $[-1,1]$ for $d \nu(t)$

Note: $\lambda_{k}=\int_{-1}^{1} q(t)^{2} C_{k}^{n}(t) d \nu(t), \quad 1=\lambda_{0}=\int_{-1}^{1} q(t)^{2} d \nu(t)$
Hence: $\sum_{k=1}^{d} 1-\lambda_{k}=\int_{-1}^{1} q(t)^{2}(\underbrace{d-\sum_{k=1}^{d} C_{k}^{n}(t)}_{F(t)}) d \nu(t)$
So we arrive at the problem:

$$
F^{(r)}=\min _{q \in \mathbb{R}[t]_{r}} \int_{-1}^{1} q(t)^{2} F(t) d \nu(t) \text { s.t. } \int_{-1}^{1} q(t)^{2} d \nu(t)=1
$$

By the analysis for the upper bounds (univariate case): $F^{(r)}=O\left(1 / r^{2}\right)$
\rightsquigarrow optimal q gives desired $\lambda_{k} \rightsquigarrow$ desired kernel $K(x, y)$
\rightsquigarrow desired rate $O\left(1 / r^{2}\right)$ for SoS lower bounds $f_{(r)}$

Concluding remarks

- Interesting interplay between the lower and upper bounds
- An analogous technique can be applied to analyse the lower bounds $f_{(r)}$ when minimizing f on the Boolean cube $\{0,1\}^{n}$
[Slot-L 2021]
- For the box $[-1,1]^{n}$, one can derive an analysis in $O\left(1 / r^{2}\right)$ for the lower bounds based on the preordering (instead of the quadratic module)
- Open question: Can one get an improved analysis for the lower bounds based on the quadratic module for the box, the ball, etc. ?
- The error analysis for the upper bounds $f^{(r)}$ extends to rational functions f
[dK-L'19]
and can be adapted to the general problem of moments
[de Klerk-Postek-Kuhn'19]

Some references

- J. Nie and M. Schweighofer. On the complexity of Putinar's Positivstellensatz. J. of Complexity, 2007
- J.B. Lasserre. A new look at nonnegativity on closed sets and polynomial optimization. SIAM Journal on Optimization, 2011
- E. de Klerk and M. Laurent. Worst-case examples for Lasserre's measure-based hierarchy for polynomial optimization on the hypercube. Math. of Operations Research, 2020
- - - Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere. Math. Programming, 2020
- L. Slot and M. Laurent. Near-optimal analysis of univariate moment bounds for polynomial optimization. Math. Programming, 2020
- - - Improved convergence analysis of Lasserre's measure-based upper bounds for polynomial minimization on compact sets. Math. Programming, 2020

