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Minimize a polynomial f over a compact (semialgebraic) set K

fmin = minXEK f(X)
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NP-hard problem: it captures hard combinatorial problems
(like computing «(G): the maximum size of a stable set in a graph G)
when K is a hypercube or a simplex and deg(f) = 2,
or K is a sphere and deg(f) =3
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Minimize a polynomial f over a compact (semialgebraic) set K

fmin = minXEK f(X)

2V/2 1
—— /[l - —— = max 2 X,X i
ij

[Motzkin-Straus'65, Nesterov'03]



Two hierarchies of lower/upper bounds for polynomial optimization:

foin = mi
min Lne'ﬂf(x)

(1) Lasserre/Parrilo sums-of-squares based lower bounds:

f(r) < fmin

(2) Lasserre measure-based upper bounds:

fmin S f(r)

Common feature:

» For fixed r the bounds can be computed via a semidefinite program
(SDP) with matrix size O(n")

(since sum-of-squares polynomials can be modelled with SDP)

» the bounds converge asymptotically to fy;, as r — oo

This lecture: Main focus on the error analysis of these bounds



LASSERRE/PARRILO
SUMS-OF-SQUARES BASED
LOWER BOUNDS



‘Sums-of-squares’ (SoS) lower bounds

fmin = minf(x) = sup A s.t. f(x)—A>0 on K
(P) min f(x) = sup (x)
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‘Sums-of-squares’ (SoS) lower bounds

foin =minf(x) = sup A sit. f(x)—A >0 on K

xeK AER

When

K={xeR": gi(x)>0,...

,8m(x) > 0}

one can replace the hard condition:

by the easier condition:

with g; € R[x]

“f(x) — A >0on K"

“f(x) — X is a ‘weighted sum’ of sum-of-squares polynomials”

~~ Get the SoS bounds:

deg<2r

f(r)ZSUP)\ st. f—A= so + 5180 +...4 Sn8m, 5; S0S
~~ ~— ——

deg<2r
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‘Sums-of-squares’ (SoS) lower bounds

frin = minf(x) = sup A s.t. f(x)—A>0 on K
(P) xeK ) )\GF)R (x)

When| K={xeR": gi(x) >0,...,8m(x) >0} with g; € R[x]

one can replace the hard condition: “f(x) — A >0 on K"
by the easier condition:
“f(x) — A is a ‘weighted sum’ of sum-of-squares polynomials”

~~ Get the SoS bounds:

f(r)ZSUP)\ st. f—A= so + 5180 +...4 Sn8m, 5; S0S
~~ ~— ——

deg<2r  deg<2r deg<2r

> fir) < fir+1) < fminx fir) /‘ fmin as r — o0

» Can compute f(,) with semidefinite programming
[Lasserre 2001]



Error analysis in terms of the relaxation order r

e [Nie-Schweighofer 2007] Let K semi-algebraic compact (+technical
condition). There exists a constant ¢ = cx such that for any degree
d polynomial f:

fin — f(r) < 6d3n2d L, —2 forall r > c- e(2d*n%)°
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e [Fang-Fawzi 2020] Improved error analysis in O(1/r?) for the unit
sphere K = S"~1, for f homogeneous with degree 2d:
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fmin - f(r) S (fmax - fmin)% for r 2 Cd - n

This improves the earlier O(1/r) result of [Faybusovich 2003],
[Doherty-Wehner 2012]



Error analysis in terms of the relaxation order r

e [Nie-Schweighofer 2007] Let K semi-algebraic compact (+technical
condition). There exists a constant ¢ = cx such that for any degree
d polynomial f:

fin — f(r) < 6d3n2d L, —2 forall r > c- e(2d*n%)°
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e [Fang-Fawzi 2020] Improved error analysis in O(1/r?) for the unit
sphere K = S"~1, for f homogeneous with degree 2d:

C2 2
fmin - f(r) S (fmax - fmin)dizn for r 2 Cd - n
r

This improves the earlier O(1/r) result of [Faybusovich 2003],
[Doherty-Wehner 2012]

There is an intimate link with the analysis of the upper bounds

More later!



LLASSERRE MEASURE-BASED
UPPER BOUNDS



Basic observation: identify points x € K with Dirac measures on K

fonin = Lmn f(x) = min /Kf(x)dl/(x)
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Basic observation: identify points x € K with Dirac measures on K

fonin = min f(x) = ~ min /Kf(x)dz/(x)

xeK v probability measure on K

Theorem (Lasserre 2011)
For K compact, one may restrict to dv(x) = h(x)du(x), where

1 is a fixed measure with support K and o is a sum-of-squares density:

fmin = inf, [, f(x)o(x) dp s.t. o SoS, [ o(x) du=1

Bound degree: deg(c) < 2r ~» upper bounds (") converging to fiin:

f0) =inf, [, f(x)o(x) du st. o SoS, [ o(x) du=1, deg(c) < 2r

b fonin < FUFD < £ £ N fin, F7) can be computed via SDP
> but one needs to know the moments of i m, = [, x*dp(x)

» m, known if ;1 Lebesgue on cube, ball, simplex; Haar on sphere,...



Example: Motzkin polynomial on K = [-2, 2]

4.2, 2.4 2.2
f(x1,x2) = X7 x5 + x7x5 —3x;x5 +1

Four global minimizers: (—-1,-1), (-1,1), (1,-1), (1,1)
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Example: Motzkin polynomial on [-2,2]? (ctd.)

Optimal SoS density o of degree 12

0.8
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Optimal SoS density o of degree 16
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Example: Motzkin polynomial on [-2,2]? (ctd.)

Optimal SoS density o of degree 20
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Example:

Motzkin polynomial on [—2,2]? (ctd.)

Optimal SoS density o of degree 24
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Goal: Analyze rate of convergence of error range:
EO(F) = EX)(F) = ) — fo

3



Goal: Analyze rate of convergence of error range:
EO(F) = EN(F) = £ — fui

s

compact K EU(f) 1
Hypercube
f linear o(1/r?) (1—x2) A > 1 de Klerk-L 2020
any f o(1/r?) Chebyshev: A\ = —1/2 "o
any f 0(1/r?) A>—1/2 Slot-L 2020
Sphere
f homogeneous O(1/r) Haar Doherty-Wehner'12
any f 0o(1/r?) Haar de Klerk-L 2020
Ball
any f 0(1/r?) (1— x> A >0 Slot-L 2020
Simplex, ‘round’ Oo(1/r?) Lebesgue Slot-L 2020
convex body
Convex body, O((log r)?/r?) Lebesgue Slot-L 2020

fat semialgebraic
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(1) Design ‘nice’ SoS polynomial densities
‘that look like the Dirac delta at a global minimizer’
and reduce to the univariate case
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(2) Reformulate f(") as an eigenvalue problem and
relate (") to extremal roots of orthogonal polynomials

~ O(1/r?) rate for the Chebyshev measure on [-1,1],

and other measures (with Jacobi weight) for linear polynomials

Basic trick: suffices to analyse polynomials with degree < 2
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Key proof strategies

Design ‘nice’ SoS polynomial densities
‘that look like the Dirac delta at a global minimizer’
and reduce to the univariate case

in order to get the O((log r)?/r?) rate for general K

Reformulate (") as an eigenvalue problem and
relate (") to extremal roots of orthogonal polynomials
~» 0(1/r?) rate for the Chebyshev measure on [—1,1],

and other measures (with Jacobi weight) for linear polynomials
Basic trick: suffices to analyse polynomials with degree < 2
Use more tricks (Taylor approx., integration, 'local similarity’) to

transport the O(1/r?) rate for [~1,1] to more sets (and measures):

hypercube, simplex, ball, sphere, ‘round’ convex bodies



STRATEGY 1:
USE SOS APPROXIMATIONS OF
DIRAC MEASURES

2
~ O( &) RATE FOR GENERAL K

r2
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Instead of the multivariate upper bounds:
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with pr is the push-forward of p by f, supported by [finin, fmax] € R

Then: fip < £ < 1)

pfm

if d = deg(f)

fp(;ri ¢ fmin [Lasserre 2019]




Step 2: Use SoS approximations of the Dirac delta
Use the degree 4r (half-)needle polynomials s"(t) of [Kros-Swetits'92]
(h >0, r € N, defined as squares of Chebyshev polynomials)

=1 att =20
()¢ <1 at t € [0,1]
r 1

<4e VP atte[h1]

as univariate SoS density (with h = (log r)?/r?)



Step 2: Use SoS approximations of the Dirac delta

Use the degree 4r (half-)needle polynomials s"(t) of [Kros-Swetits'92]
(h >0, r € N, defined as squares of Chebyshev polynomials)

=1 att =20
()¢ <1 at t €[0,1]
<4e 3V atte[h1]

as univariate SoS density (with h = (log r)?/r?)

1 WAVAVAY WAY

In green, the half-needle polynom|a| W|th h= 1/5



Theorem (Slot-L 2020)

Assume K is a convex body, or K is a compact semialgebraic set
with a dense interior (aka fat). Then

f(,) = O((|Og r)2)

pfm r2




Theorem (Slot-L 2020)

Assume K is a convex body, or K is a compact semialgebraic set
with a dense interior (aka fat). Then

f(,) = O((|Og r)2)

pfm r2

> The analysis is almost tight
There can be a separation between the multivariate and univariate
bounds:
For f(x) = x?? and K = [-1,1]:
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pfm 2




Theorem (Slot-L 2020)

Assume K is a convex body, or K is a compact semialgebraic set
with a dense interior (aka fat). Then

f(,) = O((|Og r)2)

pfm r2

» The analysis is almost tight

There can be a separation between the multivariate and univariate
bounds:

For f(x) = x?? and K = [-1,1]:
fon = 0 < 720 — (1B 0 _ (1
min =0 < = 2 ) S eim =3 2

r2

» Can one get rid of the factor (log r)??

Yes for the multivariate bounds ("), for some nice sets K



FIRST BASIC TRICK:
SUFFICES TO ANALYZE
QUADRATIC POLYNOMIALS



Analyze simpler upper estimators

Lemma
Let a € K be a global minimizer of f in K.

Set v = maxyek | V2(x)]|.
By Taylor's theorem, f has a quadratic, separable upper estimator:

f(x) < f(a) +(Vf(a),x —a) +7llx — al|* := g(x),

where f(a) = g(a) ~ fmin = Gmin-



Analyze simpler upper estimators

Lemma
Let a € K be a global minimizer of f in K.

Set v = maxyek || V2F(x)]|.

By Taylor's theorem, f has a quadratic, separable upper estimator:
f(x) < f(a) + (Vf(a),x —a) +7llx —a||* := g(x),

where f(a) = g(a) ~ fmin = Gmin-

Hence, for all r € N,
EC(F) < EN)(g)



Analyze simpler upper estimators

Lemma
Let a € K be a global minimizer of f in K.

Set v = maxyek || V2F(x)]|.

By Taylor's theorem, f has a quadratic, separable upper estimator:
f(x) < f(a) + (Vf(a),x —a) +7llx —a||* := g(x),

where f(a) = g(a) ~ fmin = Gmin-

Hence, for all r € N,
EC(F) < EN)(g)

~ |t suffices to analyze quadratic (separable) polynomials

and sometimes we may even obtain a linear upper estimator!
(e.g. for the sphere)



EIGENVALUE REFORMULATION
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/4 given measure with support K

F) =min [, fo du st. oSoS, [, o du=1, deg(c) <2r

Choose an orthonormal basis {p,, : |a| < 2r} of R[x]a, w.r.t. p

Then: 0 SoS <— o= ((pa)|a‘§r)TX(pa)|a‘§, for some (X, 3) = 0

oo dp = Tr(X) as [0 du=23", 3X0p [« Papsdp

~ [ fodp = (M.(f),X) as [ fodu=3", 5Xap [« fPapsdp

M, (f) := ([, f Paps d/")|a| \81<r (moment) Hankel-type matrix

7O = min {(M,(), X) - Tr(X) =1, X =0} = Ama( M, (1))

[Lasserre 2011]



ANALYSIS IN THE
UNIVARIATE CASE: K = [—1,1]

SUFFICES TO CONSIDER:

f LINEAR, OR QUADRATIC



K =[—1,1], linear case: f(x) = x



K =[—1,1], linear case: f(x) = x

Theorem (classical theory of orthogonal polynomials)
Let {po, p1,p2,...} be a (graded) orthonormal basis of R[x] w.r.t. p.
Then the polynomials py satisfy a 3-term recurrence:

XPk = akpPk+1 + bkpk + ak—1pk—1  for k >0, po constant

,
~> the (Jacobi) matrix M,(x) = <ﬁ1 Xpipj d/1,> o is tri-diagonal and
ij=

its eigenvalues are the roots of p,.1
bo a0
do b1 al

a b a
M, (x) = a b3 a3
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Theorem (de Klerk-L 2020)
For f(x) = x:

£ = Amin(M,(x))
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Theorem (classical theory of orthogonal polynomials)

Let {po, p1,p2,...} be a (graded) orthonormal basis of R[x] w.r.t. p.
Then the polynomials py satisfy a 3-term recurrence:

XPk = akpPk+1 + bkpk + ak—1pk—1  for k >0, po constant

~> the (Jacobi) matrix M,(x) = <ﬁ1 Xpipj d/1,> is tri-diagonal and

its eigenvalues are the roots of p,.1
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Theorem (de Klerk-L 2020)
For f(x) = x:
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K =[—1,1], linear case: f(x) = x

Theorem (classical theory of orthogonal polynomials)

Let {po, p1,p2,...} be a (graded) orthonormal basis of R[x] w.r.t. p.
Then the polynomials py satisfy a 3-term recurrence:

XPk = akpPk+1 + bkpk + ak—1pk—1  for k >0, po constant

~> the (Jacobi) matrix M,(x) = <ﬁ1 Xpipj d/1,> is tri-diagonal and

its eigenvalues are the roots of p,.1

r
=

Theorem (de Klerk-L 2020)
For f(x) = x:

() = Amin(M,(x)) = smallest root of p, .1 = —1+ O(1/r?)

for the Jacobi measure dji = (1 — x?)*dx with A > —1




K =[—1,1], linear case: f(x) = x

Theorem (classical theory of orthogonal polynomials)

Let {po, p1,p2,...} be a (graded) orthonormal basis of R[x] w.r.t. p.
Then the polynomials py satisfy a 3-term recurrence:

XPk = akpPk+1 + bkpk + ak—1pk—1  for k >0, po constant

~> the (Jacobi) matrix M,(x) = <ﬁ1 Xpipj d/1,> is tri-diagonal and

its eigenvalues are the roots of p,.1

r
=

Theorem (de Klerk-L 2020)
For f(x) = x:

FI) = Apin(M,(x)) = smallest root of p, 11 = —1 + O(1/r?) = fnin + O(1/r?)

for the Jacobi measure dji = (1 — x?)*dx with A > —1
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(1) Minimizer on boundary (i.e., k ¢ [—2,2]): Then f has a linear upper
estimator:  f(x) < g(x):=kx+1 ~ EO(F)<ED(g)=0(1/r?)
NB: This holds for any Jacobi measure (1 — x?)"dx, A > —1
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Chebyshev measure on K = [—1,1], f(x) = x* + kx

(1) Minimizer on boundary (i.e., k ¢ [—2,2]): Then f has a linear upper
estimator:  f(x) < g(x):=kx+1 ~ EO(F)<ED(g)=0(1/r?)
NB: This holds for any Jacobi measure (1 — x?)"dx, A > —1

(2) Minimizer in interior: Then, (") = \i,(M,(f))  where

1 r . . .
M, (f) = (f—1(X2 + kx)p,-pjd/i). o is 5-diagonal ‘almost’ Toeplitz:
ij=
k 4
P A
IV AN B S
4 k | a b c
V2 ; | b a b c
-1 —k =1
M (f) = [ c b a_z,b_z,c_4

o

)
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Embed B in a symmetric circulant matrix C of size r + 1

By interlacing of eigenvalues:
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Write M, (f)=[* * ---|, with B 5-diagonal Toeplitz of size r — 1
. . B

Embed B in a symmetric circulant matrix C of size r + 1

By interlacing of eigenvalues:

MM () < Ain(B) < X5(C) = ~54+0(1/7) = o +-0(1/7)

Theorem (de Klerk-L 2020)

For the Chebyshev measure [],(1 — x?)~'/2 on [~1,1]" and for any
polynomial f:
F) — frim = O(1/r)

Next: extend to the Jacobi measure (1 — x?)* on [—1,1] with A > —1/2
and to other sets



EXTENSION:

O(<) CONVERGENCE RATE
FOR THE SPHERE

USING AN INTEGRATION TRICK
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Key steps

Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:

f(x) < f(a)+Vf(a)"(x—a)+v (2—2x"a)

Up to rotation and translation, we may assume f(x) = x;
Reduce to the analysis for the interval [—1,1]:

Key fact: Let o(x;) be a degree 2r univariate optimal SoS density
for the univariate problem  min o (with dp = (1 —x2)("=3)/2dx)

Xle[fl,l
Then o(x1) (rescaled) gives a (good) SoS density for the
multivariate problem: min x (on S"! with 1 Haar measure)
xesn—

This is based on the integration trick:

1
/ o(x)(1— Xf)%sdxl =C o(x1)dp
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1
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Key steps

Reduce to the case when f is linear:

By Taylor, f has a linear upper estimator:

f(x) < f(a)+Vf(a)"(x—a)+v (2—2x"a)

Up to rotation and translation, we may assume f(x) = x;

Reduce to the analysis for the interval [—1,1]:
Key fact: Let o(x;) be a degree 2r univariate optimal SoS density
for the univariate problem  min o (with dp = (1 —x2)("=3)/2dx)

Xle[fl,l
Then o(x1) (rescaled) gives a (good) SoS density for the
multivariate problem: min x (on S"! with 1 Haar measure)
xesn—

This is based on the integration trick:

1
1= / o(x)(1— Xf)%sdxl =C o(x1)dp
1 gn—1

1

1 n—3
-1+ O(r—2) = / xpo(x)(1 —x7) 2 dxg = C xyo(x1)dp
—1 Sn—1

[de Klerk-L 2020]



EXTENSION:
O() CONVERGENCE RATE FOR
BOX, BALL, SIMPLEX,
ROUND CONVEX BODY

USING ‘LOCAL SIMILARITY’ TRICK



‘Local similarity’: lift results from (K, W) to (K, w)

Lemma (Slot-L 2020)

Let a € K be a global minimizer of f in K. Assume:

K C K , w a weight function on K, w weight function on K satisfy:



‘Local similarity': lift results from (R w) to (K, w)

Lemma (Slot-L 2020)

Let a € K be a global minimizer of f in K. Assume:

K C K , w a weight function on K, w weight function on K satisfy:
(1) K,K are ‘locally similar’ at a:

KN B.(a) = Kn B.(a) for some ¢ > 0.
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‘Local similarity’: lift results from (K, W) to (K, w)

Lemma (Slot-L 2020)

Let a € K be a global minimizer of f in K. Assume:

K C K , w a weight function on K, w weight function on K satisfy:
(1) K, K are ‘locally similar’ at a:
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(3) w(x) < w(x) for all x € int(K).
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Let a € K be a global minimizer of f in K. Assume:

K C K , w a weight function on K, w weight function on K satisfy:
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‘Local similarity’: lift results from (K, W) to (K, w)

Lemma (Slot-L 2020)

Let a € K be a global minimizer of f in K. Assume:

K C K , w a weight function on K, w weight function on K satisfy:
(1) K, K are ‘locally similar’ at a:
KN B.(a) = Kn B.(a) for some ¢ > 0.
(2) w,w are ‘locally similar’ at a:
m-w(x) < w(x) on int(K)N Bc(a) for somee, m> 0.
(3) w(x) < w(x) for all x € int(K).
Then, f has an upper estimator g on R exact at a, satisfying

EC,(F) < EY) ().

Note: (1),(2) clearly hold if a € int(K)



Lift known O(1/r?) rate for K = [~1,1], A = —1

(1) to K = [~1,1], with w(x) = (1 —x®)*, A > —1/2, any f
[using Chebyshev weight w(x) = (1 — x?)"%/?], to K = [-1,1]"

(2) to any K, with w = 1, when minimizer a lies in the interior of K
[using K C K = [~1,1]" with w = 1]

(3) to K simplex, with w = 1, when minimizer lies on the boundary
[after applying affine mapping and using K= [—1,1]" with w = 1]

Vi 3(v1)

Yo V2



Lift known O(1/r?) rate for K = [~1,1], A = —1

(1) to K = [~1,1], with w(x) = (1 —x®)*, A > —1/2, any f
[using Chebyshev weight w(x) = (1 — x?)"%/?], to K = [-1,1]"

(2) to any K, with w = 1, when minimizer a lies in the interior of K

[using K C K = [~1,1]" with w = 1]

(3) to K simplex, with w = 1, when minimizer lies on the boundary

[after applying affine mapping and using K= [—1,1]" with w = 1]

(4) to K ball, with w(x) = (1 — [|x]|))*, A >0

[using a linear upper estimator and an integration trick, when the
minimizer lies on the boundary]

(5) to K ‘round’ convex body, with w =1 (i.e., K has inscribed and
circumscribed tangent balls at any boundary point)

[using the result for the ball K with i = 1]



BACK TO ANALYZING THE
LOWER BOUNDS

FOR THE UNIT SPHERE



Polynomial kernel approach for the unit sphere

Goal: Let f € Py: polynomial of degree d on S"~1

fiy =sup A s.t. f(x) = A=0(x) on S"!, where o SoS, deg(c) < 2r

Theorem: [Fang-Fawzi 2020] foin — f(,) = O(%)
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Polynomial kernel approach for the unit sphere
Goal: Let f € Py: polynomial of degree d on S"~1

fiy =sup A s.t. f(x) = A=0(x) on S"!, where o SoS, deg(c) < 2r

Theorem: [Fang-Fawzi 2020] foin — f(,) = O(%)

Strategy: Construct a ‘nice’ polynomial kernel K(x,y) on S"~1 x §"~1
~~ kernel operator K : p € P — Kp(x) = [5,., p(y)K(x.y)du(y) € P

(A1) K1 = 1: Y KGGy)du(y) =1 vxesm!
(A2) K preserves Py: KPy = Py
(A3) K close to /: K — 1] := suppep,iipozt [KP = Plloc < ¢

~ K lcloseto I: |[K™1—1] <3¢

(A4) for fixed y € S"71, K(x,y) is SoS with degree 2r on S"*
~» p>0onS"™! = Kpis SoS with degree 2r on S"~!
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Deriving the analysis of f

(A1) K1 =1
(A2) K preserves Py
(A3) K close to I: IK—=1]| <e
~ K~ close to I K1 — 1| <3¢

(A4) p>0onS"! = Kpis SoS with degree 2r on S"~!
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Deriving the analysis of f

(A1) K1 =1
(A2) K preserves Py
(A3) K close to I: IK—=1]| <e
~ K~ close to I K1 — 1| <3¢

(A4) p>0onS"! = Kpis SoS with degree 2r on S"~!

Theorem: fi, — ;) < 3¢ (fnax — fmin)

Proof: Wiog fin =0, fnax = 1, 50 ||f]lec = 1.
By (A3): [[(K~! = I)flec < 3¢ —> K~1f — f > —3¢ on §"1
— K !'f+3e>f>0o0nS""
By (A1), (A4): f +3e = K(K™1f + 3¢) is SoS with degree 2r on S"~1

Next: Construct such kernel K(x,y) with ¢ = O(1/r?) using Fourier
analysis and reducing to the upper bound approach (in univariate case)
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with Ao =1 and Ay,..., Ay #0 ~ (A1), (A2) hold
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Select: K(x,y) = Zi;o Ak (Z,hil eni(x)ewi(y)) = ir:o e CR(xTy)
with Ao = 1 and Ay, ..., Ag # 0 - (A1), (A2) hold

o If pe Py with p=27_, pi, then Kp = S20_ \ipk

d d
o [IKp — plloo = | f_o(k — Dbkl < 5o lIpklloc| Ak — 1]
d
<D ko 1M = 1] - |[plloo Ca
So [[K—1]| <S5y [\ — 1] - Ca

Therefore: It suffices to select \g = 1, A\ s.t.
(1) ZZ:1 |1 — A| (=€) is small ~ (A1), (A2), (A3) hold
(2) K(x,y) = (q(x"y))?, where g univariate of degree r ~ (A4) holds

Write: q(t)? = i;o A CJ(t), where C[(t) are the Gegenbauer
orthogonal polynomials on [~1,1] w.r.t. du(t) = (1 — t?)("=3)/24t
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Final step: select A\ via the ‘upper bound’ approach

Want: q(t)? = ir:o A CJ(t), where \g = 1 and Zi:l(l — Ax) is small
and CJ/(t) orthonormal polynomials on [—1,1] for dv(t)

Note: A\, = [1, g(£)2CP(t)du(t), 1= o= ", q(t)2du(t)

Hence: Y0, 1— )\ = ( Z Ce(t )

F(t)
So we arrive at the problem:

F() — min /1 q(t)? F(t) du(t) s.t. /1 q(t)?dv(t) =1

g€R[t], J_1 -1

By the analysis for the upper bounds (univariate case): F(") = O(1/r?)

~~ optimal g gives desired \; ~~ desired kernel K(x, y)
~~ desired rate O(1/r?) for SoS lower bounds f,



Concluding remarks

Interesting interplay between the lower and upper bounds

An analogous technique can be applied to analyse the lower bounds
f(ry when minimizing f on the Boolean cube {0,1}"

[Slot-L 2021]

For the box [—1,1]", one can derive an analysis in O(1/r?) for the
lower bounds based on the preordering (instead of the quadratic
module)

Open question: Can one get an improved analysis for the lower
bounds based on the quadratic module for the box, the ball, etc. ?

The error analysis for the upper bounds (") extends to rational
functions f [dK-L'19]
and can be adapted to the general problem of moments

[de Klerk-Postek-Kuhn'19]
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