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Minimize a polynomial f over a compact (semialgebraic) set K

fmin = minx∈K f (x)

NP-hard problem: it captures hard combinatorial problems

(like computing α(G ): the maximum size of a stable set in a graph G )

when K is a hypercube or a simplex and deg(f ) = 2,

or K is a sphere and deg(f ) = 3

α(G ) = max
x∈[0,1]n

n∑
i=1

xi −
∑
ij∈E

xixj
1
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= min
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2
∑
ij∈E

xixjyij

[Motzkin-Straus’65, Nesterov’03]
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Two hierarchies of lower/upper bounds for polynomial optimization:

fmin = min
x∈K

f (x)

(1) Lasserre/Parrilo sums-of-squares based lower bounds:

f(r) ≤ fmin

(2) Lasserre measure-based upper bounds:

fmin ≤ f (r)

Common feature:

I For fixed r the bounds can be computed via a semidefinite program
(SDP) with matrix size O(nr )

(since sum-of-squares polynomials can be modelled with SDP)

I the bounds converge asymptotically to fmin as r →∞

This lecture: Main focus on the error analysis of these bounds



Lasserre/Parrilo
sums-of-squares based

lower bounds



‘Sums-of-squares’ (SoS) lower bounds

(P) fmin = min
x∈K

f (x) = sup
λ∈R

λ s.t. f (x)− λ ≥ 0 on K

When K = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} with gj ∈ R[x ]

one can replace the hard condition: “f (x)− λ ≥ 0 on K”

by the easier condition:

“f (x)− λ is a ‘weighted sum’ of sum-of-squares polynomials”

 Get the SoS bounds:

f(r) = sup λ s.t. f − λ = s0︸︷︷︸
deg≤2r

+ s1g1︸︷︷︸
deg≤2r

+ . . .+ smgm︸ ︷︷ ︸
deg≤2r

, sj SoS

I f(r) ≤ f(r+1) ≤ fmin, f(r) ↗ fmin as r →∞
I Can compute f(r) with semidefinite programming

[Lasserre 2001]
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Error analysis in terms of the relaxation order r

• [Nie-Schweighofer 2007] Let K semi-algebraic compact (+technical
condition). There exists a constant c = cK such that for any degree
d polynomial f :

fmin − f(r) ≤ 6d3n2dLf
1

c
√

log r
c

for all r ≥ c · e(2d2nd )c

• [Fang-Fawzi 2020] Improved error analysis in O(1/r2) for the unit
sphere K = Sn−1, for f homogeneous with degree 2d :

fmin − f(r) ≤ (fmax − fmin)
C 2
d n

2

r2
for r ≥ Cd · n

This improves the earlier O(1/r) result of [Faybusovich 2003],
[Doherty-Wehner 2012]

There is an intimate link with the analysis of the upper bounds

More later!
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Lasserre measure-based
upper bounds



Basic observation: identify points x ∈ K with Dirac measures on K

fmin = min
x∈K

f (x) = min
ν probability measure on K

∫
K

f (x)dν(x)

Theorem (Lasserre 2011)
For K compact, one may restrict to dν(x) = h(x)dµ(x), where

µ is a fixed measure with support K and σ is a sum-of-squares density:

fmin = infσ
∫
K
f (x)σ(x) dµ s.t. σ SoS,

∫
K
σ(x) dµ = 1

Bound degree: deg(σ) ≤ 2r  upper bounds f (r) converging to fmin:

f (r) = infσ
∫
K
f (x)σ(x) dµ s.t. σ SoS,

∫
K
σ(x) dµ = 1, deg(σ) ≤ 2r

I fmin ≤ f (r+1) ≤ f (r), f (r) ↘ fmin, f (r) can be computed via SDP

I but one needs to know the moments of µ: mα =
∫
K
xαdµ(x)

to compute
∫
K
f (x)dµ =

∫
K

(
∑
α fαx

α)dµ =
∑
α fαmαI mα known if µ Lebesgue on cube, ball, simplex; Haar on sphere,. . .
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Example: Motzkin polynomial on K = [−2, 2]2

f (x1, x2) = x4
1 x

2
2 + x2

1 x
4
2 − 3x2

1 x
2
2 + 1

Four global minimizers: (−1,−1), (−1, 1), (1,−1), (1, 1)
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density σ of degree 12
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density σ of degree 16
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density σ of degree 20
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Example: Motzkin polynomial on [−2, 2]2 (ctd.)

Optimal SoS density σ of degree 24
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Goal: Analyze rate of convergence of error range:

E (r)(f ) = E
(r)
µ,K (f ) := f (r) − fmin

compact K E (r)(f ) µ
Hypercube
f linear Θ(1/r2) (1− x2)λ, λ > −1 de Klerk-L 2020
any f O(1/r2) Chebyshev: λ = −1/2 ” ”
any f O(1/r2) λ ≥ −1/2 Slot-L 2020

Sphere
f homogeneous O(1/r) Haar Doherty-Wehner’12

any f O(1/r2) Haar de Klerk-L 2020

Ball
any f O(1/r2) (1− ‖x‖2)λ, λ ≥ 0 Slot-L 2020

Simplex, ‘round’ O(1/r2)

Lebesgue

Slot-L 2020
convex body

Convex body, O((log r)2/r2) Lebesgue Slot-L 2020
fat semialgebraic
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Key proof strategies

(1) Design ‘nice’ SoS polynomial densities

‘that look like the Dirac delta at a global minimizer’

and reduce to the univariate case

in order to get the O((log r)2/r2) rate for general K

(2) Reformulate f (r) as an eigenvalue problem and

relate f (r) to extremal roots of orthogonal polynomials

 O(1/r2) rate for the Chebyshev measure on [−1, 1],

and other measures (with Jacobi weight) for linear polynomials

Basic trick: suffices to analyse polynomials with degree ≤ 2

(3) Use more tricks (Taylor approx., integration, ’local similarity’) to

transport the O(1/r2) rate for [−1, 1] to more sets (and measures):

hypercube, simplex, ball, sphere, ‘round’ convex bodies
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Strategy 1:

Use SoS approximations of

Dirac measures

 O( log2 r
r2 ) rate for general K



Step 1: Analyse cheaper (univariate) bounds

Instead of the multivariate upper bounds:

f (r) = infσ
∫
K
f (x)σ(x) dµ s.t. σ SoS,

∫
K
σ(x) dµ = 1, deg(σ) ≤ 2r

Consider the weaker univariate upper bounds:

f
(r)
pfm = mins

∫
K
f (x)s(f (x))dµ(x) s.t.

∫
K
s(f (x))dµ(x) = 1, deg(s) ≤ 2r

s univariate sum-of-squares

= mins

∫
f (K)

t · s(t)dµf (t) s.t.
∫
f (K)

s(t)dµf (t) = 1, deg(s) ≤ 2r

s univariate sum-of-squares

with µf is the push-forward of µ by f , supported by [fmin, fmax] ⊆ R

Then: fmin ≤ f (rd) ≤ f
(r)
pfm if d = deg(f )

f
(r)
pfm ↘ fmin [Lasserre 2019]
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Instead of the multivariate upper bounds:
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Step 2: Use SoS approximations of the Dirac delta

Use the degree 4r (half-)needle polynomials shr (t) of [Kroó-Swetits’92]
(h > 0, r ∈ N, defined as squares of Chebyshev polynomials)

shr (t)


= 1 at t = 0
≤ 1 at t ∈ [0, 1]

≤ 4e−
1
2

√
hr at t ∈ [h, 1]

as univariate SoS density (with h = (log r)2/r2)

-1.5 -1 -h 0 h 1 1.5

0.5

1

In green, the half-needle polynomial with h = 1/5
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(h > 0, r ∈ N, defined as squares of Chebyshev polynomials)

shr (t)


= 1 at t = 0
≤ 1 at t ∈ [0, 1]

≤ 4e−
1
2

√
hr at t ∈ [h, 1]

as univariate SoS density (with h = (log r)2/r2)

-1.5 -1 -h 0 h 1 1.5

0.5

1

In green, the half-needle polynomial with h = 1/5



Theorem (Slot-L 2020)
Assume K is a convex body, or K is a compact semialgebraic set
with a dense interior (aka fat). Then

f
(r)
pfm − fmin = O

( (log r)2

r2

)

I The analysis is almost tight

There can be a separation between the multivariate and univariate
bounds:

For f (x) = x2d and K = [−1, 1]:

fmin = 0 ≤ f (2dr) = O
( (log r)2d

r2d

)
≤ f

(r)
pfm = Ω

( 1

r2

)
I Can one get rid of the factor (log r)2?

Yes for the multivariate bounds f (r), for some nice sets K
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First basic trick:
Suffices to analyze

quadratic polynomials



Analyze simpler upper estimators

Lemma
Let a ∈ K be a global minimizer of f in K.

Set γ = maxx∈K ‖∇2f (x)‖.

By Taylor’s theorem, f has a quadratic, separable upper estimator:

f (x) ≤ f (a) + 〈∇f (a), x − a〉+ γ‖x − a‖2 := g(x),

where f (a) = g(a)  fmin = gmin.

Hence, for all r ∈ N,
E (r)(f ) ≤ E (r)(g)

 It suffices to analyze quadratic (separable) polynomials

and sometimes we may even obtain a linear upper estimator!
(e.g. for the sphere)
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Eigenvalue reformulation



µ given measure with support K

f (r) = min
∫
K
f σ dµ s.t. σ SoS,

∫
K
σ dµ = 1, deg(σ) ≤ 2r

Choose an orthonormal basis {pα : |α| ≤ 2r} of R[x ]2r w.r.t. µ

Then: σ SoS ⇐⇒ σ = ((pα)|α|≤r )
TX (pα)|α|≤r for some (Xα,β) � 0

 
∫
K
σ dµ = Tr(X ) as

∫
K
σ dµ =

∑
α,β Xα,β

∫
K
pαpβdµ

 
∫
K
f σ dµ = 〈Mr (f ),X 〉 as

∫
K
f σ dµ =

∑
α,β Xα,β

∫
K
fpαpβdµ

Mr (f ) :=
(∫

K
f pαpβ dµ

)
|α|,|β|≤r (moment) Hankel-type matrix

f (r) = min
{
〈Mr (f ),X 〉 : Tr(X ) = 1, X � 0

}
= λmin(Mr (f ))

[Lasserre 2011]
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analysis in the

univariate case: K = [−1, 1]

suffices to consider:

f linear, or quadratic



K = [−1, 1], linear case: f (x) = x

Theorem (classical theory of orthogonal polynomials)
Let {p0, p1, p2, . . .} be a (graded) orthonormal basis of R[x ] w.r.t. µ.
Then the polynomials pk satisfy a 3-term recurrence:

xpk = akpk+1 + bkpk + ak−1pk−1 for k ≥ 0, p0 constant

 the (Jacobi) matrix Mr (x) =
(∫ 1

−1
xpipj dµ

)r
i,j=0

is tri-diagonal and

its eigenvalues are the roots of pr+1

Mr (x) =



b0 a0

a0 b1 a1

a1 b2 a2

a2 b3 a3

. . .
. . .

. . .

ar−2 br−1 ar−1

ar−1 br



Theorem (de Klerk-L 2020)
For f (x) = x:

f (r) = λmin(Mr (x))

= smallest root of pr+1 = −1 + Θ(1/r2) = fmin + Θ(1/r2)

for the Jacobi measure dµ = (1− x2)λdx with λ > −1
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Chebyshev measure on K = [−1, 1], f (x) = x2 + kx

(1) Minimizer on boundary (i.e., k 6∈ [−2, 2]): Then f has a linear upper

estimator: f (x) ≤ g(x) := kx + 1  E (r)(f ) ≤ E (r)(g) = O(1/r2)

NB: This holds for any Jacobi measure (1− x2)λdx , λ > −1

(2) Minimizer in interior: Then, f (r) = λmin(Mr (f )) where

Mr (f ) =
(∫ 1

−1
(x2 + kx)pipjdµ

)r
i,j=0

is 5-diagonal ‘almost’ Toeplitz:

Mr (f ) =


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Write Mr (f ) =

∗ ∗ . . .
∗ ∗ . . .
...

... B

, with B 5-diagonal Toeplitz of size r − 1

Embed B in a symmetric circulant matrix C of size r + 1

By interlacing of eigenvalues:

λmin(Mr (f )) ≤ λmin(B) ≤ λ3(C ) = −k2

4
+O(1/r2) = fmin +O(1/r2)

Theorem (de Klerk-L 2020)
For the Chebyshev measure

∏
i (1− x2

i )−1/2 on [−1, 1]n and for any
polynomial f :

f (r) − fmin = O(1/r2)

Next: extend to the Jacobi measure (1− x2)λ on [−1, 1] with λ ≥ −1/2
and to other sets
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Extension:

O( 1
r2
) convergence rate
for the sphere

using an integration trick



Key steps

(1) Reduce to the case when f is linear:

By Taylor, f has a quadratic

linear

upper estimator:

f (x) ≤ f (a) +∇f (a)T (x − a) + γ‖x − a‖2

(2− 2xTa)

Up to rotation and translation, we may assume f (x) = x1

(2) Reduce to the analysis for the interval [−1, 1]:

Key fact: Let σ(x1) be a degree 2r univariate optimal SoS density

for the univariate problem min
x1∈[−1,1]

x1 (with dµ = (1− x2
1 )(n−3)/2dx1)

Then σ(x1) (rescaled) gives a (good) SoS density for the
multivariate problem: min

x∈Sn−1
x1 (on Sn−1 with µ Haar measure)

This is based on the integration trick:

1 =

∫ 1

−1

σ(x1)(1− x2
1 )

n−3
2 dx1 = C

∫
Sn−1

σ(x1)dµ

− 1 + O
( 1

r2

)
=

∫ 1

−1

x1σ(x1)(1− x2
1 )

n−3
2 dx1 = C

∫
Sn−1

x1σ(x1)dµ

[de Klerk-L 2020]
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Extension:

O( 1
r2
) convergence rate for

box, ball, simplex,
round convex body

using ‘local similarity’ trick



‘Local similarity’: lift results from (K̂ , ŵ) to (K ,w)

Lemma (Slot-L 2020)
Let a ∈ K be a global minimizer of f in K. Assume:

K ⊆ K̂ , w a weight function on K, ŵ weight function on K̂ satisfy:

(1) K , K̂ are ‘locally similar’ at a:

K ∩ Bε(a) = K̂ ∩ Bε(a) for some ε > 0.

K

K̂

K

K̂

(2) w , ŵ are ‘locally similar’ at a:

m · ŵ(x) ≤ w(x) on int(K ) ∩ Bε(a) for some ε,m > 0.

(3) w(x) ≤ ŵ(x) for all x ∈ int(K ).

Then, f has an upper estimator g on K̂ , exact at a, satisfying

E
(r)
K ,w (f ) ≤ E

(r)

K̂ ,ŵ
(g).

Note: (1),(2) clearly hold if a ∈ int(K )
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Lift known O(1/r 2) rate for K̂ = [−1, 1], λ = −1
2

(1) to K = [−1, 1], with w(x) = (1− x2)λ, λ ≥ −1/2, any f

[using Chebyshev weight ŵ(x) = (1− x2)−1/2], to K = [−1, 1]n

(2) to any K , with w = 1, when minimizer a lies in the interior of K

[using K ⊆ K̂ = [−1, 1]n with ŵ = 1]

(3) to K simplex, with w = 1, when minimizer lies on the boundary

[after applying affine mapping and using K̂ = [−1, 1]n with ŵ = 1]

φ

φ(v0)

φ(v1)

φ(v2)v0

v1

v2

(4) to K ball, with w(x) = (1− ‖x‖2)λ, λ ≥ 0

[using a linear upper estimator and an integration trick, when the
minimizer lies on the boundary]

(5) to K ‘round’ convex body, with w = 1 (i.e., K has inscribed and
circumscribed tangent balls at any boundary point)

[using the result for the ball K̂ with ŵ = 1]
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Back to analyzing the

lower bounds

for the unit sphere



Polynomial kernel approach for the unit sphere

Goal: Let f ∈ Pd : polynomial of degree d on Sn−1

f(r) = sup λ s.t. f (x)− λ = σ(x) on Sn−1, where σ SoS, deg(σ) ≤ 2r

Theorem: [Fang-Fawzi 2020] fmin − f(r) = O( 1
r2 )

Strategy: Construct a ‘nice’ polynomial kernel K (x , y) on Sn−1× Sn−1

 kernel operator K : p ∈ P 7→ Kp(x) =
∫
Sn−1 p(y)K (x , y)dµ(y) ∈ P

(A1) K1 = 1:
∫ 1

−1
K (x , y)dµ(y) = 1 ∀x ∈ Sn−1

(A2) K preserves Pd : KPd = Pd

(A3) K close to I : ‖K− I‖ := supp∈Pd :‖p‖∞=1 ‖Kp − p‖∞ ≤ ε
 K−1 close to I : ‖K−1 − I‖ ≤ 3ε

(A4) for fixed y ∈ Sn−1, K(x , y) is SoS with degree 2r on Sn−1

 p ≥ 0 on Sn−1 =⇒ Kp is SoS with degree 2r on Sn−1
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Deriving the analysis of f(r)

(A1) K1 = 1

(A2) K preserves Pd

(A3) K close to I : ‖K− I‖ ≤ ε
 K−1 close to I : ‖K−1 − I‖ ≤ 3ε

(A4) p ≥ 0 on Sn−1 =⇒ Kp is SoS with degree 2r on Sn−1

Theorem: fmin − f(r) ≤ 3ε (fmax − fmin)

Proof: Wlog fmin = 0, fmax = 1, so ‖f ‖∞ = 1.

By (A3): ‖(K−1 − I )f ‖∞ ≤ 3ε =⇒ K−1f − f ≥ −3ε on Sn−1

=⇒ K−1f + 3ε ≥ f ≥ 0 on Sn−1

By (A1), (A4): f + 3ε = K(K−1f + 3ε) is SoS with degree 2r on Sn−1

Next: Construct such kernel K (x , y) with ε = O(1/r2) using Fourier
analysis and reducing to the upper bound approach (in univariate case)
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• Select K (x , y) invariant under action of O(n)× O(n) on Sn−1 × Sn−1

• Harmonic decomposition: P = ⊕k≥0 Harmk = span(ek,i ) : i ∈ [hk ]}

Select: K (x , y) =
∑2r

k=0 λk (
∑hk

i=1 eki (x)eki (y)) =
∑2r

k=0 λk C n
k (xTy)

with λ0 = 1 and λ1, . . . , λd 6= 0  (A1), (A2) hold

• If p ∈ Pd with p =
∑d

k=0 pk , then Kp =
∑d

k=0 λkpk

• ‖Kp − p‖∞ = ‖
∑d

k=0(λk − 1)pk‖∞ ≤
∑d

k=0 ‖pk‖∞|λk − 1|
≤
∑d

k=0 |λk − 1| · ‖p‖∞Cd

So ‖K− I‖ ≤
∑d

k=1 |λk − 1| · Cd

Therefore: It suffices to select λ0 = 1, λk s.t.

(1)
∑d

k=1 |1− λk | (= ε) is small  (A1), (A2), (A3) hold

(2) K (x , y) = (q(xTy))2, where q univariate of degree r  (A4) holds

Write: q(t)2 =
∑2r

k=0 λkC
n
k (t), where C n

k (t) are the Gegenbauer

orthogonal polynomials on [−1, 1] w.r.t. dν(t) = (1− t2)(n−3)/2dt
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Final step: select λk via the ‘upper bound’ approach

Want: q(t)2 =
∑2r

k=0 λkC
n
k (t), where λ0 = 1 and

∑d
k=1(1− λk) is small

and C n
k (t) orthonormal polynomials on [−1, 1] for dν(t)

Note: λk =
∫ 1

−1
q(t)2C n

k (t)dν(t), 1 = λ0 =
∫ 1

−1
q(t)2dν(t)

Hence:
∑d

k=1 1− λk =
∫ 1

−1
q(t)2

(
d −

d∑
k=1

C n
k (t)︸ ︷︷ ︸

F (t)

)
dν(t)

So we arrive at the problem:

F (r) = min
q∈R[t]r

∫ 1

−1

q(t)2 F (t) dν(t) s.t.

∫ 1

−1

q(t)2dν(t) = 1

By the analysis for the upper bounds (univariate case): F (r) = O(1/r2)

 optimal q gives desired λk  desired kernel K (x , y)

 desired rate O(1/r2) for SoS lower bounds f(r)
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Concluding remarks

I Interesting interplay between the lower and upper bounds

I An analogous technique can be applied to analyse the lower bounds
f(r) when minimizing f on the Boolean cube {0, 1}n

[Slot-L 2021]

I For the box [−1, 1]n, one can derive an analysis in O(1/r2) for the
lower bounds based on the preordering (instead of the quadratic
module)

I Open question: Can one get an improved analysis for the lower
bounds based on the quadratic module for the box, the ball, etc. ?

I The error analysis for the upper bounds f (r) extends to rational
functions f [dK-L’19]
and can be adapted to the general problem of moments

[de Klerk-Postek-Kuhn’19]
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