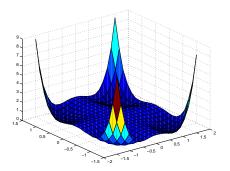
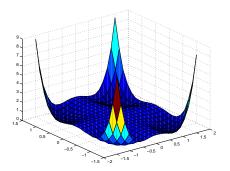
Performance analysis of approximation hierarchies for polynomial optimization

Monique Laurent

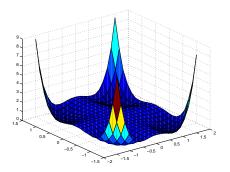
Joint works with Lucas Slot and Etienne de Klerk

Fields Distinguished Lecture Series - May 12, 2021

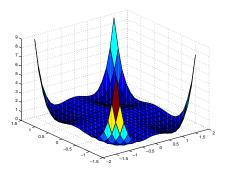




NP-hard problem: it captures hard combinatorial problems (like computing $\alpha(G)$: the maximum size of a stable set in a graph G) when K is a hypercube or a simplex and deg(f) = 2, or K is a sphere and deg(f) = 3



$$\alpha(G) = \max_{x \in [0,1]^n} \sum_{i=1}^n x_i - \sum_{ij \in E} x_i x_j \qquad \frac{1}{\alpha(G)} = \min_{x \in \Delta_n} \sum_{i=1}^n x_i^2 + 2 \sum_{ij \in E} x_i x_j$$



$$\alpha(G) = \max_{x \in [0,1]^n} \sum_{i=1}^n x_i - \sum_{ij \in E} x_i x_j \qquad \frac{1}{\alpha(G)} = \min_{x \in \Delta_n} \sum_{i=1}^n x_i^2 + 2 \sum_{ij \in E} x_i x_j$$
$$\frac{2\sqrt{2}}{3\sqrt{3}} \sqrt{1 - \frac{1}{\alpha(G)}} = \max_{(x,y) \in \mathbb{S}^{n+|\overline{E}|-1}} 2 \sum_{ij \in \overline{E}} x_i x_j y_{ij}$$
[Motzkin-Straus'65, Nesterov'03]

Two hierarchies of lower/upper bounds for polynomial optimization:

 $f_{\min} = \min_{x \in K} f(x)$

(1) Lasserre/Parrilo *sums-of-squares based* lower bounds:

 $f_{(r)} \leq f_{\min}$

(2) Lasserre measure-based upper bounds:

 $f_{\min} \leq f^{(r)}$

Common feature:

 For fixed r the bounds can be computed via a semidefinite program (SDP) with matrix size O(n^r)

(since sum-of-squares polynomials can be modelled with SDP)

 \blacktriangleright the bounds converge asymptotically to f_{\min} as $r \to \infty$

This lecture: Main focus on the error analysis of these bounds

LASSERRE/PARRILO SUMS-OF-SQUARES BASED LOWER BOUNDS

'Sums-of-squares' (SoS) lower bounds

(P)
$$f_{\min} = \min_{x \in K} f(x) = \sup_{\lambda \in \mathbb{R}} \lambda$$
 s.t. $f(x) - \lambda \ge 0$ on K

'Sums-of-squares' (SoS) lower bounds

(P)
$$f_{\min} = \min_{x \in K} f(x) = \sup_{\lambda \in \mathbb{R}} \lambda \text{ s.t. } f(x) - \lambda \ge 0 \text{ on } K$$

When
$$\mathcal{K} = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$
 with $g_j \in \mathbb{R}[x]$

one can replace the **hard** condition: " $f(x) - \lambda \ge 0$ on K" by the **easier** condition:

" $f(x) - \lambda$ is a 'weighted sum' of sum-of-squares polynomials"

 \rightsquigarrow Get the SoS **bounds**:

$$f_{(r)} = \sup \lambda$$
 s.t. $f - \lambda = \underbrace{s_0}_{\deg \le 2r} + \underbrace{s_1g_1}_{\deg \le 2r} + \ldots + \underbrace{s_mg_m}_{\deg \le 2r}, s_j$ SoS

'Sums-of-squares' (SoS) lower bounds

(P)
$$f_{\min} = \min_{x \in K} f(x) = \sup_{\lambda \in \mathbb{R}} \lambda \text{ s.t. } f(x) - \lambda \ge 0 \text{ on } K$$

When
$$\mathcal{K} = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$$
 with $g_j \in \mathbb{R}[x]$

one can replace the **hard** condition: " $f(x) - \lambda \ge 0$ on K" by the **easier** condition:

" $f(x) - \lambda$ is a 'weighted sum' of sum-of-squares polynomials"

 \rightsquigarrow Get the SoS **bounds**:

$$f_{(r)} = \sup \lambda$$
 s.t. $f - \lambda = \underbrace{s_0}_{\deg \le 2r} + \underbrace{s_1g_1}_{\deg \le 2r} + \ldots + \underbrace{s_mg_m}_{\deg \le 2r}, s_j$ SoS

►
$$f_{(r)} \leq f_{(r+1)} \leq f_{\min}$$
, $f_{(r)} \nearrow f_{\min}$ as $r \to \infty$

• Can compute $f_{(r)}$ with semidefinite programming

[Lasserre 2001]

Error analysis in terms of the relaxation order r

[Nie-Schweighofer 2007] Let K semi-algebraic compact (+technical condition). There exists a constant c = c_K such that for any degree d polynomial f:

$$f_{\min} - f_{(r)} \le 6d^3 n^{2d} L_f \frac{1}{\sqrt[c]{\log \frac{r}{c}}} \quad \text{for all } r \ge c \cdot e^{(2d^2n^d)^c}$$

Error analysis in terms of the relaxation order r

[Nie-Schweighofer 2007] Let K semi-algebraic compact (+technical condition). There exists a constant c = c_K such that for any degree d polynomial f:

$$f_{\min} - f_{(r)} \le 6d^3 n^{2d} L_f \frac{1}{\sqrt[c]{\log \frac{r}{c}}} \quad \text{for all } r \ge c \cdot e^{(2d^2n^d)^c}$$

[Fang-Fawzi 2020] Improved error analysis in O(1/r²) for the unit sphere K = Sⁿ⁻¹, for f homogeneous with degree 2d:

$$f_{\min} - f_{(r)} \le (f_{\max} - f_{\min}) \frac{C_d^2 n^2}{r^2}$$
 for $r \ge C_d \cdot n$

This improves the earlier O(1/r) result of [Faybusovich 2003], [Doherty-Wehner 2012]

Error analysis in terms of the relaxation order r

[Nie-Schweighofer 2007] Let K semi-algebraic compact (+technical condition). There exists a constant c = c_K such that for any degree d polynomial f:

$$f_{\min} - f_{(r)} \le 6d^3 n^{2d} L_f \frac{1}{\sqrt[c]{\log \frac{r}{c}}} \quad \text{for all } r \ge c \cdot e^{(2d^2n^d)^c}$$

[Fang-Fawzi 2020] Improved error analysis in O(1/r²) for the unit sphere K = Sⁿ⁻¹, for f homogeneous with degree 2d:

$$f_{\min} - f_{(r)} \le (f_{\max} - f_{\min}) \frac{C_d^2 n^2}{r^2}$$
 for $r \ge C_d \cdot n$

This improves the earlier O(1/r) result of [Faybusovich 2003], [Doherty-Wehner 2012]

There is an intimate link with the analysis of the upper bounds

More later!

LASSERRE MEASURE-BASED UPPER BOUNDS

$$f_{\min} = \min_{x \in K} f(x) = \min_{\nu \text{ probability measure on } K} \int_{K} f(x) d\nu(x)$$

$$f_{\min} = \min_{x \in K} f(x) = \min_{\nu \text{ probability measure on } K} \int_{K} f(x) d\nu(x)$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d\nu(x) = h(x)d\mu(x)$, where

 μ is a **fixed** measure with support K and σ is a sum-of-squares density:

 $f_{min} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu \ s.t. \ \sigma \ SoS, \ \int_{K} \sigma(x) \ d\mu = 1$

$$f_{\min} = \min_{x \in K} f(x) = \min_{\nu \text{ probability measure on } K} \int_{K} f(x) d\nu(x)$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d\nu(x) = h(x)d\mu(x)$, where

 μ is a fixed measure with support K and σ is a sum-of-squares density:

$$f_{min} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1$

Bound degree: deg(σ) $\leq 2r \iff$ **upper bounds** $f^{(r)}$ converging to f_{\min} :

 $f^{(r)} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$ s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1, \ \deg(\sigma) \le 2r$

$$f_{\min} = \min_{x \in K} f(x) = \min_{\nu \text{ probability measure on } K} \int_{K} f(x) d\nu(x)$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d\nu(x) = h(x)d\mu(x)$, where

 μ is a fixed measure with support K and σ is a sum-of-squares density:

$$f_{min} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1$

Bound degree: deg(σ) $\leq 2r \rightsquigarrow$ **upper bounds** $f^{(r)}$ converging to f_{\min} :

$$f^{(r)} = \inf_{\sigma} \int_{\mathcal{K}} f(x)\sigma(x) \ d\mu$$
 s.t. σ SoS, $\int_{\mathcal{K}} \sigma(x) \ d\mu = 1, \ \deg(\sigma) \le 2r$

► $f_{\min} \leq f^{(r+1)} \leq f^{(r)}$, $f^{(r)} \searrow f_{\min}$, $f^{(r)}$ can be computed via SDP

$$f_{\min} = \min_{x \in K} f(x) = \min_{\nu \text{ probability measure on } K} \int_{K} f(x) d\nu(x)$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d\nu(x) = h(x)d\mu(x)$, where

 μ is a fixed measure with support K and σ is a sum-of-squares density:

$$f_{min} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1$

Bound degree: deg(σ) $\leq 2r \rightsquigarrow$ **upper bounds** $f^{(r)}$ converging to f_{\min} :

$$f^{(r)} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1, \ \deg(\sigma) \le 2r$

► $f_{\min} \leq f^{(r+1)} \leq f^{(r)}$, $f^{(r)} \searrow f_{\min}$, $f^{(r)}$ can be computed via SDP

▶ **but** one needs to know the **moments** of μ : $m_{\alpha} = \int_{K} x^{\alpha} d\mu(x)$ to compute $\int_{K} f(x) d\mu = \int_{K} (\sum_{\alpha} f_{\alpha} x^{\alpha}) d\mu = \sum_{\alpha} f_{\alpha} m_{\alpha}$

$$f_{\min} = \min_{x \in K} f(x) = \min_{\nu \text{ probability measure on } K} \int_{K} f(x) d\nu(x)$$

Theorem (Lasserre 2011)

For K compact, one may restrict to $d\nu(x) = h(x)d\mu(x)$, where

 μ is a **fixed** measure with support K and σ is a sum-of-squares density:

$$f_{min} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1$

Bound degree: deg(σ) $\leq 2r \rightsquigarrow$ **upper bounds** $f^{(r)}$ converging to f_{\min} :

$$f^{(r)} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1, \ \deg(\sigma) \le 2r$

► $f_{\min} \leq f^{(r+1)} \leq f^{(r)}$, $f^{(r)} \searrow f_{\min}$, $f^{(r)}$ can be computed via SDP

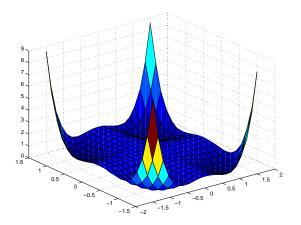
but one needs to know the **moments** of μ : $m_{\alpha} = \int_{K} x^{\alpha} d\mu(x)$

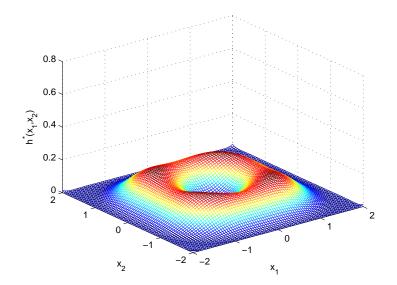
• m_{α} known if μ Lebesgue on cube, ball, simplex; Haar on sphere,...

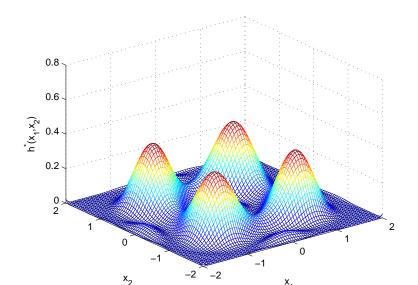
Example: Motzkin polynomial on $K = [-2, 2]^2$

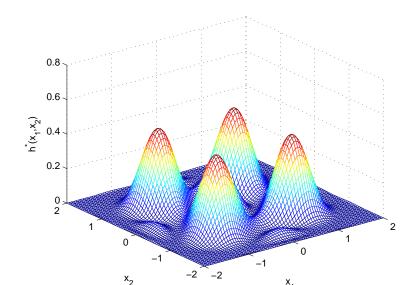
$$f(x_1, x_2) = x_1^4 x_2^2 + x_1^2 x_2^4 - 3x_1^2 x_2^2 + 1$$

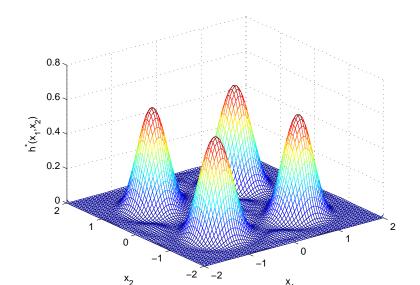
Four global minimizers: (-1, -1), (-1, 1), (1, -1), (1, 1)











Goal: Analyze rate of convergence of error range: $E^{(r)}(f) = E^{(r)}_{\mu,\kappa}(f) := f^{(r)} - f_{\min}$ Goal: Analyze rate of convergence of error range: $E^{(r)}(f) = E^{(r)}_{\mu,K}(f) := f^{(r)} - f_{\min}$

compact K	$E^{(r)}(f)$	μ	
Hypercube			
f linear	$\Theta(1/r^2)$	$(1-x^2)^{\lambda}, \ \lambda > -1$	de Klerk-L 2020
any f	$O(1/r^2)$	Chebyshev: $\lambda = -1/2$,, ,,
any f	$O(1/r^2)$	$\lambda \geq -1/2$	Slot-L 2020
Sphere f homogeneous any f	$\frac{O(1/r)}{O(1/r^2)}$	Haar Haar	Doherty-Wehner'12 de Klerk-L 2020
Ball			
any f	$O(1/r^2)$	$(1-\ x\ ^2)^\lambda$, $\lambda\geq 0$	Slot-L 2020
Simplex, 'round' convex body	$O(1/r^2)$	Lebesgue	Slot-L 2020
Convex body, fat semialgebraic	$O((\log r)^2/r^2)$	Lebesgue	Slot-L 2020

Key proof strategies

(1) Design 'nice' SoS polynomial densities 'that look like the Dirac delta at a global minimizer' and reduce to the **univariate case** in order to get the $O((\log r)^2/r^2)$ rate for general K

Key proof strategies

(1) Design 'nice' SoS polynomial densities
 'that look like the Dirac delta at a global minimizer' and reduce to the univariate case
 in order to get the O((log r)²/r²) rate for general K

(2) Reformulate f^(r) as an eigenvalue problem and relate f^(r) to extremal roots of orthogonal polynomials
 → O(1/r²) rate for the Chebyshev measure on [-1,1], and other measures (with Jacobi weight) for linear polynomials

Basic trick: suffices to analyse **polynomials with degree** ≤ 2

Key proof strategies

(1) Design 'nice' SoS polynomial densities
 'that look like the Dirac delta at a global minimizer' and reduce to the univariate case
 in order to get the O((log r)²/r²) rate for general K

(2) Reformulate f^(r) as an eigenvalue problem and relate f^(r) to extremal roots of orthogonal polynomials
 → O(1/r²) rate for the Chebyshev measure on [-1,1], and other measures (with Jacobi weight) for linear polynomials

Basic trick: suffices to analyse **polynomials with degree** ≤ 2

(3) Use more tricks (**Taylor approx.**, **integration**, **'local similarity'**) to transport the $O(1/r^2)$ rate for [-1, 1] to more sets (and measures): hypercube, simplex, ball, sphere, 'round' convex bodies

Strategy 1: Use SoS approximations of Dirac measures

 $\rightsquigarrow O(\frac{\log^2 r}{r^2})$ rate for general K

Instead of the multivariate upper bounds:

 $f^{(r)} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$ s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1, \ \deg(\sigma) \le 2r$

Instead of the multivariate upper bounds:

$$f^{(r)} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1, \ \deg(\sigma) \le 2r$

Consider the weaker univariate upper bounds:

$$f_{pfm}^{(r)} = \min_s \int_K f(x) s(f(x)) d\mu(x)$$
 s.t.

 $\int_{K} s(f(x)) d\mu(x) = 1, \ \deg(s) \le 2r$ s **univariate** sum-of-squares

Instead of the multivariate upper bounds:

$$f^{(r)} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1, \ \deg(\sigma) \le 2r$

Consider the weaker univariate upper bounds:

$$\begin{split} f_{pfm}^{(r)} &= \min_{s} \int_{K} f(x) s(f(x)) d\mu(x) \text{ s.t. } & \int_{K} s(f(x)) d\mu(x) = 1, \ \deg(s) \leq 2r \\ & \text{s univariate sum-of-squares} \\ &= \min_{s} \int_{f(K)} t \cdot s(t) d\mu_{f}(t) \text{ s.t. } & \int_{f(K)} s(t) d\mu_{f}(t) = 1, \ \deg(s) \leq 2r \\ & \text{s univariate sum-of-squares} \end{split}$$

with μ_f is the **push-forward** of μ by f, supported by $[f_{\min}, f_{\max}] \subseteq \mathbb{R}$

Instead of the multivariate upper bounds:

$$f^{(r)} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1, \ \deg(\sigma) \le 2r$

Consider the weaker univariate upper bounds:

$$\begin{split} f_{pfm}^{(r)} &= \min_s \int_{\mathcal{K}} f(x) s(f(x)) d\mu(x) \quad \text{s.t.} \quad \int_{\mathcal{K}} s(f(x)) d\mu(x) = 1, \ \deg(s) \leq 2r \\ &\text{s univariate sum-of-squares} \end{split} \\ &= \min_s \int_{f(\mathcal{K})} t \cdot s(t) d\mu_f(t) \quad \text{s.t.} \quad \int_{f(\mathcal{K})} s(t) d\mu_f(t) = 1, \ \deg(s) \leq 2r \\ &\text{s univariate sum-of-squares} \end{split}$$

with μ_f is the **push-forward** of μ by f, supported by $[f_{\min}, f_{\max}] \subseteq \mathbb{R}$

Then:
$$f_{\min} \leq f^{(rd)} \leq f^{(r)}_{pfm}$$
 if $d = \deg(f)$
 $f^{(r)}_{pfm} \searrow f_{\min}$ [Lasserre 2019]

Instead of the multivariate upper bounds:

$$f^{(r)} = \inf_{\sigma} \int_{K} f(x)\sigma(x) \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma(x) \ d\mu = 1, \ \deg(\sigma) \le 2r$

Consider the weaker univariate upper bounds:

$$\begin{split} f_{pfm}^{(r)} &= \min_s \int_{\mathcal{K}} f(x) s(f(x)) d\mu(x) \quad \text{s.t.} \quad \int_{\mathcal{K}} s(f(x)) d\mu(x) = 1, \ \deg(s) \leq 2r \\ &\text{s univariate sum-of-squares} \end{split} \\ &= \min_s \int_{f(\mathcal{K})} t \cdot s(t) d\mu_f(t) \quad \text{s.t.} \quad \int_{f(\mathcal{K})} s(t) d\mu_f(t) = 1, \ \deg(s) \leq 2r \\ &\text{s univariate sum-of-squares} \end{split}$$

with μ_f is the **push-forward** of μ by f, supported by $[f_{\min}, f_{\max}] \subseteq \mathbb{R}$

Then:
$$f_{\min} \leq f^{(rd)} \leq f^{(r)}_{pfm}$$
 if $d = \deg(f)$
 $f^{(r)}_{pfm} \searrow f_{\min}$ [Lasserre 2019]

Step 2: Use SoS approximations of the Dirac delta

Use the degree 4r (half-)**needle polynomials** $s_r^h(t)$ of [Kroó-Swetits'92] $(h > 0, r \in \mathbb{N}, \text{ defined as squares of Chebyshev polynomials})$

$$s^h_r(t) \left\{egin{array}{ll} =1 & ext{at } t=0 \ \leq 1 & ext{at } t\in [0,1] \ \leq 4e^{-rac{1}{2}\sqrt{h}r} & ext{at } t\in [h,1] \end{array}
ight.$$

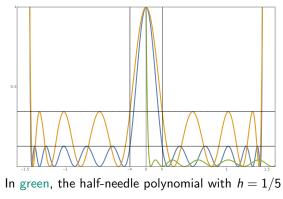
as univariate SoS density (with $h = (\log r)^2/r^2$)

Step 2: Use SoS approximations of the Dirac delta

Use the degree 4r (half-)**needle polynomials** $s_r^h(t)$ of [Kroó-Swetits'92] $(h > 0, r \in \mathbb{N}, \text{ defined as squares of Chebyshev polynomials})$

$$\mathsf{s}^h_r(t) \left\{egin{array}{ll} =1 & ext{at } t=0 \ \leq 1 & ext{at } t\in [0,1] \ \leq 4e^{-rac{1}{2}\sqrt{h}r} & ext{at } t\in [h,1] \end{array}
ight.$$

as univariate SoS density (with $h = (\log r)^2/r^2$)



Theorem (Slot-L 2020)

Assume K is a convex body, or K is a compact semialgebraic set with a dense interior (aka fat). Then

$$f_{pfm}^{(r)} - f_{min} = O\left(\frac{(\log r)^2}{r^2}\right)$$

Theorem (Slot-L 2020)

Assume K is a convex body, or K is a compact semialgebraic set with a dense interior (aka fat). Then

$$f_{pfm}^{(r)} - f_{min} = O\left(\frac{(\log r)^2}{r^2}\right)$$

The analysis is almost tight

There can be a **separation** between the **multivariate** and **univariate** bounds:

For
$$f(x) = x^{2d}$$
 and $K = [-1, 1]$:

$$f_{\min} = 0 \le f^{(2dr)} = O\left(\frac{(\log r)^{2d}}{r^{2d}}\right) \le f_{pfm}^{(r)} = \Omega\left(\frac{1}{r^2}\right)$$

Theorem (Slot-L 2020)

Assume K is a convex body, or K is a compact semialgebraic set with a dense interior (aka fat). Then

$$f_{pfm}^{(r)} - f_{min} = O\left(\frac{(\log r)^2}{r^2}\right)$$

The analysis is almost tight

There can be a **separation** between the **multivariate** and **univariate** bounds:

For
$$f(x) = x^{2d}$$
 and $K = [-1, 1]$:

$$f_{\min} = 0 \le f^{(2dr)} = O\left(\frac{(\log r)^{2d}}{r^{2d}}\right) \le f_{pfm}^{(r)} = \Omega\left(\frac{1}{r^2}\right)$$

Yes for the multivariate bounds $f^{(r)}$, for some nice sets K

FIRST BASIC TRICK: SUFFICES TO ANALYZE QUADRATIC POLYNOMIALS

Analyze simpler upper estimators

Lemma

Let $\mathbf{a} \in K$ be a global minimizer of \mathbf{f} in K.

Set $\gamma = \max_{x \in K} \|\nabla^2 f(x)\|$.

By Taylor's theorem, f has a quadratic, separable upper estimator:

$$f(\mathbf{x}) \leq f(\mathbf{a}) + \langle \nabla f(\mathbf{a}), \mathbf{x} - \mathbf{a} \rangle + \gamma \|\mathbf{x} - \mathbf{a}\|^2 := g(\mathbf{x}),$$

where $f(\mathbf{a}) = g(\mathbf{a}) \quad \rightsquigarrow \quad f_{min} = g_{min}$.

Analyze simpler upper estimators

Lemma

ŀ

Let $\mathbf{a} \in K$ be a global minimizer of f in K.

Set $\gamma = \max_{x \in K} \|\nabla^2 f(x)\|$.

By Taylor's theorem, f has a quadratic, separable upper estimator:

$$f(x) \leq f(\mathbf{a}) + \langle \nabla f(\mathbf{a}), x - \mathbf{a} \rangle + \gamma ||x - \mathbf{a}||^2 := g(x),$$

where $f(\mathbf{a}) = g(\mathbf{a}) \quad \rightsquigarrow \quad f_{min} = g_{min}.$
Hence, for all $r \in \mathbb{N}$,
 $E^{(r)}(f) \leq E^{(r)}(g)$

Analyze simpler upper estimators

Lemma

Let $\mathbf{a} \in K$ be a global minimizer of f in K.

Set $\gamma = \max_{x \in K} \|\nabla^2 f(x)\|.$

By Taylor's theorem, f has a quadratic, separable upper estimator:

$$f(x) \leq f(\mathbf{a}) + \langle \nabla f(\mathbf{a}), x - \mathbf{a} \rangle + \gamma ||x - \mathbf{a}||^2 := g(x),$$

where $f(\mathbf{a}) = g(\mathbf{a}) \quad \rightsquigarrow \quad f_{min} = g_{min}.$
Hence, for all $r \in \mathbb{N}$,
 $E^{(r)}(f) \leq E^{(r)}(g)$

→ It suffices to analyze quadratic (separable) polynomials

and sometimes we may even obtain a **linear** upper estimator! (e.g. for the sphere)

EIGENVALUE REFORMULATION

$$f^{(r)} = \min \int_{K} f\sigma \ d\mu$$
 s.t. $\sigma \operatorname{SoS}, \ \int_{K} \sigma \ d\mu = 1, \ \deg(\sigma) \leq 2r$

$$f^{(r)} = \min \int_{K} f\sigma \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma \ d\mu = 1$, $\deg(\sigma) \le 2r$

Choose an orthonormal basis $\{p_{\alpha} : |\alpha| \leq 2r\}$ of $\mathbb{R}[x]_{2r}$ w.r.t. μ

Then: σ SoS $\iff \sigma = ((p_{\alpha})_{|\alpha| \leq r})^{\mathsf{T}} X(p_{\alpha})_{|\alpha| \leq r}$ for some $(X_{\alpha,\beta}) \succeq 0$

$$f^{(r)} = \min \int_{K} f\sigma \ d\mu$$
 s.t. $\sigma \operatorname{SoS}, \ \int_{K} \sigma \ d\mu = 1, \ \deg(\sigma) \leq 2r$

Choose an **orthonormal basis** $\{p_{\alpha} : |\alpha| \leq 2r\}$ of $\mathbb{R}[x]_{2r}$ w.r.t. μ

Then:
$$\sigma$$
 SoS $\iff \sigma = ((p_{\alpha})_{|\alpha| \le r})^{\mathsf{T}} X(p_{\alpha})_{|\alpha| \le r}$ for some $(X_{\alpha,\beta}) \succeq 0$
 $\rightsquigarrow \int_{K} \sigma \ d\mu = Tr(X)$ as $\int_{K} \sigma \ d\mu = \sum_{\alpha,\beta} X_{\alpha,\beta} \int_{K} p_{\alpha} p_{\beta} d\mu$

$$f^{(r)} = \min \int_{\mathcal{K}} f\sigma \ d\mu$$
 s.t. σ SoS, $\int_{\mathcal{K}} \sigma \ d\mu = 1$, $\deg(\sigma) \le 2r$

Choose an orthonormal basis $\{p_{\alpha} : |\alpha| \leq 2r\}$ of $\mathbb{R}[x]_{2r}$ w.r.t. μ

Then: σ SoS $\iff \sigma = ((p_{\alpha})_{|\alpha| \leq r})^{\mathsf{T}} X(p_{\alpha})_{|\alpha| \leq r}$ for some $(X_{\alpha,\beta}) \succeq 0$ $\rightsquigarrow \int_{K} \sigma \ d\mu = Tr(X)$ as $\int_{K} \sigma \ d\mu = \sum_{\alpha,\beta} X_{\alpha,\beta} \int_{K} p_{\alpha} p_{\beta} d\mu$ $\rightsquigarrow \int_{K} f \sigma \ d\mu = \langle M_{r}(f), X \rangle$ as $\int_{K} f \sigma \ d\mu = \sum_{\alpha,\beta} X_{\alpha,\beta} \int_{K} f p_{\alpha} p_{\beta} d\mu$ $M_{r}(f) := (\int_{K} f p_{\alpha} p_{\beta} \ d\mu)_{|\alpha|, |\beta| \leq r}$ (moment) Hankel-type matrix

$$f^{(r)} = \min \int_{K} f\sigma \ d\mu$$
 s.t. σ SoS, $\int_{K} \sigma \ d\mu = 1$, $\deg(\sigma) \le 2r$

Choose an orthonormal basis $\{p_{\alpha} : |\alpha| \leq 2r\}$ of $\mathbb{R}[x]_{2r}$ w.r.t. μ

Then:
$$\sigma$$
 SoS $\iff \sigma = ((p_{\alpha})_{|\alpha| \leq r})^{\mathsf{T}} X(p_{\alpha})_{|\alpha| \leq r}$ for some $(X_{\alpha,\beta}) \succeq 0$
 $\rightsquigarrow \int_{K} \sigma \ d\mu = Tr(X)$ as $\int_{K} \sigma \ d\mu = \sum_{\alpha,\beta} X_{\alpha,\beta} \int_{K} p_{\alpha} p_{\beta} d\mu$
 $\rightsquigarrow \int_{K} f\sigma \ d\mu = \langle M_{r}(f), X \rangle$ as $\int_{K} f\sigma \ d\mu = \sum_{\alpha,\beta} X_{\alpha,\beta} \int_{K} fp_{\alpha} p_{\beta} d\mu$
 $M_{r}(f) := (\int_{K} f \ p_{\alpha} p_{\beta} \ d\mu)_{|\alpha|, |\beta| \leq r}$ (moment) Hankel-type matrix

$$f^{(r)} = \min\left\{ \langle M_r(f), X \rangle : \operatorname{Tr}(X) = 1, \ X \succeq 0 \right\} = \lambda_{\min}(M_r(f))$$

[Lasserre 2011]

ANALYSIS IN THE UNIVARIATE CASE: K = [-1, 1]

SUFFICES TO CONSIDER:

f LINEAR, OR QUADRATIC

Theorem (classical theory of orthogonal polynomials) Let $\{p_0, p_1, p_2, ...\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ . Then the polynomials p_k satisfy a **3-term recurrence**:

 $xp_k = a_k p_{k+1} + b_k p_k + a_{k-1} p_{k-1}$ for $k \ge 0$, p_0 constant

 \rightsquigarrow the (Jacobi) matrix $M_r(x) = \left(\int_{-1}^1 x p_i p_j \ d\mu\right)_{i,j=0}^r$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

$$M_{r}(x) = \begin{pmatrix} b_{0} & a_{0} & & & & \\ a_{0} & b_{1} & a_{1} & & & & \\ & a_{1} & b_{2} & a_{2} & & & & \\ & & a_{2} & b_{3} & a_{3} & & & \\ & & & \ddots & \ddots & \ddots & \\ & & & & a_{r-2} & b_{r-1} & a_{r-1} \\ & & & & & a_{r-1} & b_{r} \end{pmatrix}$$

Theorem (classical theory of orthogonal polynomials) Let $\{p_0, p_1, p_2, ...\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ . Then the polynomials p_k satisfy a **3-term recurrence**:

 $xp_k = a_k p_{k+1} + b_k p_k + a_{k-1} p_{k-1}$ for $k \ge 0$, p_0 constant

 \rightsquigarrow the (Jacobi) matrix $M_r(x) = \left(\int_{-1}^1 x p_i p_j \ d\mu\right)_{i,j=0}^r$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

Theorem (classical theory of orthogonal polynomials) Let $\{p_0, p_1, p_2, ...\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ . Then the polynomials p_k satisfy a **3-term recurrence**:

 $xp_k = a_k p_{k+1} + b_k p_k + a_{k-1} p_{k-1}$ for $k \ge 0$, p_0 constant

 \rightsquigarrow the (Jacobi) matrix $M_r(x) = \left(\int_{-1}^1 x p_i p_j \ d\mu\right)_{i,j=0}^r$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

Theorem (de Klerk-L 2020) For f(x) = x:

 $f^{(r)} = \lambda_{\min}(M_r(x))$

Theorem (classical theory of orthogonal polynomials) Let $\{p_0, p_1, p_2, ...\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ . Then the polynomials p_k satisfy a **3-term recurrence**:

 $xp_k = a_k p_{k+1} + b_k p_k + a_{k-1} p_{k-1}$ for $k \ge 0$, p_0 constant

 \rightsquigarrow the (Jacobi) matrix $M_r(x) = \left(\int_{-1}^1 x p_i p_j \ d\mu\right)_{i,j=0}^r$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

Theorem (de Klerk-L 2020) For f(x) = x:

 $f^{(r)} = \lambda_{\min}(M_r(x)) = smallest root of p_{r+1}$

Theorem (classical theory of orthogonal polynomials) Let $\{p_0, p_1, p_2, ...\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ . Then the polynomials p_k satisfy a **3-term recurrence**:

 $xp_k = a_k p_{k+1} + b_k p_k + a_{k-1} p_{k-1}$ for $k \ge 0$, p_0 constant

 \rightsquigarrow the (Jacobi) matrix $M_r(x) = \left(\int_{-1}^1 x p_i p_j \ d\mu\right)_{i,j=0}^r$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

Theorem (de Klerk-L 2020) For f(x) = x:

 $f^{(r)} = \lambda_{\min}(M_r(x))$ = smallest root of $p_{r+1} = -1 + \Theta(1/r^2)$

for the Jacobi measure $d\mu = (1 - x^2)^{\lambda} dx$ with $\lambda > -1$

Theorem (classical theory of orthogonal polynomials) Let $\{p_0, p_1, p_2, ...\}$ be a (graded) orthonormal basis of $\mathbb{R}[x]$ w.r.t. μ . Then the polynomials p_k satisfy a **3-term recurrence**:

 $xp_k = a_k p_{k+1} + b_k p_k + a_{k-1} p_{k-1}$ for $k \ge 0$, p_0 constant

 \rightsquigarrow the (Jacobi) matrix $M_r(x) = \left(\int_{-1}^1 x p_i p_j \ d\mu\right)_{i,j=0}^r$ is tri-diagonal and its eigenvalues are the roots of p_{r+1}

Theorem (de Klerk-L 2020) For f(x) = x:

 $f^{(r)} = \lambda_{\min}(M_r(x))$ = smallest root of $p_{r+1} = -1 + \Theta(1/r^2) = f_{\min} + \Theta(1/r^2)$

for the Jacobi measure $d\mu = (1 - x^2)^{\lambda} dx$ with $\lambda > -1$

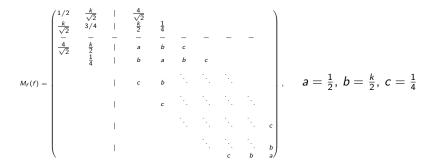
(1) Minimizer on **boundary** (i.e., $k \notin [-2,2]$): Then f has a **linear** upper estimator: $f(x) \leq g(x) := kx + 1 \quad \rightsquigarrow \quad E^{(r)}(f) \leq E^{(r)}(g) = O(1/r^2)$ **NB:** This holds for **any Jacobi measure** $(1 - x^2)^{\lambda} dx$, $\lambda > -1$

(1) Minimizer on **boundary** (i.e., $k \notin [-2,2]$): Then f has a **linear** upper estimator: $f(x) \leq g(x) := kx + 1 \quad \rightsquigarrow \quad E^{(r)}(f) \leq E^{(r)}(g) = O(1/r^2)$ **NB:** This holds for **any Jacobi measure** $(1 - x^2)^{\lambda} dx$, $\lambda > -1$

(2) Minimizer in interior: Then, $f^{(r)} = \lambda_{\min}(M_r(f))$ where

(1) Minimizer on **boundary** (i.e., $k \notin [-2,2]$): Then f has a **linear** upper estimator: $f(x) \leq g(x) := kx + 1 \quad \rightsquigarrow \quad E^{(r)}(f) \leq E^{(r)}(g) = O(1/r^2)$ **NB:** This holds for **any Jacobi measure** $(1 - x^2)^{\lambda} dx$, $\lambda > -1$

(2) Minimizer in interior: Then, $f^{(r)} = \lambda_{\min}(M_r(f))$ where $M_r(f) = \left(\int_{-1}^1 (x^2 + kx)p_i p_j d\mu\right)_{i,j=0}^r$ is 5-diagonal 'almost' Toeplitz:



Write
$$M_r(f) = \begin{pmatrix} * & * & \cdots \\ * & * & \cdots \\ \vdots & \vdots & B \end{pmatrix}$$
, with *B* 5-diagonal **Toeplitz** of size $r - 1$

Write
$$M_r(f) = \begin{pmatrix} * & * & \cdots \\ * & * & \cdots \\ \vdots & \vdots & B \end{pmatrix}$$
, with *B* 5-diagonal **Toeplitz** of size $r - 1$

Write
$$M_r(f) = \begin{pmatrix} * & * & \cdots \\ * & * & \cdots \\ \vdots & \vdots & B \end{pmatrix}$$
, with *B* 5-diagonal **Toeplitz** of size $r - 1$

By interlacing of eigenvalues:

 $\lambda_{\min}(M_r(f)) \leq \lambda_{\min}(B) \leq \lambda_3(C)$

Write
$$M_r(f) = \begin{pmatrix} * & * & \cdots \\ * & * & \cdots \\ \vdots & \vdots & B \end{pmatrix}$$
, with *B* 5-diagonal **Toeplitz** of size $r - 1$

By interlacing of eigenvalues:

$$\lambda_{\min}(M_r(f)) \leq \lambda_{\min}(B) \leq \lambda_3(C) = -\frac{k^2}{4} + O(1/r^2) = f_{\min} + O(1/r^2)$$

Write
$$M_r(f) = \begin{pmatrix} * & * & \cdots \\ * & * & \cdots \\ \vdots & \vdots & B \end{pmatrix}$$
, with *B* 5-diagonal **Toeplitz** of size $r - 1$

By interlacing of eigenvalues:

$$\lambda_{\min}(M_r(f)) \leq \lambda_{\min}(B) \leq \lambda_3(C) = -\frac{k^2}{4} + O(1/r^2) = f_{\min} + O(1/r^2)$$

Theorem (de Klerk-L 2020)

For the **Chebyshev measure** $\prod_i (1 - x_i^2)^{-1/2}$ on $[-1, 1]^n$ and for any polynomial f:

 $f^{(r)} - f_{min} = O(1/r^2)$

Write
$$M_r(f) = \begin{pmatrix} * & * & \cdots \\ * & * & \cdots \\ \vdots & \vdots & B \end{pmatrix}$$
, with *B* 5-diagonal **Toeplitz** of size $r - 1$

By interlacing of eigenvalues:

$$\lambda_{\min}(M_r(f)) \leq \lambda_{\min}(B) \leq \lambda_3(C) = -\frac{k^2}{4} + O(1/r^2) = f_{\min} + O(1/r^2)$$

Theorem (de Klerk-L 2020)

For the **Chebyshev measure** $\prod_i (1 - x_i^2)^{-1/2}$ on $[-1, 1]^n$ and for any polynomial f: f

$$f^{(r)} - f_{min} = O(1/r^2)$$

Next: extend to the Jacobi measure $(1 - x^2)^{\lambda}$ on [-1, 1] with $\lambda \geq -1/2$ and to other sets

EXTENSION: $O(\frac{1}{r^2})$ CONVERGENCE RATE FOR THE SPHERE

USING AN INTEGRATION TRICK

Key steps

(1) Reduce to the case when f is linear: By Taylor, f has a quadratic upper estimator: $f(x) \le f(\mathbf{a}) + \nabla f(\mathbf{a})^T (x - \mathbf{a}) + \gamma ||x - \mathbf{a}||^2$

Key steps

(1) Reduce to the case when f is **linear**:

By Taylor, f has a **linear** upper estimator: $f(x) \le f(\mathbf{a}) + \nabla f(\mathbf{a})^T (x - \mathbf{a}) + \gamma (2 - 2x^T \mathbf{a})$

(1) Reduce to the case when f is **linear**:

By Taylor, f has a **linear** upper estimator: $f(x) \le f(\mathbf{a}) + \nabla f(\mathbf{a})^T (x - \mathbf{a}) + \gamma (2 - 2x^T \mathbf{a})$

Up to rotation and translation, we may assume $f(x) = x_1$

(1) Reduce to the case when f is **linear**: By Taylor, f has a **linear** upper estimator: $f(x) \le f(\mathbf{a}) + \nabla f(\mathbf{a})^T (x - \mathbf{a}) + \gamma (2 - 2x^T \mathbf{a})$

Up to rotation and translation, we may assume $f(x) = x_1$

(2) Reduce to the analysis for the interval [-1,1]:

Key fact: Let $\sigma(x_1)$ be a degree 2r **univariate optimal** SoS density for the univariate problem $\min_{x_1 \in [-1,1]} x_1$ (with $d\mu = (1 - x_1^2)^{(n-3)/2} dx_1$)

(1) Reduce to the case when f is **linear**:

By Taylor, f has a **linear** upper estimator: $f(x) \le f(\mathbf{a}) + \nabla f(\mathbf{a})^T (x - \mathbf{a}) + \gamma (2 - 2x^T \mathbf{a})$ Up to rotation and translation, we may assume $f(x) = x_1$

(2) Reduce to the analysis for the interval [-1,1]:

Key fact: Let $\sigma(x_1)$ be a degree 2r univariate optimal SoS density for the univariate problem $\min_{x_1 \in [-1,1]} x_1$ (with $d\mu = (1 - x_1^2)^{(n-3)/2} dx_1$) Then $\sigma(x_1)$ (rescaled) gives a (good) SoS density for the multivariate problem: $\min_{x \in \mathbb{S}^{n-1}} x_1$ (on \mathbb{S}^{n-1} with μ Haar measure)

(1) Reduce to the case when f is **linear**:

By Taylor, f has a **linear** upper estimator: $f(x) \le f(\mathbf{a}) + \nabla f(\mathbf{a})^T (x - \mathbf{a}) + \gamma (2 - 2x^T \mathbf{a})$ Up to rotation and translation, we may assume $f(x) = x_1$

(2) Reduce to the analysis for the interval [-1,1]:

Key fact: Let $\sigma(x_1)$ be a degree 2r **univariate optimal** SoS density for the univariate problem $\min_{x_1 \in [-1,1]} x_1$ (with $d\mu = (1 - x_1^2)^{(n-3)/2} dx_1$) Then $\sigma(x_1)$ (rescaled) gives a (good) SoS density for the multivariate problem: $\min_{x_1 \in \mathbb{S}^{n-1}} x_1$ (on \mathbb{S}^{n-1} with μ Haar measure)

This is based on the **integration trick**:

$$\int_{-1}^{1} \sigma(x_1)(1-x_1^2)^{\frac{n-3}{2}} dx_1 = C \int_{S^{n-1}} \sigma(x_1) d\mu$$
$$\int_{-1}^{1} x_1 \sigma(x_1)(1-x_1^2)^{\frac{n-3}{2}} dx_1 = C \int_{S^{n-1}} x_1 \sigma(x_1) d\mu$$

(1) Reduce to the case when f is **linear**:

By Taylor, f has a **linear** upper estimator: $f(x) \le f(\mathbf{a}) + \nabla f(\mathbf{a})^T (x - \mathbf{a}) + \gamma (2 - 2x^T \mathbf{a})$ Up to rotation and translation, we may assume $f(x) = x_1$

(2) Reduce to the analysis for the interval [-1,1]:

Key fact: Let $\sigma(x_1)$ be a degree 2r **univariate optimal** SoS density for the univariate problem $\min_{x_1 \in [-1,1]} x_1$ (with $d\mu = (1 - x_1^2)^{(n-3)/2} dx_1$) Then $\sigma(x_1)$ (rescaled) gives a (good) SoS density for the

multivariate problem: $\min_{\substack{x \in \mathbb{S}^{n-1}}} x_1$ (on \mathbb{S}^{n-1} with μ Haar measure) This is based on the integration trick:

This is based on the **integration trick**:

$$1 = \int_{-1}^{1} \sigma(x_1)(1-x_1^2)^{\frac{n-3}{2}} dx_1 = C \int_{S^{n-1}} \sigma(x_1) d\mu$$
$$-1 + O\left(\frac{1}{r^2}\right) = \int_{-1}^{1} x_1 \sigma(x_1)(1-x_1^2)^{\frac{n-3}{2}} dx_1 = C \int_{S^{n-1}} x_1 \sigma(x_1) d\mu$$

[de Klerk-L 2020]

EXTENSION:

 $O(\frac{1}{r^2})$ CONVERGENCE RATE FOR BOX, BALL, SIMPLEX, ROUND CONVEX BODY

USING 'LOCAL SIMILARITY' TRICK

Lemma (Slot-L 2020)

Let $\mathbf{a} \in K$ be a global minimizer of f in K. Assume:

 $K \subseteq \widehat{K}$, w a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:

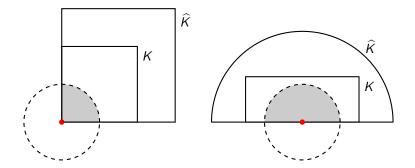
Lemma (Slot-L 2020)

Let $\mathbf{a} \in K$ be a global minimizer of f in K. Assume:

 $K \subseteq \widehat{K}$, w a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:

(1) $\mathbf{K}, \hat{\mathbf{K}}$ are 'locally similar' at a:

 $K \cap B_{\epsilon}(\mathbf{a}) = \widehat{K} \cap B_{\epsilon}(\mathbf{a})$ for some $\epsilon > 0$.



Lemma (Slot-L 2020)

Let $\mathbf{a} \in K$ be a global minimizer of f in K. Assume:

 $K \subseteq \widehat{K}$, w a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:

(1) $\mathbf{K}, \hat{\mathbf{K}}$ are 'locally similar' at a:

$$K \cap B_{\epsilon}(\mathbf{a}) = \widehat{K} \cap B_{\epsilon}(\mathbf{a})$$
 for some $\epsilon > 0$.

(2) w, \hat{w} are 'locally similar' at a:

 $m \cdot \widehat{w}(x) \leq w(x)$ on $int(K) \cap B_{\epsilon}(\mathbf{a})$ for some $\epsilon, m > 0$.

(3) $w(x) \leq \widehat{w}(x)$ for all $x \in int(K)$.

Lemma (Slot-L 2020)

Let $\mathbf{a} \in K$ be a global minimizer of f in K. Assume:

 $K \subseteq \widehat{K}$, w a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:

(1) $\mathbf{K}, \hat{\mathbf{K}}$ are 'locally similar' at a:

$$K \cap B_{\epsilon}(\mathbf{a}) = \widehat{K} \cap B_{\epsilon}(\mathbf{a})$$
 for some $\epsilon > 0$.

(2) w, \hat{w} are 'locally similar' at a:

 $m \cdot \widehat{w}(x) \leq w(x)$ on $int(K) \cap B_{\epsilon}(\mathbf{a})$ for some $\epsilon, m > 0$.

(3) $w(x) \leq \widehat{w}(x)$ for all $x \in int(K)$.

Then, f has an upper estimator g on \hat{K} , exact at **a**, satisfying

$$E^{(r)}_{{\color{black}{K}},{\color{black}{w}}}(f)\leq E^{(r)}_{\widehat{{\color{black}{K}}},\widehat{{\color{black}{w}}}}(g).$$

Lemma (Slot-L 2020)

Let $\mathbf{a} \in K$ be a global minimizer of f in K. Assume:

 $K \subseteq \widehat{K}$, w a weight function on K, \widehat{w} weight function on \widehat{K} satisfy:

(1) $\mathbf{K}, \hat{\mathbf{K}}$ are 'locally similar' at a:

$$K \cap B_{\epsilon}(\mathbf{a}) = \widehat{K} \cap B_{\epsilon}(\mathbf{a})$$
 for some $\epsilon > 0$.

(2) w, \hat{w} are 'locally similar' at a:

 $m \cdot \widehat{w}(x) \leq w(x)$ on $int(K) \cap B_{\epsilon}(\mathbf{a})$ for some $\epsilon, m > 0$.

(3) $w(x) \leq \widehat{w}(x)$ for all $x \in int(K)$.

Then, f has an upper estimator g on \hat{K} , exact at **a**, satisfying

$$E^{(r)}_{\mathcal{K},w}(f) \leq E^{(r)}_{\widehat{\mathcal{K}},\widehat{w}}(g).$$

Note: (1),(2) clearly hold if $\mathbf{a} \in int(K)$

Lift known $O(1/r^2)$ rate for $\widehat{K} = [-1, 1], \lambda = -\frac{1}{2}$

- (1) to K = [-1, 1], with $w(x) = (1 x^2)^{\lambda}$, $\lambda \ge -1/2$, any f[using Chebyshev weight $\widehat{w}(x) = (1 - x^2)^{-1/2}$], to $K = [-1, 1]^n$
- (2) to any K, with w = 1, when minimizer a lies in the interior of K [using K ⊆ K = [-1, 1]ⁿ with ŵ = 1]
- (3) to K simplex, with w = 1, when minimizer lies on the **boundary** [after applying affine mapping and using $\widehat{K} = [-1, 1]^n$ with $\widehat{w} = 1$]

Lift known $O(1/r^2)$ rate for $\widehat{K} = [-1, 1], \lambda = -\frac{1}{2}$

- (1) to K = [-1, 1], with $w(x) = (1 x^2)^{\lambda}$, $\lambda \ge -1/2$, any f[using Chebyshev weight $\widehat{w}(x) = (1 - x^2)^{-1/2}$], to $K = [-1, 1]^n$
- (2) to any K, with w = 1, when minimizer a lies in the interior of K [using K ⊆ K = [-1, 1]ⁿ with ŵ = 1]
- (3) to K simplex, with w = 1, when minimizer lies on the **boundary** [after applying affine mapping and using $\widehat{K} = [-1, 1]^n$ with $\widehat{w} = 1$]
- (4) to K ball, with $w(x) = (1 ||x||^2)^{\lambda}$, $\lambda \ge 0$

[using a linear upper estimator and an integration trick, when the minimizer lies on the **boundary**]

(5) to K 'round' convex body, with w = 1 (i.e., K has inscribed and circumscribed tangent balls at any boundary point)
 [using the result for the ball K with w = 1]

BACK TO ANALYZING THE LOWER BOUNDS

FOR THE UNIT SPHERE

Goal: Let $f \in \mathcal{P}_d$: polynomial of degree d on \mathbb{S}^{n-1}

$$f_{(r)} = \sup \lambda$$
 s.t. $f(x) - \lambda = \sigma(x)$ on \mathbb{S}^{n-1} , where σ SoS, deg $(\sigma) \leq 2r$

Theorem: [Fang-Fawzi 2020] $f_{\min} - f_{(r)} = O(\frac{1}{r^2})$

Goal: Let $f \in \mathcal{P}_d$: polynomial of degree d on \mathbb{S}^{n-1}

$$f_{(r)} = \sup \lambda$$
 s.t. $f(x) - \lambda = \sigma(x)$ on \mathbb{S}^{n-1} , where σ SoS, deg $(\sigma) \le 2r$

Theorem: [Fang-Fawzi 2020] $f_{\min} - f_{(r)} = O(\frac{1}{r^2})$

Strategy: Construct a 'nice' polynomial kernel K(x, y) on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$ \rightsquigarrow kernel operator $K : p \in \mathcal{P} \mapsto Kp(x) = \int_{\mathbb{S}^{n-1}} p(y)K(x, y)d\mu(y) \in \mathcal{P}$

Goal: Let $f \in \mathcal{P}_d$: polynomial of degree d on \mathbb{S}^{n-1}

$$f_{(r)} = \sup \lambda$$
 s.t. $f(x) - \lambda = \sigma(x)$ on \mathbb{S}^{n-1} , where σ SoS, deg $(\sigma) \le 2r$

Theorem: [Fang-Fawzi 2020] $f_{\min} - f_{(r)} = O(\frac{1}{r^2})$

Strategy: Construct a 'nice' polynomial kernel K(x, y) on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$ \rightsquigarrow kernel operator $K : p \in \mathcal{P} \mapsto Kp(x) = \int_{\mathbb{S}^{n-1}} p(y)K(x, y)d\mu(y) \in \mathcal{P}$

(A1) $\mathbf{K} = 1$: $\int_{-1}^{1} \mathbf{K}(x, y) d\mu(y) = 1 \quad \forall x \in \mathbb{S}^{n-1}$

Goal: Let $f \in \mathcal{P}_d$: polynomial of degree d on \mathbb{S}^{n-1}

$$f_{(r)} = \sup \lambda$$
 s.t. $f(x) - \lambda = \sigma(x)$ on \mathbb{S}^{n-1} , where σ SoS, $\deg(\sigma) \le 2r$

Theorem: [Fang-Fawzi 2020] $f_{\min} - f_{(r)} = O(\frac{1}{r^2})$

Strategy: Construct a 'nice' polynomial kernel K(x, y) on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$ \rightsquigarrow kernel operator $K : p \in \mathcal{P} \mapsto Kp(x) = \int_{\mathbb{S}^{n-1}} p(y)K(x, y)d\mu(y) \in \mathcal{P}$

(A1) $\mathbf{K} = 1$: $\int_{-1}^{1} \mathbf{K}(x, y) d\mu(y) = 1 \quad \forall x \in \mathbb{S}^{n-1}$

(A2) **K** preserves \mathcal{P}_d : $\mathbf{K}\mathcal{P}_d = \mathcal{P}_d$

Goal: Let $f \in \mathcal{P}_d$: polynomial of degree d on \mathbb{S}^{n-1}

$$f_{(r)} = \sup \lambda$$
 s.t. $f(x) - \lambda = \sigma(x)$ on \mathbb{S}^{n-1} , where σ SoS, $\deg(\sigma) \le 2r$

Theorem: [Fang-Fawzi 2020] $f_{\min} - f_{(r)} = O(\frac{1}{r^2})$

Strategy: Construct a 'nice' polynomial kernel K(x, y) on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$ \rightsquigarrow kernel operator $K : p \in \mathcal{P} \mapsto Kp(x) = \int_{\mathbb{S}^{n-1}} p(y)K(x, y)d\mu(y) \in \mathcal{P}$

- (A1) **K**1 = 1: $\int_{-1}^{1} K(x, y) d\mu(y) = 1 \quad \forall x \in \mathbb{S}^{n-1}$
- (A2) **K** preserves \mathcal{P}_d : $\mathbf{K}\mathcal{P}_d = \mathcal{P}_d$
- (A3) **K** close to *I*: $\|\mathbf{K} I\| := \sup_{p \in \mathcal{P}_d: \|p\|_{\infty} = 1} \|\mathbf{K}p p\|_{\infty} \le \epsilon$

Goal: Let $f \in \mathcal{P}_d$: polynomial of degree d on \mathbb{S}^{n-1}

$$f_{(r)} = \sup \lambda$$
 s.t. $f(x) - \lambda = \sigma(x)$ on \mathbb{S}^{n-1} , where σ SoS, $\deg(\sigma) \le 2r$

Theorem: [Fang-Fawzi 2020] $f_{\min} - f_{(r)} = O(\frac{1}{r^2})$

Strategy: Construct a 'nice' polynomial kernel K(x, y) on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$ \rightsquigarrow kernel operator $K : p \in \mathcal{P} \mapsto Kp(x) = \int_{\mathbb{S}^{n-1}} p(y)K(x, y)d\mu(y) \in \mathcal{P}$

- (A1) $\mathbf{K} = 1$: $\int_{-1}^{1} \mathbf{K}(x, y) d\mu(y) = 1 \quad \forall x \in \mathbb{S}^{n-1}$
- (A2) **K** preserves \mathcal{P}_d : $\mathbf{K}\mathcal{P}_d = \mathcal{P}_d$
- (A3) **K** close to *I*: $\|\mathbf{K} I\| := \sup_{p \in \mathcal{P}_d: \|p\|_{\infty} = 1} \|\mathbf{K}p p\|_{\infty} \le \epsilon$ $\rightsquigarrow \mathbf{K}^{-1}$ close to *I*: $\|\mathbf{K}^{-1} - I\| \le 3\epsilon$

Goal: Let $f \in \mathcal{P}_d$: polynomial of degree d on \mathbb{S}^{n-1}

$$f_{(r)} = \sup \lambda$$
 s.t. $f(x) - \lambda = \sigma(x)$ on \mathbb{S}^{n-1} , where σ SoS, $\deg(\sigma) \le 2r$

Theorem: [Fang-Fawzi 2020] $f_{\min} - f_{(r)} = O(\frac{1}{r^2})$

Strategy: Construct a 'nice' polynomial kernel K(x, y) on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$ \rightsquigarrow kernel operator $K : p \in \mathcal{P} \mapsto Kp(x) = \int_{\mathbb{S}^{n-1}} p(y)K(x, y)d\mu(y) \in \mathcal{P}$

- (A1) $\mathbf{K} = 1$: $\int_{-1}^{1} \mathbf{K}(x, y) d\mu(y) = 1 \quad \forall x \in \mathbb{S}^{n-1}$
- (A2) **K** preserves \mathcal{P}_d : $\mathbf{K}\mathcal{P}_d = \mathcal{P}_d$
- (A3) **K** close to *I*: $\|\mathbf{K} I\| := \sup_{p \in \mathcal{P}_d: \|p\|_{\infty} = 1} \|\mathbf{K}p p\|_{\infty} \le \epsilon$ $\rightsquigarrow \mathbf{K}^{-1}$ close to *I*: $\|\mathbf{K}^{-1} - I\| \le 3\epsilon$

(A4) for fixed $y \in \mathbb{S}^{n-1}$, K(x, y) is SoS with degree 2r on \mathbb{S}^{n-1}

Goal: Let $f \in \mathcal{P}_d$: polynomial of degree d on \mathbb{S}^{n-1}

$$f_{(r)} = \sup \lambda$$
 s.t. $f(x) - \lambda = \sigma(x)$ on \mathbb{S}^{n-1} , where σ SoS, deg $(\sigma) \le 2r$

Theorem: [Fang-Fawzi 2020] $f_{\min} - f_{(r)} = O(\frac{1}{r^2})$

Strategy: Construct a 'nice' polynomial kernel K(x, y) on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$ \rightsquigarrow kernel operator $K : p \in \mathcal{P} \mapsto Kp(x) = \int_{\mathbb{S}^{n-1}} p(y)K(x, y)d\mu(y) \in \mathcal{P}$

- (A1) $\mathbf{K} = 1$: $\int_{-1}^{1} \mathbf{K}(x, y) d\mu(y) = 1 \quad \forall x \in \mathbb{S}^{n-1}$
- (A2) **K** preserves \mathcal{P}_d : $\mathbf{K}\mathcal{P}_d = \mathcal{P}_d$
- (A3) **K** close to *I*: $\|\mathbf{K} I\| := \sup_{p \in \mathcal{P}_d: \|p\|_{\infty} = 1} \|\mathbf{K}p p\|_{\infty} \le \epsilon$ $\rightsquigarrow \mathbf{K}^{-1}$ close to *I*: $\|\mathbf{K}^{-1} - I\| \le 3\epsilon$

(A4) for fixed $y \in \mathbb{S}^{n-1}$, $\mathbf{K}(x, y)$ is SoS with degree 2r on \mathbb{S}^{n-1} $\rightsquigarrow p \ge 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K}p$ is SoS with degree 2r on \mathbb{S}^{n-1}

- (A1) K1 = 1
- (A2) **K** preserves \mathcal{P}_d
- (A3) **K** close to *I*: $\|\mathbf{K} I\| \le \epsilon$ $\rightsquigarrow \mathbf{K}^{-1}$ close to *I*: $\|\mathbf{K}^{-1} - I\| \le 3\epsilon$

(A4) $p \ge 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K}p$ is SoS with degree 2r on \mathbb{S}^{n-1}

Theorem: $f_{\min} - \frac{f_{(r)}}{f_{(r)}} \leq 3\epsilon \left(f_{\max} - f_{\min} \right)$

- (A1) K1 = 1
- (A2) **K** preserves \mathcal{P}_d
- (A3) **K** close to *I*: $\|\mathbf{K} I\| \le \epsilon$ $\rightsquigarrow \mathbf{K}^{-1}$ close to *I*: $\|\mathbf{K}^{-1} - I\| \le 3\epsilon$

(A4) $p \ge 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K}p$ is SoS with degree 2r on \mathbb{S}^{n-1}

Theorem: $f_{\min} - f_{(r)} \leq 3\epsilon (f_{\max} - f_{\min})$

Proof: Wlog $f_{\min} = 0$, $f_{\max} = 1$, so $||f||_{\infty} = 1$.

- (A1) K1 = 1
- (A2) **K** preserves \mathcal{P}_d
- (A3) **K** close to *I*: $\|\mathbf{K} I\| \le \epsilon$ $\rightsquigarrow \mathbf{K}^{-1}$ close to *I*: $\|\mathbf{K}^{-1} - I\| \le 3\epsilon$

(A4) $p \ge 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K}p$ is SoS with degree 2r on \mathbb{S}^{n-1}

Theorem: $f_{\min} - f_{(r)} \leq 3\epsilon (f_{\max} - f_{\min})$

Proof: Wlog $f_{\min} = 0$, $f_{\max} = 1$, so $||f||_{\infty} = 1$. By (A3): $||(\mathbf{K}^{-1} - I)f||_{\infty} \le 3\epsilon$

- (A1) K1 = 1
- (A2) **K** preserves \mathcal{P}_d
- (A3) **K** close to *I*: $\|\mathbf{K} I\| \le \epsilon$ $\rightsquigarrow \mathbf{K}^{-1}$ close to *I*: $\|\mathbf{K}^{-1} - I\| \le 3\epsilon$

(A4) $p \ge 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K}p$ is SoS with degree 2r on \mathbb{S}^{n-1}

Theorem: $f_{\min} - f_{(r)} \leq 3\epsilon (f_{\max} - f_{\min})$

Proof: Wlog $f_{\min} = 0$, $f_{\max} = 1$, so $||f||_{\infty} = 1$. By (A3): $||(\mathbf{K}^{-1} - I)f||_{\infty} \leq 3\epsilon \implies \mathbf{K}^{-1}f - f \geq -3\epsilon$ on \mathbb{S}^{n-1}

- (A1) K1 = 1
- (A2) **K** preserves \mathcal{P}_d
- (A3) **K** close to *I*: $\|\mathbf{K} I\| \le \epsilon$ $\rightsquigarrow \mathbf{K}^{-1}$ close to *I*: $\|\mathbf{K}^{-1} - I\| \le 3\epsilon$

(A4) $p \ge 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K}p$ is SoS with degree 2r on \mathbb{S}^{n-1}

Theorem: $f_{\min} - f_{(r)} \leq 3\epsilon (f_{\max} - f_{\min})$

Proof: Wlog $f_{\min} = 0$, $f_{\max} = 1$, so $||f||_{\infty} = 1$. By (A3): $||(\mathbf{K}^{-1} - I)f||_{\infty} \leq 3\epsilon \implies \mathbf{K}^{-1}f - f \geq -3\epsilon$ on \mathbb{S}^{n-1} $\implies \mathbf{K}^{-1}f + 3\epsilon \geq f \geq 0 \text{ on } \mathbb{S}^{n-1}$

- (A1) K1 = 1
- (A2) **K** preserves \mathcal{P}_d
- (A3) **K** close to *I*: $\|\mathbf{K} I\| \le \epsilon$ $\rightsquigarrow \mathbf{K}^{-1}$ close to *I*: $\|\mathbf{K}^{-1} - I\| \le 3\epsilon$

(A4) $p \ge 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K}p$ is SoS with degree 2r on \mathbb{S}^{n-1}

Theorem:
$$f_{\min} - f_{(r)} \leq 3\epsilon (f_{\max} - f_{\min})$$

Proof: Wlog
$$f_{\min} = 0$$
, $f_{\max} = 1$, so $||f||_{\infty} = 1$.
By (A3): $||(\mathbf{K}^{-1} - I)f||_{\infty} \le 3\epsilon \implies \mathbf{K}^{-1}f - f \ge -3\epsilon$ on \mathbb{S}^{n-1}
$$\implies \mathbf{K}^{-1}f + 3\epsilon \ge f \ge 0 \text{ on } \mathbb{S}^{n-1}$$

By (A1), (A4): $f + 3\epsilon = \mathbf{K}(\mathbf{K}^{-1}f + 3\epsilon)$ is SoS with degree 2r on \mathbb{S}^{n-1}

- (A1) K1 = 1
- (A2) **K** preserves \mathcal{P}_d
- (A3) **K** close to *I*: $\|\mathbf{K} I\| \le \epsilon$ $\rightsquigarrow \mathbf{K}^{-1}$ close to *I*: $\|\mathbf{K}^{-1} - I\| \le 3\epsilon$

(A4) $p \ge 0$ on $\mathbb{S}^{n-1} \Longrightarrow \mathbf{K}p$ is SoS with degree 2r on \mathbb{S}^{n-1}

Theorem:
$$f_{\min} - f_{(r)} \leq 3\epsilon (f_{\max} - f_{\min})$$

Proof: Wlog
$$f_{\min} = 0$$
, $f_{\max} = 1$, so $||f||_{\infty} = 1$.
By (A3): $||(\mathbf{K}^{-1} - I)f||_{\infty} \le 3\epsilon \implies \mathbf{K}^{-1}f - f \ge -3\epsilon \text{ on } \mathbb{S}^{n-1}$
$$\implies \mathbf{K}^{-1}f + 3\epsilon \ge f \ge 0 \text{ on } \mathbb{S}^{n-1}$$

By (A1), (A4): $f + 3\epsilon = \mathbf{K}(\mathbf{K}^{-1}f + 3\epsilon)$ is SoS with degree 2r on \mathbb{S}^{n-1}

Next: Construct such kernel K(x, y) with $\epsilon = O(1/r^2)$ using Fourier analysis and reducing to the upper bound approach (in univariate case)

• Select K(x, y) invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$

- Select K(x, y) invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\mathcal{P} = \bigoplus_{k \ge 0} \operatorname{Harm}_k = \operatorname{span}(e_{k,i}) : i \in [h_k]$

Select: $K(x, y) = \sum_{k=0}^{2r} \lambda_k \left(\sum_{i=1}^{h_k} e_{ki}(x) e_{ki}(y) \right)$

- Select K(x, y) invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\mathcal{P} = \bigoplus_{k \ge 0} \operatorname{Harm}_k = \operatorname{span}(e_{k,i}) : i \in [h_k]$

Select: $K(x, y) = \sum_{k=0}^{2r} \lambda_k \left(\sum_{i=1}^{h_k} e_{ki}(x) e_{ki}(y) \right) = \sum_{k=0}^{2r} \lambda_k C_k^n(x^T y)$

- Select K(x, y) invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\mathcal{P} = \bigoplus_{k \ge 0} \operatorname{Harm}_k = \operatorname{span}(e_{k,i}) : i \in [h_k]$

- Select K(x, y) invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\mathcal{P} = \bigoplus_{k \ge 0} \operatorname{Harm}_k = \operatorname{span}(e_{k,i}) : i \in [h_k]$

• If $p \in \mathcal{P}_d$ with $p = \sum_{k=0}^d p_k$, then $\mathbf{K}p = \sum_{k=0}^d \lambda_k p_k$

- Select K(x, y) invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\mathcal{P} = \bigoplus_{k \ge 0} \operatorname{Harm}_k = \operatorname{span}(e_{k,i}) : i \in [h_k]$

• If $p \in \mathcal{P}_d$ with $p = \sum_{k=0}^d p_k$, then $\mathsf{K} p = \sum_{k=0}^d \lambda_k p_k$

•
$$\|\mathbf{K}p - p\|_{\infty} = \|\sum_{k=0}^{d} (\lambda_{k} - 1)p_{k}\|_{\infty} \le \sum_{k=0}^{d} \|p_{k}\|_{\infty} |\lambda_{k} - 1|$$

- Select K(x, y) invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\mathcal{P} = \bigoplus_{k \ge 0} \operatorname{Harm}_k = \operatorname{span}(e_{k,i}) : i \in [h_k]$

• If $p \in \mathcal{P}_d$ with $p = \sum_{k=0}^d p_k$, then $\mathsf{K} p = \sum_{k=0}^d \lambda_k p_k$

•
$$\|\mathbf{K}p - p\|_{\infty} = \|\sum_{k=0}^{d} (\lambda_k - 1)p_k\|_{\infty} \le \sum_{k=0}^{d} \|p_k\|_{\infty} |\lambda_k - 1|$$

 $\le \sum_{k=0}^{d} |\lambda_k - 1| \cdot \|p\|_{\infty} C_d$

- Select K(x, y) invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\mathcal{P} = \bigoplus_{k \ge 0} \operatorname{Harm}_k = \operatorname{span}(e_{k,i}) : i \in [h_k]$

Select: $\mathcal{K}(x, y) = \sum_{k=0}^{2r} \lambda_k \left(\sum_{i=1}^{h_k} e_{ki}(x) e_{ki}(y) \right) = \sum_{k=0}^{2r} \lambda_k C_k^n(x^\top y)$ with $\lambda_0 = 1$ and $\lambda_1, \dots, \lambda_d \neq 0$ \rightsquigarrow (A1), (A2) hold

• If $p \in \mathcal{P}_d$ with $p = \sum_{k=0}^d p_k$, then $\mathsf{K} p = \sum_{k=0}^d \lambda_k p_k$

•
$$\|\mathbf{K}p - p\|_{\infty} = \|\sum_{k=0}^{d} (\lambda_k - 1)p_k\|_{\infty} \le \sum_{k=0}^{d} \|p_k\|_{\infty} |\lambda_k - 1|$$

 $\le \sum_{k=0}^{d} |\lambda_k - 1| \cdot \|p\|_{\infty} C_d$

So $\|\mathbf{K} - I\| \leq \sum_{k=1}^{d} |\lambda_k - 1| \cdot C_d$

- Select K(x, y) invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\mathcal{P} = \bigoplus_{k \ge 0} \operatorname{Harm}_k = \operatorname{span}(e_{k,i}) : i \in [h_k]$

Select: $\mathcal{K}(x, y) = \sum_{k=0}^{2r} \lambda_k \left(\sum_{i=1}^{h_k} e_{ki}(x) e_{ki}(y) \right) = \sum_{k=0}^{2r} \lambda_k C_k^n(x^\top y)$ with $\lambda_0 = 1$ and $\lambda_1, \dots, \lambda_d \neq 0$ \rightsquigarrow (A1), (A2) hold

• If $p \in \mathcal{P}_d$ with $p = \sum_{k=0}^d p_k$, then $\mathsf{K} p = \sum_{k=0}^d \lambda_k p_k$

•
$$\|\mathbf{K}p - p\|_{\infty} = \|\sum_{k=0}^{d} (\lambda_k - 1)p_k\|_{\infty} \le \sum_{k=0}^{d} \|p_k\|_{\infty} |\lambda_k - 1|$$

 $\le \sum_{k=0}^{d} |\lambda_k - 1| \cdot \|p\|_{\infty} C_d$

So $\|\mathbf{K} - I\| \leq \sum_{k=1}^{d} |\lambda_k - 1| \cdot C_d$

Therefore: It suffices to select $\lambda_0 = 1$, λ_k s.t. (1) $\sum_{k=1}^{d} |1 - \lambda_k| \ (= \epsilon)$ is small \rightsquigarrow (A1), (A2), (A3) hold

- Select K(x, y) invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\mathcal{P} = \bigoplus_{k \ge 0} \operatorname{Harm}_k = \operatorname{span}(e_{k,i}) : i \in [h_k]$

Select: $\mathcal{K}(x, y) = \sum_{k=0}^{2r} \lambda_k \left(\sum_{i=1}^{h_k} e_{ki}(x) e_{ki}(y) \right) = \sum_{k=0}^{2r} \lambda_k C_k^n(x^\top y)$ with $\lambda_0 = 1$ and $\lambda_1, \dots, \lambda_d \neq 0$ \rightsquigarrow (A1), (A2) hold

• If $p \in \mathcal{P}_d$ with $p = \sum_{k=0}^d p_k$, then $\mathsf{K} p = \sum_{k=0}^d \lambda_k p_k$

•
$$\|\mathbf{K}p - p\|_{\infty} = \|\sum_{k=0}^{d} (\lambda_k - 1)p_k\|_{\infty} \le \sum_{k=0}^{d} \|p_k\|_{\infty} |\lambda_k - 1|$$

 $\le \sum_{k=0}^{d} |\lambda_k - 1| \cdot \|p\|_{\infty} C_d$

So $\|\mathbf{K} - I\| \leq \sum_{k=1}^{d} |\lambda_k - 1| \cdot C_d$

Therefore: It suffices to select $\lambda_0 = 1$, λ_k s.t. (1) $\sum_{k=1}^{d} |1 - \lambda_k| \ (= \epsilon)$ is small \rightsquigarrow (A1), (A2), (A3) hold (2) $K(x, y) = (q(x^T y))^2$, where q univariate of degree $r \rightsquigarrow$ (A4) holds

- Select K(x, y) invariant under action of $O(n) \times O(n)$ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$
- Harmonic decomposition: $\mathcal{P} = \bigoplus_{k \ge 0} \operatorname{Harm}_k = \operatorname{span}(e_{k,i}) : i \in [h_k]$

Select: $\mathcal{K}(x, y) = \sum_{k=0}^{2r} \lambda_k \left(\sum_{i=1}^{h_k} e_{ki}(x) e_{ki}(y) \right) = \sum_{k=0}^{2r} \lambda_k C_k^n(x^{\mathsf{T}}y)$ with $\lambda_0 = 1$ and $\lambda_1, \dots, \lambda_d \neq 0$ \rightsquigarrow (A1), (A2) hold

• If $p \in \mathcal{P}_d$ with $p = \sum_{k=0}^d p_k$, then $\mathsf{K} p = \sum_{k=0}^d \lambda_k p_k$

•
$$\|\mathbf{K}p - p\|_{\infty} = \|\sum_{k=0}^{d} (\lambda_k - 1)p_k\|_{\infty} \le \sum_{k=0}^{d} \|p_k\|_{\infty} |\lambda_k - 1|$$

 $\le \sum_{k=0}^{d} |\lambda_k - 1| \cdot \|p\|_{\infty} C_d$

So $\|\mathbf{K} - I\| \leq \sum_{k=1}^{d} |\lambda_k - 1| \cdot C_d$

Therefore: It suffices to select $\lambda_0 = 1$, λ_k s.t. (1) $\sum_{k=1}^{d} |1 - \lambda_k| \ (= \epsilon)$ is small \rightsquigarrow (A1), (A2), (A3) hold (2) $K(x, y) = (q(x^T y))^2$, where q univariate of degree $r \rightsquigarrow$ (A4) holds Write: $q(t)^2 = \sum_{k=0}^{2r} \lambda_k C_k^n(t)$, where $C_k^n(t)$ are the Gegenbauer orthogonal polynomials on [-1, 1] w.r.t. $d\nu(t) = (1 - t^2)^{(n-3)/2} dt$

Want: $q(t)^2 = \sum_{k=0}^{2r} \lambda_k C_k^n(t)$, where $\lambda_0 = 1$ and $\sum_{k=1}^d (1 - \lambda_k)$ is small and $C_k^n(t)$ orthonormal polynomials on [-1, 1] for $d\nu(t)$

Want: $q(t)^2 = \sum_{k=0}^{2r} \lambda_k C_k^n(t)$, where $\lambda_0 = 1$ and $\sum_{k=1}^d (1 - \lambda_k)$ is small and $C_k^n(t)$ orthonormal polynomials on [-1, 1] for $d\nu(t)$

Note: $\lambda_k = \int_{-1}^1 q(t)^2 C_k^n(t) d\nu(t), \quad 1 = \lambda_0 = \int_{-1}^1 q(t)^2 d\nu(t)$

Want: $q(t)^2 = \sum_{k=0}^{2r} \lambda_k C_k^n(t)$, where $\lambda_0 = 1$ and $\sum_{k=1}^d (1 - \lambda_k)$ is small and $C_k^n(t)$ orthonormal polynomials on [-1, 1] for $d\nu(t)$

Note: $\lambda_{k} = \int_{-1}^{1} q(t)^{2} C_{k}^{n}(t) d\nu(t), \quad 1 = \lambda_{0} = \int_{-1}^{1} q(t)^{2} d\nu(t)$ Hence: $\sum_{k=1}^{d} 1 - \lambda_{k} = \int_{-1}^{1} q(t)^{2} \left(\underbrace{d - \sum_{k=1}^{d} C_{k}^{n}(t)}_{F(t)} \right) d\nu(t)$

Want: $q(t)^2 = \sum_{k=0}^{2r} \lambda_k C_k^n(t)$, where $\lambda_0 = 1$ and $\sum_{k=1}^d (1 - \lambda_k)$ is small and $C_k^n(t)$ orthonormal polynomials on [-1, 1] for $d\nu(t)$

Note: $\lambda_k = \int_{-1}^1 q(t)^2 C_k^n(t) d\nu(t), \quad 1 = \lambda_0 = \int_{-1}^1 q(t)^2 d\nu(t)$

Hence:
$$\sum_{k=1}^{d} 1 - \lambda_k = \int_{-1}^{1} q(t)^2 \left(\underbrace{d - \sum_{k=1}^{d} C_k^n(t)}_{F(t)} \right) d\nu(t)$$

So we arrive at the problem:

$$F^{(r)} = \min_{q \in \mathbb{R}[t]_r} \int_{-1}^{1} q(t)^2 F(t) \, d\nu(t) \text{ s.t. } \int_{-1}^{1} q(t)^2 d\nu(t) = 1$$

Want: $q(t)^2 = \sum_{k=0}^{2r} \lambda_k C_k^n(t)$, where $\lambda_0 = 1$ and $\sum_{k=1}^d (1 - \lambda_k)$ is small and $C_k^n(t)$ orthonormal polynomials on [-1, 1] for $d\nu(t)$

Note: $\lambda_k = \int_{-1}^1 q(t)^2 C_k^n(t) d\nu(t), \quad 1 = \lambda_0 = \int_{-1}^1 q(t)^2 d\nu(t)$

Hence:
$$\sum_{k=1}^{d} 1 - \lambda_k = \int_{-1}^{1} q(t)^2 \left(\underbrace{d - \sum_{k=1}^{d} C_k^n(t)}_{F(t)} \right) d\nu(t)$$

So we arrive at the problem:

$$F^{(r)} = \min_{q \in \mathbb{R}[t]_r} \int_{-1}^1 \frac{q(t)^2}{F(t)} F(t) d\nu(t) \text{ s.t. } \int_{-1}^1 \frac{q(t)^2}{d\nu(t)} d\nu(t) = 1$$

By the analysis for the *upper bounds* (univariate case): $F^{(r)} = O(1/r^2)$

Want: $q(t)^2 = \sum_{k=0}^{2r} \lambda_k C_k^n(t)$, where $\lambda_0 = 1$ and $\sum_{k=1}^d (1 - \lambda_k)$ is small and $C_k^n(t)$ orthonormal polynomials on [-1, 1] for $d\nu(t)$

Note: $\lambda_k = \int_{-1}^1 q(t)^2 C_k^n(t) d\nu(t), \quad 1 = \lambda_0 = \int_{-1}^1 q(t)^2 d\nu(t)$

Hence:
$$\sum_{k=1}^{d} 1 - \lambda_k = \int_{-1}^{1} q(t)^2 \left(\underbrace{d - \sum_{k=1}^{d} C_k^n(t)}_{F(t)} \right) d\nu(t)$$

So we arrive at the problem:

$$F^{(r)} = \min_{q \in \mathbb{R}[t]_r} \int_{-1}^1 \frac{q(t)^2}{F(t)} F(t) d\nu(t) \text{ s.t. } \int_{-1}^1 \frac{q(t)^2}{d\nu(t)} d\nu(t) = 1$$

By the analysis for the *upper bounds* (univariate case): $F^{(r)} = O(1/r^2)$ \rightsquigarrow optimal q gives desired $\lambda_k \rightsquigarrow$ desired kernel K(x, y) \rightsquigarrow desired rate $O(1/r^2)$ for SoS lower bounds $f_{(r)}$

Concluding remarks

- Interesting interplay between the lower and upper bounds
- An analogous technique can be applied to analyse the **lower bounds** $f_{(r)}$ when minimizing f on the Boolean cube $\{0,1\}^n$

[Slot-L 2021]

- ▶ For the box [-1,1]ⁿ, one can derive an analysis in O(1/r²) for the lower bounds based on the *preordering* (instead of the *quadratic module*)
- Open question: Can one get an improved analysis for the lower bounds based on the quadratic module for the box, the ball, etc. ?
- The error analysis for the upper bounds f^(r) extends to rational functions f [dK-L'19] and can be adapted to the general problem of moments [de Klerk-Postek-Kuhn'19]

Some references

- J. Nie and M. Schweighofer. On the complexity of Putinar's Positivstellensatz. J. of Complexity, 2007
- ▶ J.B. Lasserre. A new look at nonnegativity on closed sets and polynomial optimization. SIAM Journal on Optimization, 2011
- E. de Klerk and M. Laurent. Worst-case examples for Lasserre's measure-based hierarchy for polynomial optimization on the hypercube. Math. of Operations Research, 2020
- - Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere. Math. Programming, 2020
- L. Slot and M. Laurent. Near-optimal analysis of univariate moment bounds for polynomial optimization. Math. Programming, 2020
- – Improved convergence analysis of Lasserre's measure-based upper bounds for polynomial minimization on compact sets. Math. Programming, 2020