Sums of Squares, Moments and Applications in Polynomial Optimization

Monique Laurent

Fields Distinguished Lecture Series - May 10, 2021

What is polynomial optimization?

Minimize a polynomial function f over a region

$$
K=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

defined by polynomial inequalities (and equations)

Some instances

Testing nonnegativity of polynomials

The unconstrained quadratic case is Easy

The quadratic form $x^{\top} M x$ is nonnegative over \mathbb{R}^{n} if and only if the matrix M is positive semidefinite ($M \succeq 0$)

This can be tested in polynomial time, using Gaussian elimination

Testing nonnegativity of polynomials

The unconstrained quadratic case is Easy

The quadratic form $x^{\top} M x$ is nonnegative over \mathbb{R}^{n} if and only if the matrix M is positive semidefinite ($M \succeq 0$)

This can be tested in polynomial time, using Gaussian elimination

Constrained quadratic / unconstrained quartic is hard

Testing nonnegativity of polynomials

The unconstrained quadratic case is Easy

The quadratic form $x^{\top} M x$ is nonnegative over \mathbb{R}^{n} if and only if the matrix M is positive semidefinite ($M \succeq 0$)

This can be tested in polynomial time, using Gaussian elimination
Constrained quadratic / unconstrained quartic is hard
Testing matrix copositivity: co-NP complete [Kabadi-Murty 1987]
A symmetric matrix M is copositive if $x^{\top} M x=\sum_{i, j} M_{i j} x_{i} x_{j} \geq 0 \quad \forall x \geq 0$

Testing nonnegativity of polynomials

The unconstrained quadratic case is Easy

The quadratic form $x^{\top} M x$ is nonnegative over \mathbb{R}^{n} if and only if the matrix M is positive semidefinite ($M \succeq 0$)

This can be tested in polynomial time, using Gaussian elimination
Constrained quadratic / unconstrained quartic is hard
Testing matrix copositivity: co-NP complete [Kabadi-Murty 1987]
A symmetric matrix M is copositive if $x^{\top} M x=\sum_{i, j} M_{i j} x_{i} x_{j} \geq 0 \quad \forall x \geq 0$
Equivalently, the quartic polynomial $\sum_{i, j} M_{i j} x_{i}^{2} x_{j}^{2}$ is nonnegative over \mathbb{R}^{n}

Testing nonnegativity of polynomials

The unconstrained quadratic case is easy

The quadratic form $x^{\top} M x$ is nonnegative over \mathbb{R}^{n} if and only if the matrix M is positive semidefinite ($M \succeq 0$)
This can be tested in polynomial time, using Gaussian elimination

Constrained quadratic / unconstrained quartic is hard

Testing matrix copositivity: co-NP complete [Kabadi-Murty 1987]
A symmetric matrix M is copositive if $x^{\top} M x=\sum_{i, j} M_{i j} x_{i} x_{j} \geq 0 \quad \forall x \geq 0$
Equivalently, the quartic polynomial $\sum_{i, j} M_{i j} x_{i}^{2} x_{j}^{2}$ is nonnegative over \mathbb{R}^{n}
Testing convexity:
NP-hard [Ahmadi et al. 2013]
A polynomial $f(x)$ is convex if and only if its Hessian matrix $H(f)(x)$ is positive semidefinite
Equivalently, $g(x, y)=y^{\top} H(f)(x) y$ is nonnegative on $\mathbb{R}^{n} \times \mathbb{R}^{n}$

Example from distance geometry

Reconstruct the locations of objects (say) in 3D from partial measurements of mutual distances

Given (partial) pairwise distances $d=\left(d_{i j}\right)_{i j \in E}$, find (if possible) locations $u_{1}, \cdots, u_{n} \in \mathbb{R}^{k}$ in given dimension $k(k=1,2,3, .$.$) such that$

$$
\left\|u_{i}-u_{j}\right\|^{2}=d_{i j} \quad \text { for all }\{i, j\} \in E
$$

Formulations via SDP and polynomial optimization

Find (if possible) vectors $u_{1}, \cdots, u_{n} \in \mathbb{R}^{k}(k=1,2,3, .$.$) such that$

$$
\left\|u_{i}-u_{j}\right\|^{2}=d_{i j} \quad(\{i, j\} \in E)
$$

Formulations via SDP and polynomial optimization

Find (if possible) vectors $u_{1}, \cdots, u_{n} \in \mathbb{R}^{k}(k=1,2,3, .$.$) such that$

$$
\begin{gathered}
\left\|u_{i}-u_{j}\right\|^{2}=d_{i j} \quad(\{i, j\} \in E) \\
\hat{\Downarrow} \quad X=\left(\left\langle u_{i}, u_{j}\right\rangle\right)
\end{gathered}
$$

Find (if possible) a solution X with rank $\leq k$ to the semidefinite program

$$
X \succeq 0, \quad X_{i i}+X_{j j}-2 X_{i j}=d_{i j} \quad(\{i, j\} \in E)
$$

Formulations via SDP and polynomial optimization

Find (if possible) vectors $u_{1}, \cdots, u_{n} \in \mathbb{R}^{k}(k=1,2,3, .$.$) such that$

$$
\begin{gathered}
\left\|u_{i}-u_{j}\right\|^{2}=d_{i j} \quad(\{i, j\} \in E) \\
\hat{\Downarrow} \quad X=\left(\left\langle u_{i}, u_{j}\right\rangle\right)
\end{gathered}
$$

Find (if possible) a solution X with rank $\leq k$ to the semidefinite program

$$
X \succeq 0, \quad X_{i i}+X_{j j}-2 X_{i j}=d_{i j} \quad(\{i, j\} \in E)
$$

$$
\Uparrow
$$

Decide if $p_{\text {min }}=0$ and find a global minimizer to the quartic polynomial

$$
\min _{x \in \mathbb{R}^{k n}} p(x)=\sum_{\{i, j\} \in E}\left(d_{i j}-\sum_{h=1}^{k}\left(x_{i h}-x_{j h}\right)^{2}\right)^{2}
$$

Formulations via SDP and polynomial optimization

Find (if possible) vectors $u_{1}, \cdots, u_{n} \in \mathbb{R}^{k}(k=1,2,3, .$.$) such that$

$$
\begin{gathered}
\left\|u_{i}-u_{j}\right\|^{2}=d_{i j} \quad(\{i, j\} \in E) \\
\hat{\Downarrow} \quad X=\left(\left\langle u_{i}, u_{j}\right\rangle\right)
\end{gathered}
$$

Find (if possible) a solution X with rank $\leq k$ to the semidefinite program

$$
X \succeq 0, \quad X_{i i}+X_{j j}-2 X_{i j}=d_{i j} \quad(\{i, j\} \in E)
$$

$$
\Uparrow
$$

Decide if $p_{\text {min }}=0$ and find a global minimizer to the quartic polynomial

$$
\min _{x \in \mathbb{R}^{k n}} p(x)=\sum_{\{i, j\} \in E}\left(d_{i j}-\sum_{h=1}^{k}\left(x_{i h}-x_{j h}\right)^{2}\right)^{2}
$$

Hard problem, already in dimension $k=1$ when G is cycle C_{n} [Saxe'79]

Formulations via SDP and polynomial optimization

Find (if possible) vectors $u_{1}, \cdots, u_{n} \in \mathbb{R}^{k}(k=1,2,3, .$.$) such that$

$$
\begin{gathered}
\left\|u_{i}-u_{j}\right\|^{2}=d_{i j} \quad(\{i, j\} \in E) \\
\hat{\Downarrow} \quad X=\left(\left\langle u_{i}, u_{j}\right\rangle\right)
\end{gathered}
$$

Find (if possible) a solution X with rank $\leq k$ to the semidefinite program

$$
X \succeq 0, \quad X_{i i}+X_{j j}-2 X_{i j}=d_{i j} \quad(\{i, j\} \in E)
$$

॥
Decide if $p_{\text {min }}=0$ and find a global minimizer to the quartic polynomial

$$
\min _{x \in \mathbb{R}^{k n}} p(x)=\sum_{\{i, j\} \in E}\left(d_{i j}-\sum_{h=1}^{k}\left(x_{i h}-x_{j h}\right)^{2}\right)^{2}
$$

Hard problem, already in dimension $k=1$ when G is cycle C_{n} [Saxe'79] Given $a_{1}, \ldots, a_{n} \in \mathbb{N}$, assign distance $d_{i, i+1}=a_{i}$ to the edges of C_{n}. Then
\exists locations in $\mathbb{R} \Longleftrightarrow \exists \epsilon \in\{ \pm 1\}^{n}$ s.t. $\sum_{i=1}^{n} \epsilon_{i} a_{i}=0$
\rightsquigarrow hard partition problem

Examples from combinatorial problems in graphs

- stability number $\alpha(G)$: maximum cardinality of a set of pairwise non-adjacent vertices (stable set)
- coloring number $\chi(G)$:
minimum number of colors needed to properly color the vertices of G

Examples from combinatorial problems in graphs

$\alpha=4 \quad \chi=3$

- stability number $\alpha(G)$: maximum cardinality of a set of pairwise non-adjacent vertices (stable set)
- coloring number $\chi(G)$:
minimum number of colors needed to properly color the vertices of G

Chvátal's reduction of coloring to the stability number:
$\chi(G)$ is the smallest integer c such that $\alpha\left(G \square K_{c}\right)=|V(G)|$

Polynomial optimization formulations for $\alpha(G)$

- Basic 0/1 formulation:

$$
\alpha(G)=\max \sum_{i \in V} x_{i} \text { s.t. } x_{i} x_{j}=0(\{i, j\} \in E), x_{i}^{2}=x_{i}(i \in V)
$$

Polynomial optimization formulations for $\alpha(G)$

- Basic 0/1 formulation:

$$
\alpha(G)=\max \sum_{i \in V} x_{i} \text { s.t. } x_{i} x_{j}=0(\{i, j\} \in E), x_{i}^{2}=x_{i}(i \in V)
$$

- Motzkin-Straus formulation:

$$
\frac{1}{\alpha(G)}=\min x^{T}\left(I+A_{G}\right) x \text { s.t. } \sum_{i \in V} x_{i}=1, x_{i} \geq 0(i \in V)
$$

Polynomial optimization formulations for $\alpha(G)$

- Basic 0/1 formulation:

$$
\alpha(G)=\max \sum_{i \in V} x_{i} \text { s.t. } x_{i} x_{j}=0(\{i, j\} \in E), x_{i}^{2}=x_{i}(i \in V)
$$

- Motzkin-Straus formulation:

$$
\begin{gathered}
\frac{1}{\alpha(G)}=\min x^{T}\left(I+A_{G}\right) \times \text { s.t. } \sum_{i \in V} x_{i}=1, x_{i} \geq 0(i \in V) \\
\frac{1}{\alpha(G)}=\min \left(x^{\circ 2}\right)^{T}\left(I+A_{G}\right) x^{\circ 2} \text { s.t. } \sum_{i \in V} x_{i}^{2}=1
\end{gathered}
$$

Polynomial optimization formulations for $\alpha(G)$

- Basic 0/1 formulation:

$$
\alpha(G)=\max \sum_{i \in V} x_{i} \text { s.t. } x_{i} x_{j}=0(\{i, j\} \in E), x_{i}^{2}=x_{i}(i \in V)
$$

- Motzkin-Straus formulation:

$$
\begin{gathered}
\frac{1}{\alpha(G)}=\min x^{T}\left(I+A_{G}\right) \times \text { s.t. } \sum_{i \in V} x_{i}=1, x_{i} \geq 0(i \in V) \\
\frac{1}{\alpha(G)}=\min \left(x^{\circ 2}\right)^{T}\left(I+A_{G}\right) x^{\circ 2} \text { s.t. } \sum_{i \in V} x_{i}^{2}=1
\end{gathered}
$$

- Copositive formulation:

$$
\alpha(G)=\min \lambda \text { s.t. } \quad \lambda\left(I+A_{G}\right)-J \text { is copositive }
$$

Polynomial optimization formulations for $\alpha(G)$

- Basic 0/1 formulation:

$$
\alpha(G)=\max \sum_{i \in V} x_{i} \text { s.t. } x_{i} x_{j}=0(\{i, j\} \in E), x_{i}^{2}=x_{i}(i \in V)
$$

- Motzkin-Straus formulation:

$$
\begin{gathered}
\frac{1}{\alpha(G)}=\min x^{T}\left(I+A_{G}\right) x \text { s.t. } \sum_{i \in V} x_{i}=1, x_{i} \geq 0(i \in V) \\
\frac{1}{\alpha(G)}=\min \left(x^{\circ 2}\right)^{T}\left(I+A_{G}\right) x^{\circ 2} \text { s.t. } \sum_{i \in V} x_{i}^{2}=1
\end{gathered}
$$

- Copositive formulation:

$$
\alpha(G)=\min \lambda \text { s.t. } \quad \lambda\left(I+A_{G}\right)-J \text { is copositive }
$$

\rightsquigarrow optimization over the boolean cube $\{0,1\}^{n}$, the standard simplex Δ_{n}, the unit sphere \mathbb{S}^{n-1}, the copositive cone COP_{n}

Basic semidefinite bounds for $\alpha(G)$ and $\chi(G)$

$$
S \text { stable } \rightsquigarrow x=(1,0,0,1,0)^{\top} \rightsquigarrow X=\binom{1}{x}\binom{1}{x}^{\top}
$$

Basic semidefinite bounds for $\alpha(G)$ and $\chi(G)$

$$
\begin{aligned}
S \text { stable } \rightsquigarrow x & =(1,0,0,1,0)^{\top} \rightsquigarrow X=\binom{1}{x}\binom{1}{x}^{\top} \\
X & \succeq 0 \quad \text { positive semidefinite }
\end{aligned}
$$

Basic semidefinite bounds for $\alpha(G)$ and $\chi(G)$

$$
\begin{aligned}
S \text { stable } \rightsquigarrow x & =(1,0,0,1,0)^{\top} \rightsquigarrow X=\binom{1}{x}\binom{1}{x}^{\top} \\
X & \succeq 0 \quad \text { positive semidefinite } \\
X & \geq 0 \quad \text { entry-wise nonnegative }
\end{aligned}
$$

Basic semidefinite bounds for $\alpha(G)$ and $\chi(G)$

$$
\begin{aligned}
S \text { stable } \rightsquigarrow x & =(1,0,0,1,0)^{\top} \rightsquigarrow X=\binom{1}{x}\binom{1}{x}^{\top} \\
X & \succeq 0 \quad \text { positive semidefinite } \\
X & \geq 0 \quad \text { entry-wise nonnegative }
\end{aligned}
$$

Theta number:
[Lovász 1979]

$$
\vartheta(G)=\max _{X \succeq 0} \sum_{i \in V} X_{0 i} \text { s.t. } X_{00}=1, X_{0 i}=X_{i i}(i \in V), X_{i j}=0 \quad(\{i, j\} \in E)
$$

Basic semidefinite bounds for $\alpha(G)$ and $\chi(G)$

$$
\begin{aligned}
S \text { stable } \rightsquigarrow x & =(1,0,0,1,0)^{\top} \rightsquigarrow X=\binom{1}{x}\binom{1}{x}^{\top} \\
X & \succeq 0 \quad \text { positive semidefinite } \\
X & \geq 0 \quad \text { entry-wise nonnegative }
\end{aligned}
$$

Theta number:
[Lovász 1979]

$$
\vartheta(G)=\max _{X \succeq 0} \sum_{i \in V} X_{0 i} \text { s.t. } X_{00}=1, X_{0 i}=X_{i i}(i \in V), X_{i j}=0 \quad(\{i, j\} \in E)
$$

Strengthen with non-negativity: [McEliece et al. 1978] [Schrijver 1979]

$$
\vartheta^{\prime}(G)=\max _{x \geq 0, X \geq 0} \sum_{i \in V} X_{i i} \text { s.t. } X_{00}=1, X_{0 i}=X_{i i}(i \in V), X_{i j}=0 \quad(\{i, j\} \in E)
$$

Basic semidefinite bounds for $\alpha(G)$ and $\chi(G)$

$$
\begin{aligned}
S \text { stable } \rightsquigarrow x & =(1,0,0,1,0)^{\top} \rightsquigarrow X=\binom{1}{x}\binom{1}{x}^{\top} \\
X & \succeq 0 \quad \text { positive semidefinite } \\
X & \geq 0 \quad \text { entry-wise nonnegative }
\end{aligned}
$$

Theta number:
[Lovász 1979]

$$
\vartheta(G)=\max _{X \succeq 0} \sum_{i \in V} X_{0 i} \text { s.t. } X_{00}=1, X_{0 i}=X_{i i}(i \in V), X_{i j}=0 \quad(\{i, j\} \in E)
$$

Strengthen with non-negativity: [McEliece et al. 1978] [Schrijver 1979]
$\vartheta^{\prime}(G)=\max _{x \geq 0, X \geq 0} \sum_{i \in V} X_{i i}$ s.t. $X_{00}=1, X_{0 i}=X_{i i}(i \in V), X_{i j}=0 \quad(\{i, j\} \in E)$
'Sandwich' inequalities: $\alpha(G) \leq \vartheta^{\prime}(G) \leq \vartheta(G) \leq \chi(\bar{G})$

Basic semidefinite bounds for $\alpha(G)$ and $\chi(G)$

$$
\begin{aligned}
S \text { stable } \rightsquigarrow x & =(1,0,0,1,0)^{\top} \rightsquigarrow X=\binom{1}{x}\binom{1}{x}^{\top} \\
X & \succeq 0 \quad \text { positive semidefinite } \\
X & \geq 0 \quad \text { entry-wise nonnegative }
\end{aligned}
$$

Theta number:
[Lovász 1979]

$$
\vartheta(G)=\max _{X \succeq 0} \sum_{i \in V} X_{0 i} \text { s.t. } X_{00}=1, X_{0 i}=X_{i i}(i \in V), X_{i j}=0 \quad(\{i, j\} \in E)
$$

Strengthen with non-negativity: [McEliece et al. 1978] [Schrijver 1979]
$\vartheta^{\prime}(G)=\max _{x \geq 0, X \geq 0} \sum_{i \in V} X_{i i}$ s.t. $X_{00}=1, X_{0 i}=X_{i i}(i \in V), X_{i j}=0 \quad(\{i, j\} \in E)$
'Sandwich' inequalities: $\alpha(G) \leq \vartheta^{\prime}(G) \leq \vartheta(G) \leq \chi(\bar{G})$

Some Key ideas

TO GET STRONGER BOUNDS

- Lift to higher dimensional space: add new variables modeling products of original variables, such as $x_{i} x_{j}, x_{i} x_{j} x_{k}, x_{i} x_{j} x_{k} x_{l}, \ldots$
- Lift to higher dimensional space: add new variables modeling products of original variables, such as $x_{i} x_{j}, x_{i} x_{j} x_{k}, x_{i} x_{j} x_{k} x_{l}, \ldots$

- Use sums of squares of polynomials as a 'proxy' for non-negativity of polynomials to get tractable relaxations

Key fact: One can model sums of squares of polynomials efficiently using semidefinite programming (SDP)

Model sums of squares of polynomials with SDP

$$
\begin{aligned}
& \quad f(x)=\sum_{|\alpha| \leq 2 d} f_{\alpha} x^{\alpha} \text { is a sum of squares of polynomials } \\
& f(x)=\sum_{i} p_{i}(x)^{2}
\end{aligned}
$$

Model sums of squares of polynomials with SDP

$$
\begin{gathered}
f(x)=\sum_{|\alpha| \leq 2 d} f_{\alpha} x^{\alpha} \\
\text { is a sum of squares of polynomials } \\
f(x)=\sum_{i} p_{i}(x)^{2} \quad\left[\text { write } p_{i}(x)={\overline{p_{i}}}^{\top}[x]_{d}, \quad[x]_{d}=\left(x^{\alpha}\right)\right]
\end{gathered}
$$

Model sums of squares of polynomials with SDP

$$
\begin{gathered}
f(x)=\sum_{|\alpha| \leq 2 d} f_{\alpha} x^{\alpha} \quad \text { is a sum of squares of polynomials } \\
f(x)=\sum_{i} p_{i}(x)^{2} \quad\left[\text { write } p_{i}(x)={\overline{p_{i}}}^{T}[x]_{d}, \quad[x]_{d}=\left(x^{\alpha}\right)\right] \\
\Uparrow
\end{gathered}
$$

Model sums of squares of polynomials with SDP

$$
\begin{aligned}
& f(x)=\sum_{|\alpha| \leq 2 d} f_{\alpha} x^{\alpha} \quad \text { is a sum of squares of polynomials } \\
& f(x)=\sum_{i} p_{i}(x)^{2} \quad\left[\text { write } p_{i}(x)=\bar{p}_{i}^{\top}[x]_{d}, \quad[x]_{d}=\left(x^{\alpha}\right)\right] \\
& \text { I } \\
& f(x)=\sum_{i}[x]_{d}^{T}{\overline{p_{i}}}_{\bar{p}_{i}}=[x]_{d}=[x]_{d}^{T}(\underbrace{\sum_{i} \overline{p_{i}}{\overline{p_{i}}}^{T}}_{M \succeq 0})[x]_{d}=\sum_{\beta, \gamma} M_{\beta, \gamma} x^{\beta+\gamma} \\
& \text { I } \\
& \text { The SDP }\left\{\begin{aligned}
\sum_{\beta, \gamma \mid \beta+\gamma=\alpha} M_{\beta, \gamma} & =f_{\alpha} \quad(|\alpha| \leq 2 d) \\
M & \succeq 0
\end{aligned} \quad\right. \text { is feasible }
\end{aligned}
$$

Linear Programming vs Semidefinite Programming

Optimize a linear function over

$$
\begin{gathered}
\text { a polyhedron } \\
a_{j}^{\top} x=b_{j}, x \geq 0
\end{gathered}
$$

LP

$$
\left\langle A_{j}, X\right\rangle=b_{j}, X \succeq 0
$$

SDP

Linear Programming vs Semidefinite Programming
Optimize a linear function over

$$
\begin{gathered}
\text { a polyhedron } \\
a_{j}^{\top} x=b_{j}, x \geq 0
\end{gathered}
$$

LP
a convex set (spectrahedron)

$$
\left\langle A_{j}, X\right\rangle=b_{j}, X \succeq 0
$$

SDP

There are efficient algorithms to solve LP and SDP (up to any precision)

About the complexity of SDP

- 1980's: There are efficient algorithms to find an almost optimal solution, under some assumptions

Roughly: one needs a feasible point, an inscribed ball and a circumscribed ball to the feasible region

- Grötschel-Lovász-Schrijver: based on Khachiyan ellipsoid method
- Karmarkar, Nesterov-Nemirovski: interior point algorithms

About the complexity of SDP

- 1980's: There are efficient algorithms to find an almost optimal solution, under some assumptions
Roughly: one needs a feasible point, an inscribed ball and a circumscribed ball to the feasible region
- Grötschel-Lovász-Schrijver: based on Khachiyan ellipsoid method
- Karmarkar, Nesterov-Nemirovski: interior point algorithms
- Testing feasibility of SDP: Given rational A_{j}, b_{j}, decide (F) $\exists X \succeq 0$ s.t. $\left\langle A_{j}, X\right\rangle=b_{j}(j \in[m])$?
- Ramana (1997): $(F) \in N P \Longleftrightarrow(F) \in$ co-NP

About the complexity of SDP

- 1980's: There are efficient algorithms to find an almost optimal solution, under some assumptions
Roughly: one needs a feasible point, an inscribed ball and a circumscribed ball to the feasible region
- Grötschel-Lovász-Schrijver: based on Khachiyan ellipsoid method
- Karmarkar, Nesterov-Nemirovski: interior point algorithms
- Testing feasibility of SDP: Given rational A_{j}, b_{j}, decide (F) $\exists X \succeq 0$ s.t. $\left\langle A_{j}, X\right\rangle=b_{j}(j \in[m])$?
- Ramana (1997): $(F) \in N P \Longleftrightarrow(F) \in$ co-NP
- Porkolab-Khachiyan (1997): (F) $\in \mathrm{P}$ for fixed n or m $m n^{O\left(\min \left\{m, n^{2}\right\}\right)}$ arithmetic operations on $L n^{O\left(\min \left\{m, n^{2}\right\}\right)}$-bit length numbers

About the complexity of SDP

- 1980's: There are efficient algorithms to find an almost optimal solution, under some assumptions
Roughly: one needs a feasible point, an inscribed ball and a circumscribed ball to the feasible region
- Grötschel-Lovász-Schrijver: based on Khachiyan ellipsoid method
- Karmarkar, Nesterov-Nemirovski: interior point algorithms
- Testing feasibility of SDP: Given rational A_{j}, b_{j}, decide (F) $\exists X \succeq 0$ s.t. $\left\langle A_{j}, X\right\rangle=b_{j} \quad(j \in[m])$?
- Ramana (1997): $(F) \in N P \Longleftrightarrow(F) \in$ co-NP
- Porkolab-Khachiyan (1997): (F) $\in \mathrm{P}$ for fixed n or m $m n^{O\left(\min \left\{m, n^{2}\right\}\right)}$ arithmetic operations on $L n^{O\left(\min \left\{m, n^{2}\right\}\right)}$-bit length numbers
- Well developed duality theory
for LP, SDP, conic programs (with no duality gap under some strict feasibility conditions)

General approach to POLYNOMIAL OPTIMIZATION

Strategy

Approximate (P) by a hierarchy of convex (semidefinite) relaxations

These relaxations can be constructed using
sums of squares of polynomials and
the dual theory of moments

Shor (1987), Nesterov (2000), Lasserre, Parrilo (2000-)

Sums of sQuares

APPROACH

Strategy (use sums of squares)

Testing whether a polynomial f is nonnegative is hard but one can test the sufficient condition:
f is a sum of squares of polynomials (SoS) using semidefinite programming

Are all nonnegative polynomials SoS?

Are all nonnegative polynomials SoS?

Hilbert [1888]: Every nonnegative polynomial in n variables and even degree d is a sum of squares of polynomials

Are all nonnegative polynomials SoS?

Hilbert [1888]: Every nonnegative polynomial in n variables and even degree d is a sum of squares of polynomials

$n=1$,

Are all nonnegative polynomials SoS?

Hilbert [1888]: Every nonnegative polynomial in n variables and even degree d is a sum of squares of polynomials
$n=1, \quad$ or $d=2$,

Are all nonnegative polynomials SoS?

Hilbert [1888]: Every nonnegative polynomial in n variables and even degree d is a sum of squares of polynomials
$n=1$, or $d=2$, or $(n=2$ and $d=4)$

Are all nonnegative polynomials SoS?

Hilbert [1888]: Every nonnegative polynomial in n variables and even degree d is a sum of squares of polynomials

$$
n=1, \quad \text { or } \quad d=2, \text { or } \quad(n=2 \text { and } d=4)
$$

Hilbert's 17th problem [1900]: Is every nonnegative polynomial is a sum of squares of rational functions?

Are all nonnegative polynomials SoS?

Hilbert [1888]: Every nonnegative polynomial in n variables and even degree d is a sum of squares of polynomials

$$
n=1, \quad \text { or } \quad d=2, \text { or } \quad(n=2 \text { and } d=4)
$$

Hilbert's 17th problem [1900]: Is every nonnegative polynomial is a sum of squares of rational functions?

Artin [1927]: Yes

Are all nonnegative polynomials SoS?

Hilbert [1888]: Every nonnegative polynomial in n variables and even degree d is a sum of squares of polynomials
$n=1$, or $d=2$, or ($n=2$ and $d=4$)
Hilbert's 17th problem [1900]: Is every nonnegative polynomial is a sum of squares of rational functions?

Artin [1927]: Yes

Motzkin [1967]:
$p=x^{4} y^{2}+x^{2} y^{4}+1-3 x^{2} y^{2}$
is nonnegative,
not a sum of squares,
but $\left(x^{2}+y^{2}\right)^{2} p$ is SoS

Positivity certificates over K

$$
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

Positivity certificates over K

$$
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

Quadratic module: $Q(g)=\left\{s_{0}+s_{1} g_{1}+\ldots+s_{m} g_{m} \mid s_{j}\right.$ SoS $\}$

Positivity certificates over K

$$
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

Quadratic module: $Q(g)=\left\{s_{0}+s_{1} g_{1}+\ldots+s_{m} g_{m} \mid s_{j} \operatorname{SoS}\right\}$ Preordering: $P(g)=\left\{\sum_{e \in\{0,1\}^{m}} s_{e} g_{1}^{e_{1}} \cdots g_{m}^{e_{m}} \mid s_{e} \operatorname{SoS}\right\} \supset Q(g)$

Positivity certificates over K

$$
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

Quadratic module: $Q(g)=\left\{s_{0}+s_{1} g_{1}+\ldots+s_{m} g_{m} \mid s_{j}\right.$ SoS $\}$
Preordering: $P(g)=\left\{\sum_{e \in\{0,1\}^{m}} s_{e} g_{1}^{e_{1}} \cdots g_{m}^{e_{m}} \mid s_{e} \operatorname{SoS}\right\} \supset Q(g)$

Theorem: Assume K compact.

- [Schmüdgen 1991] $f>0$ on $K \Longrightarrow f \in P(g)$

Positivity certificates over K

$$
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

Quadratic module: $Q(g)=\left\{s_{0}+s_{1} g_{1}+\ldots+s_{m} g_{m} \mid s_{j}\right.$ SoS $\}$
Preordering: $P(g)=\left\{\sum_{e \in\{0,1\}^{m}} s_{e} g_{1}^{e_{1}} \cdots g_{m}^{e_{m}} \mid s_{e} \operatorname{SoS}\right\} \supset Q(g)$

Theorem: Assume K compact.

- [Schmüdgen 1991] $f>0$ on $K \Longrightarrow f \in P(g)$
- [Putinar 1993] Archimedean condition: $\exists R: R-\sum_{i} x_{i}^{2} \in Q(g)$

$$
f>0 \text { on } K \Longrightarrow f \in Q(g)
$$

Positivity certificates over K

$$
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

Quadratic module: $Q(g)=\left\{s_{0}+s_{1} g_{1}+\ldots+s_{m} g_{m} \mid s_{j}\right.$ SoS $\}$
Preordering: $P(g)=\left\{\sum_{e \in\{0,1\}^{m}} s_{e} g_{1}^{e_{1}} \cdots g_{m}^{e_{m}} \mid s_{e} \operatorname{SoS}\right\} \supset Q(g)$

Theorem: Assume K compact.

- [Schmüdgen 1991] $f>0$ on $K \Longrightarrow f \in P(g)$
- [Putinar 1993] Archimedean condition: $\exists R: R-\sum_{i} x_{i}^{2} \in Q(g)$

$$
f>0 \text { on } K \Longrightarrow f \in Q(g)
$$

Observation: If we know a ball of radius R containing K, then just add the (redundant) constraint $R^{2}-\sum_{i} x_{i}^{2} \geq 0$ to the description of K

SoS relaxations for (P)

Truncated quadratic module:

$$
Q(g)_{t}:=\{\underbrace{s_{0}}_{\operatorname{deg} \leq 2 t}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 t}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 t} \mid s_{j} \text { SoS }\}
$$

SoS relaxations for (P)

Truncated quadratic module:

$$
Q(g)_{t}:=\{\underbrace{s_{0}}_{\operatorname{deg} \leq 2 t}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 t}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 t} \mid s_{j} \text { SoS }\}
$$

Replace
(P) $f_{\text {min }}=\inf _{x \in K} f(x)=\sup \lambda$ s.t. $f-\lambda \geq 0$ on K
by
(SOSt) $\quad f_{t}^{\text {sos }}=\sup \lambda$ s.t. $f-\lambda \in Q(g)_{t}$

SoS relaxations for (P)

Truncated quadratic module:

$$
Q(g)_{t}:=\{\underbrace{s_{0}}_{\operatorname{deg} \leq 2 t}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 t}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 t} \mid s_{j} \text { SoS }\}
$$

Replace
(P) $\quad f_{\text {min }}=\inf _{x \in K} f(x)=\sup$
(SOSt) $f_{t}^{\text {sos }}=\sup \lambda$ s.t. $f-\lambda \in Q(g)_{t}$

- Each bound f_{t}^{505} can be computed with SDP

SoS relaxations for (P)

Truncated quadratic module:

$$
Q(g)_{t}:=\{\underbrace{s_{0}}_{\operatorname{deg} \leq 2 t}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 t}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 t} \mid s_{j} \text { SoS }\}
$$

Replace
(P) $\quad f_{\text {min }}=\inf _{x \in K} f(x)=\sup$
(SOSt) $f_{t}^{\text {sos }}=\sup \lambda$ s.t. $f-\lambda \in Q(g)_{t}$

- Each bound f_{t}^{505} can be computed with SDP
- $f_{t}^{\text {sos }} \leq f_{t+1}^{\text {sos }} \leq f_{\text {min }}$

SoS relaxations for (P)

Truncated quadratic module:

$$
Q(g)_{t}:=\{\underbrace{s_{0}}_{\operatorname{deg} \leq 2 t}+\underbrace{s_{1} g_{1}}_{\operatorname{deg} \leq 2 t}+\ldots+\underbrace{s_{m} g_{m}}_{\operatorname{deg} \leq 2 t} \mid s_{j} \text { SoS }\}
$$

Replace
(P) $\quad f_{\text {min }}=\inf _{x \in K} f(x)=\sup$
(SOSt) $f_{t}^{\text {sos }}=\sup \lambda$ s.t. $f-\lambda \in Q(g)_{t}$

- Each bound $f_{t}^{50 s}$ can be computed with SDP
- $f_{t}^{\text {sos }} \leq f_{t+1}^{\text {sos }} \leq f_{\text {min }}$
- Asymptotic convergence: $\lim _{t \rightarrow \infty} f_{t}^{\text {sos }}=f_{\text {min }}$
[Lasserre 2001]

Moment Approach

$$
f_{\min }=\inf _{x \in K} f(x)=\inf _{\mu} \int_{K} f(x) d \mu \text { s.t. } \mu \text { is a probability measure on } K
$$

$$
\begin{aligned}
f_{\min }=\inf _{x \in K} f(x) & =\inf _{\mu} \int_{K} f(x) d \mu \text { s.t. } \mu \text { is a probability measure on } K \\
& =\inf _{L \in \mathbb{R}[x]^{*}} L(f) \text { s.t. } L \text { has a representing measure } \mu \text { on } K
\end{aligned}
$$

$$
\begin{aligned}
f_{\min }=\inf _{x \in K} f(x) & =\inf _{\mu} \int_{K} f(x) d \mu \text { s.t. } \mu \text { is a probability measure on } K \\
& =\inf _{L \in \mathbb{R}[x]^{*}} L(f) \text { s.t. } L \text { has a representing measure } \mu \text { on } K
\end{aligned}
$$

Deciding if a linear functional $L \in \mathbb{R}[x]^{*}$ has a representing measure μ on K is the (difficult) classical moment problem.

$$
\begin{aligned}
f_{\min }=\inf _{x \in K} f(x) & =\inf _{\mu} \int_{K} f(x) d \mu \text { s.t. } \mu \text { is a probability measure on } K \\
& =\inf _{L \in \mathbb{R}[x]^{*}} L(f) \text { s.t. } L \text { has a representing measure } \mu \text { on } K
\end{aligned}
$$

Deciding if a linear functional $L \in \mathbb{R}[x]^{*}$ has a representing measure μ on K is the (difficult) classical moment problem.

But one can use the necessary condition:
L is nonnegative on the quadratic module $Q(g)=\left\{s_{0}+\sum_{j} s_{j} g_{j}: s_{j} S O S\right\}$:

$$
\begin{aligned}
f_{\min }=\inf _{x \in K} f(x) & =\inf _{\mu} \int_{K} f(x) d \mu \text { s.t. } \mu \text { is a probability measure on } K \\
& =\inf _{L \in \mathbb{R}[x]^{*}} L(f) \text { s.t. } L \text { has a representing measure } \mu \text { on } K
\end{aligned}
$$

Deciding if a linear functional $L \in \mathbb{R}[x]^{*}$ has a representing measure μ on K is the (difficult) classical moment problem.

But one can use the necessary condition:
L is nonnegative on the quadratic module $Q(g)=\left\{s_{0}+\sum_{j} s_{j} g_{j}: s_{j} \mathrm{SOS}\right\}:$

$$
\begin{aligned}
& L\left(p^{2}\right) \geq 0 \quad \forall p, \quad \text { i.e., } \quad M(L)=\left(L\left(x^{\alpha+\beta}\right)\right)_{\alpha, \beta \in \mathbb{N}^{n}} \succeq 0 \\
& \text { and } \quad L\left(g_{j} p^{2}\right) \geq 0 \quad \forall p, \quad \text { i.e., } \quad M\left(g_{j} L\right)=\left(L\left(g_{j} x^{\alpha+\beta}\right)\right)_{\alpha, \beta \in \mathbb{N}^{n}} \succeq 0
\end{aligned}
$$

$$
L\left(p^{2}\right)=L\left(\left(\sum_{\alpha} p_{\alpha} x^{\alpha}\right)^{2}\right)=\sum_{\alpha, \beta} p_{\alpha} p_{\beta} L\left(x^{\alpha+\beta}\right)=\bar{p}^{\top} M(L) \bar{p}
$$

$$
\begin{aligned}
f_{\min }=\inf _{x \in K} f(x) & =\inf _{\mu} \int_{K} f(x) d \mu \text { s.t. } \mu \text { is a probability measure on } K \\
& =\inf _{L \in \mathbb{R}[x]^{*}} L(f) \text { s.t. } L \text { has a representing measure } \mu \text { on } K
\end{aligned}
$$

Deciding if a linear functional $L \in \mathbb{R}[x]^{*}$ has a representing measure μ on K is the (difficult) classical moment problem.

But one can use the necessary condition:
L is nonnegative on the quadratic module $Q(g)=\left\{s_{0}+\sum_{j} s_{j} g_{j}: s_{j} \mathrm{SOS}\right\}$:

$$
\begin{aligned}
& L\left(p^{2}\right) \geq 0 \quad \forall p, \quad \text { i.e., } \quad M(L)=\left(L\left(x^{\alpha+\beta}\right)\right)_{\alpha, \beta \in \mathbb{N}^{n}} \succeq 0 \\
\text { and } \quad & L\left(g_{j} p^{2}\right) \geq 0 \quad \forall p, \quad \text { i.e., } \quad M\left(g_{j} L\right)=\left(L\left(g_{j} x^{\alpha+\beta}\right)\right)_{\alpha, \beta \in \mathbb{N}^{n}} \succeq 0
\end{aligned}
$$

$$
L\left(p^{2}\right)=L\left(\left(\sum_{\alpha} p_{\alpha} x^{\alpha}\right)^{2}\right)=\sum_{\alpha, \beta} p_{\alpha} p_{\beta} L\left(x^{\alpha+\beta}\right)=\bar{p}^{\top} M(L) \bar{p}
$$

$M(L)$ is a moment matrix and $M\left(g_{j} L\right)$ are localizing moment matrices

Moment relaxations for (P)

Moment relaxations for (P)

(P) $f_{\min }=\inf _{L \in \mathbb{R}[x]^{*}} L(f)$ s.t. L has a representing measure μ on K

Truncate at degree $2 t$:

$$
f_{t}^{\text {mom }}=\inf _{L \in \mathbb{R}[x]_{2 t}^{*}} L(f) \text { s.t. } \quad L(1)=1, L \geq 0 \text { on } Q(g)_{t}
$$

(MOMt)

Moment relaxations for (P)

(P) $f_{\min }=\inf _{L \in \mathbb{R}[x]^{*}} L(f)$ s.t. L has a representing measure μ on K

Truncate at degree $2 t$:

Moment relaxations for (P)

(P) $f_{\min }=\inf _{L \in \mathbb{R}[x]^{*}} L(f)$ s.t. L has a representing measure μ on K

Truncate at degree $2 t$:

(MOMt)	$f_{t}^{\text {mom }}=\inf _{L \in \mathbb{R}[\times]_{2 t}^{*}} L(f)$ s.t. $L(1)=1, L \geq 0$ on $Q(g)_{t}$
	i.e., $M_{t}(L) \succeq 0, \quad M_{t-d_{j}}\left(g_{j} L\right) \succeq 0 \quad \forall j$

(SOSt) $\quad f_{t}^{\text {sos }}=\sup \lambda$ s.t. $f-\lambda \in Q(g)_{t}$

Moment relaxations for (P)

(P) $\quad f_{\min }=\inf _{L \in \mathbb{R}[x]^{*}} L(f)$ s.t. L has a representing measure μ on K

Truncate at degree $2 t$:
$f_{t}^{\text {mom }}=\inf _{L \in \mathbb{R}[x]_{2 t}^{*}} L(f)$ s.t. $L(1)=1, L \geq 0$ on $Q(g)_{t}$
i.e., $M_{t}(L) \succeq 0, M_{t-d_{j}}\left(g_{j} L\right) \succeq 0 \quad \forall j$
(SOSt) $f_{t}^{\text {sos }}=\sup \lambda$ s.t. $f-\lambda \in Q(g)_{t}$

$$
f_{t}^{\text {sos }} \leq f_{t}^{\text {mom }} \leq f_{\min } \quad \rightsquigarrow \text { dual sdp bounds }
$$

Some results on the full/truncated moment problem

Theorem [Putinar 1997]
Assume $L \in \mathbb{R}[x]^{*}$ is nonnegative on the (archimedean) quadratic module $Q(g)$.

- Then L has a representing measure μ supported by $K: L(f)=\int f(x) \mu(d x)$
- [Tchakaloff 1957] For any fixed degree k, the restriction of L to $\mathbb{R}[x]_{k}$ has a representing measure supported by K, which is finite atomic.

Some results on the full/truncated moment problem

Theorem [Putinar 1997]
Assume $L \in \mathbb{R}[x]^{*}$ is nonnegative on the (archimedean) quadratic module $Q(g)$.

- Then L has a representing measure μ supported by $K: L(f)=\int f(x) \mu(d x)$
- [Tchakaloff 1957] For any fixed degree k, the restriction of L to $\mathbb{R}[x]_{k}$ has a representing measure supported by K, which is finite atomic.

Theorem [Curto-Fialkow 1996-L 2005: short algebraic proof]
Assume $L \in \mathbb{R}[x]_{2 t}^{*}$ is nonnegative on $Q_{t}(g)$, i.e., $M_{t}(L) \succeq 0$, and $\operatorname{rank} M_{t}(L)=\operatorname{rank} M_{t-1}(L) \quad$ [flatness condition]

Then L has a finite atomic representing measure μ on K.
Main steps of proof:

- Extend L to $L \in \mathbb{R}[x]^{*}$ with $\operatorname{rank} M(L)=\operatorname{rank} M_{t}(L)=: r$
- $M(L) \succeq 0$ with finite rank $r \Longrightarrow L$ has an r-atomic measure μ

Optimality criterion for moment relaxation (MOMt)

$$
\begin{gathered}
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \quad d_{K}=\max _{j}\left\lceil\operatorname{deg}\left(g_{j}\right) / 2\right\rceil \\
f_{t}^{\text {mom }}=\inf _{L \in \mathbb{R}[x]]_{2 t}^{*}} L(f) \text { s.t. } L(1)=1, M_{t}(L) \succeq 0, \quad M_{t-d_{j}}\left(g_{j} L\right) \succeq 0 \quad \forall j
\end{gathered}
$$

Optimality criterion for moment relaxation (MOMt)

$$
\begin{gathered}
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \quad d_{K}=\max _{j}\left\lceil\operatorname{deg}\left(g_{j}\right) / 2\right\rceil \\
f_{t}^{\text {mom }}=\inf _{L \in \mathbb{R}[x]_{2 t}^{*}} L(f) \text { s.t. } L(1)=1, M_{t}(L) \succeq 0, \quad M_{t-d_{j}}\left(g_{j} L\right) \succeq 0 \quad \forall j
\end{gathered}
$$

Theorem [CF 2000 + Henrion-Lasserre 2005 + Lasserre-L-Rostalski 2008]
Assume L is an optimal solution of (MOMt) such that
rank $M_{s}(L)=\operatorname{rank} M_{s-d_{K}}(L)$ for some $d_{K} \leq s \leq t$.

Optimality criterion for moment relaxation (MOMt)

$$
\begin{gathered}
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \quad d_{K}=\max _{j}\left\lceil\operatorname{deg}\left(g_{j}\right) / 2\right\rceil \\
f_{t}^{\text {mom }}=\inf _{L \in \mathbb{R}[x]_{2 t}^{*}} L(f) \text { s.t. } L(1)=1, M_{t}(L) \succeq 0, \quad M_{t-d_{j}}\left(g_{j} L\right) \succeq 0 \quad \forall j
\end{gathered}
$$

Theorem [CF 2000 + Henrion-Lasserre 2005 + Lasserre-L-Rostalski 2008]
Assume L is an optimal solution of (MOMt) such that
rank $M_{s}(L)=\operatorname{rank} M_{s-d_{K}}(L)$ for some $d_{K} \leq s \leq t$.

- Then the relaxation is exact: $f_{t}^{\text {mom }}=f_{\text {min }}$.

Optimality criterion for moment relaxation (MOMt)

$$
\begin{gathered}
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \quad d_{K}=\max _{j}\left\lceil\operatorname{deg}\left(g_{j}\right) / 2\right\rceil \\
f_{t}^{\text {mom }}=\inf _{L \in \mathbb{R}[x]_{2 t}^{*}} L(f) \text { s.t. } L(1)=1, M_{t}(L) \succeq 0, \quad M_{t-d_{j}}\left(g_{j} L\right) \succeq 0 \quad \forall j
\end{gathered}
$$

Theorem [CF 2000 + Henrion-Lasserre 2005 + Lasserre-L-Rostalski 2008]
Assume L is an optimal solution of (MOMt) such that
rank $M_{s}(L)=\operatorname{rank} M_{s-d_{K}}(L)$ for some $d_{K} \leq s \leq t$.

- Then the relaxation is exact: $f_{t}^{\text {mom }}=f_{\text {min }}$.
- Moreover, one can compute the global minimizers:

Optimality criterion for moment relaxation (MOMt)

$$
\begin{gathered}
K=\left\{x \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \quad d_{K}=\max _{j}\left\lceil\operatorname{deg}\left(g_{j}\right) / 2\right\rceil \\
f_{t}^{\text {mom }}=\inf _{L \in \mathbb{R}[x]_{2 t}^{*}} L(f) \text { s.t. } L(1)=1, M_{t}(L) \succeq 0, \quad M_{t-d_{j}}\left(g_{j} L\right) \succeq 0 \quad \forall j
\end{gathered}
$$

Theorem [CF 2000 + Henrion-Lasserre 2005 + Lasserre-L-Rostalski 2008]
Assume L is an optimal solution of (MOMt) such that
rank $M_{s}(L)=\operatorname{rank} M_{s-d_{K}}(L)$ for some $d_{K} \leq s \leq t$.

- Then the relaxation is exact: $f_{t}^{\text {mom }}=f_{\text {min }}$.
- Moreover, one can compute the global minimizers:

$$
V\left(\operatorname{Ker} M_{s}(L)\right) \subseteq\{\text { global minimizers of } f \text { on } K\}
$$

with equality if rank $M_{t}(L)$ is maximum (rank $=\#$ minimizers).

Some properties

- Interior point algos for SDP give a maximum rank optimal solution

Some properties

- Interior point algos for SDP give a maximum rank optimal solution
- Finite convergence holds in finite variety case [L 2007, Nie 2013] in convex case generically
[Lasserre 2009, de Klerk-L 2011]
[Nie 2014]

Some properties

- Interior point algos for SDP give a maximum rank optimal solution
- Finite convergence holds in finite variety case [L 2007, Nie 2013] in convex case
[Lasserre 2009, de Klerk-L 2011]
[Nie 2014]
- Can exploit structure (like sparsity, symmetry, equations) to design more economical SDP relaxations

Some properties

- Interior point algos for SDP give a maximum rank optimal solution
- Finite convergence holds in finite variety case [L 2007, Nie 2013] in convex case
[Lasserre 2009, de Klerk-L 2011]
[Nie 2014]
- Can exploit structure (like sparsity, symmetry, equations) to design more economical SDP relaxations
- Algorithm for computing the (finitely many) real roots of polynomial equations (and real radical ideals)
[Lasserre-L-Rostalski 2008,2009]
[Lasserre-L-Mourrain-Rostalski-Trebuchet 2013]
\rightsquigarrow large literature, surveys, monographs

Application for bounding matrix factorization ranks

USING THE MOMENT APPROACH

Matrix factorization ranks

- Nonnegative factorization of $A \in \mathbb{R}_{+}^{m \times n}$:
$A=\sum_{\ell=1}^{r} a_{\ell} b_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{m}, b_{\ell} \in \mathbb{R}_{+}^{n}$ $A=\left(\left\langle u_{i}, v_{j}\right\rangle\right)_{i \in[m], j \in[n]}$, where $u_{i}, v_{j} \in \mathbb{R}_{+}^{r}$ Smallest such $r: \operatorname{rank}_{+}(A)$
[atomic decomposition]
[Gram factorization]
\rightsquigarrow nonnegative rank

Matrix factorization ranks

- Nonnegative factorization of $A \in \mathbb{R}_{+}^{m \times n}$:
$A=\sum_{\ell=1}^{r} a_{\ell} b_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{m}, b_{\ell} \in \mathbb{R}_{+}^{n}$ $A=\left(\left\langle u_{i}, v_{j}\right\rangle\right)_{i \in[m], j \in[n]}$, where $u_{i}, v_{j} \in \mathbb{R}_{+}^{r}$ Smallest such r : $\operatorname{rank}_{+}(A)$
[atomic decomposition]
[Gram factorization]
\rightsquigarrow nonnegative rank
- CP-factorization of $A \in \mathcal{S}^{n}$: symmetric nonnegative factorization: restrict to $a_{\ell}=b_{\ell} \quad \forall \ell \quad$ and to $u_{i}=v_{i} \forall i$ Smallest such $r: \operatorname{rank}_{\text {cp }}(A)$
$\operatorname{rank}_{\mathrm{cp}}(A)<\infty$ when A is completely positive

Matrix factorization ranks

- Nonnegative factorization of $A \in \mathbb{R}_{+}^{m \times n}$:
$A=\sum_{\ell=1}^{r} a_{\ell} b_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{m}, b_{\ell} \in \mathbb{R}_{+}^{n}$
[atomic decomposition]
$A=\left(\left\langle u_{i}, v_{j}\right\rangle\right)_{i \in[m], j \in[n]}$, where $u_{i}, v_{j} \in \mathbb{R}_{+}^{r}$ Smallest such r : $\operatorname{rank}_{+}(A)$
[Gram factorization]
\rightsquigarrow nonnegative rank
- CP-factorization of $A \in \mathcal{S}^{n}$: symmetric nonnegative factorization: restrict to $a_{\ell}=b_{\ell} \quad \forall \ell \quad$ and to $u_{i}=v_{i} \forall i$
Smallest such $r: \operatorname{rank}_{\mathrm{cp}}(A)$
\rightsquigarrow cp-rank
$\operatorname{rank}_{\mathrm{cp}}(A)<\infty$ when A is completely positive
- PSD factorization of $A \in \mathbb{R}_{+}^{m \times n}$:
$A=\left(\left\langle U_{i}, V_{j}\right\rangle\right)_{i \in[m], j \in[n]}$, where $U_{i}, V_{j} \in \mathcal{S}_{+}^{r}$
[Gram factorization]
Smallest such r : $\operatorname{rank}_{\mathrm{psd}}(A)$
Symmetric analogue: require $U_{i}=V_{i} \forall i$
\rightsquigarrow psd-rank
\rightsquigarrow cpsd-rank

Matrix factorization ranks

- Nonnegative factorization of $A \in \mathbb{R}_{+}^{m \times n}$:
$A=\sum_{\ell=1}^{r} a_{\ell} b_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{m}, b_{\ell} \in \mathbb{R}_{+}^{n}$
[atomic decomposition]
$A=\left(\left\langle u_{i}, v_{j}\right\rangle\right)_{i \in[m], j \in[n]}$, where $u_{i}, v_{j} \in \mathbb{R}_{+}^{r}$
Smallest such r : $\operatorname{rank}_{+}(A)$
[Gram factorization]
\rightsquigarrow nonnegative rank
-CP-factorization of $A \in \mathcal{S}^{n}$: symmetric nonnegative factorization: restrict to $a_{\ell}=b_{\ell} \quad \forall \ell \quad$ and to $u_{i}=v_{i} \forall i$
Smallest such $r: \operatorname{rank}_{\mathrm{cp}}(A)$
\rightsquigarrow cp-rank
$\operatorname{rank}_{\mathrm{cp}}(A)<\infty$ when A is completely positive
- PSD factorization of $A \in \mathbb{R}_{+}^{m \times n}$:
$A=\left(\left\langle U_{i}, V_{j}\right\rangle\right)_{i \in[m], j \in[n]}$, where $U_{i}, V_{j} \in \mathcal{S}_{+}^{r}$
[Gram factorization]
Smallest such r : $\operatorname{rank}_{\mathrm{psd}}(A)$
Symmetric analogue: require $U_{i}=V_{i} \forall i$
\rightsquigarrow psd-rank
\rightsquigarrow cpsd-rank
Applications: extended formulations (LP/SDP) of polytopes (quantum) communication complexity

Nonnegative/psd rank and extended formulations

Nonnegative/psd rank and extended formulations

Theorem [Yannakakis 1991 - Gouveia-Parrilo-Thomas 2013]
For a polytope $P=\operatorname{conv}(V)=\left\{x \in \mathbb{R}^{n}: a_{i}^{\top} x \leq b_{i} \forall i \in[m]\right\}$
its slack-matrix is $S=\left(b_{i}-a_{i}^{\top} v\right)_{v \in V, i \in[m]} \in \mathbb{R}_{+}^{|V| \times m}$

Nonnegative/psd rank and extended formulations

Theorem [Yannakakis 1991-Gouveia-Parrilo-Thomas 2013]
For a polytope $P=\operatorname{conv}(V)=\left\{x \in \mathbb{R}^{n}: a_{i}^{\top} x \leq b_{i} \forall i \in[m]\right\}$
its slack-matrix is $S=\left(b_{i}-a_{i}^{\top} v\right)_{v \in V, i \in[m]} \in \mathbb{R}_{+}^{|V| \times m}$

- Smallest r s.t. P is projection of affine section of \mathbb{R}_{+}^{r} is $\operatorname{rank}_{+}(S)$

Nonnegative/psd rank and extended formulations

Theorem [Yannakakis 1991-Gouveia-Parrilo-Thomas 2013]
For a polytope $P=\operatorname{conv}(V)=\left\{x \in \mathbb{R}^{n}: a_{i}^{\top} x \leq b_{i} \forall i \in[m]\right\}$
its slack-matrix is $S=\left(b_{i}-a_{i}^{\top} v\right)_{v \in V, i \in[m]} \in \mathbb{R}_{+}^{|V| \times m}$

- Smallest r s.t. P is projection of affine section of \mathbb{R}_{+}^{r} is $\operatorname{rank}_{+}(S)$
- Smallest r s.t. P is projection of affine section of \mathcal{S}_{+}^{r} is $\operatorname{rank}_{\mathrm{psd}}(S)$

Bounds for cp-rank via polynomial optimization

Assume $A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{n}, r=\operatorname{rank}_{\mathrm{cp}}(A)$.

Bounds for cp-rank via polynomial optimization

Assume $A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{n}, r=\operatorname{rank}_{\mathrm{cp}}(A)$.

$$
\rightsquigarrow \quad \frac{1}{r} A \in \mathcal{R}:=\operatorname{conv}\left(x x^{\top}: x \in \mathbb{R}_{+}^{n}, A-x x^{\top} \geq 0, A-x x^{\top} \succeq 0\right\}
$$

Bounds for cp-rank via polynomial optimization

Assume $A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{n}, r=\operatorname{rank}_{\mathrm{cp}}(A)$.

$$
\rightsquigarrow \frac{1}{r} A \in \mathcal{R}:=\operatorname{conv}\left(x x^{\top}: x \in \mathbb{R}_{+}^{n}, A-x x^{\top} \geq 0, A-x x^{\top} \succeq 0\right\}
$$

$$
\tau_{\mathrm{cp}}(A):=\min \left\{\lambda: \frac{1}{\lambda} A \in \mathcal{R}\right\} \leq \operatorname{rank}_{\mathrm{cp}}(A)
$$

Bounds for cp-rank via polynomial optimization

Assume $A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{n}, r=\operatorname{rank}_{\mathrm{cp}}(A)$.

$$
\rightsquigarrow \frac{1}{r} A \in \mathcal{R}:=\operatorname{conv}\left(x x^{\top}: x \in \mathbb{R}_{+}^{n}, A-x x^{\top} \geq 0, A-x x^{\top} \succeq 0\right\}
$$

$$
\tau_{\mathrm{cp}}(A):=\min \left\{\lambda: \frac{1}{\lambda} A \in \mathcal{R}\right\} \leq \operatorname{rank}_{\mathrm{cp}}(A) \quad[\text { Fawzi-Parrilo 2016] }
$$

Moment approach: Define $L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{*}$ by $L(p)=\sum_{\ell=1}^{r} p\left(a_{\ell}\right)$.

Bounds for cp-rank via polynomial optimization

Assume $A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{n}, r=\operatorname{rank}_{\mathrm{cp}}(A)$.

$$
\rightsquigarrow \quad \frac{1}{r} A \in \mathcal{R}:=\operatorname{conv}\left(x x^{\top}: x \in \mathbb{R}_{+}^{n}, A-x x^{\top} \geq 0, A-x x^{\top} \succeq 0\right\}
$$

$$
\tau_{\mathrm{cp}}(A):=\min \left\{\lambda: \frac{1}{\lambda} A \in \mathcal{R}\right\} \leq \operatorname{rank}_{\mathrm{cp}}(A) \quad \text { [Fawzi-Parrilo 2016] }
$$

Moment approach: Define $L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{*}$ by $L(p)=\sum_{\ell=1}^{r} p\left(a_{\ell}\right)$. (0) $L(1)=r$ (model $\operatorname{rank}_{\mathrm{cp}}(A)$)

Bounds for cp-rank via polynomial optimization

Assume $A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{n}, r=\operatorname{rank}_{\mathrm{cp}}(A)$.

$$
\rightsquigarrow \quad \frac{1}{r} A \in \mathcal{R}:=\operatorname{conv}\left(x x^{\top}: x \in \mathbb{R}_{+}^{n}, A-x x^{\top} \geq 0, A-x x^{\top} \succeq 0\right\}
$$

$$
\tau_{\mathrm{cp}}(A):=\min \left\{\lambda: \frac{1}{\lambda} A \in \mathcal{R}\right\} \leq \operatorname{rank}_{\mathrm{cp}}(A)
$$

[Fawzi-Parrilo 2016]
Moment approach: Define $L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{*}$ by $L(p)=\sum_{\ell=1}^{r} p\left(a_{\ell}\right)$.
(0) $L(1)=r$
(model $\operatorname{rank}_{\mathrm{cp}}(A)$)
(1) $L\left(x_{i} x_{j}\right)=A_{i j}$
(recover A)

Bounds for cp-rank via polynomial optimization

Assume $A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{n}, r=\operatorname{rank}_{\mathrm{cp}}(A)$.

$$
\rightsquigarrow \quad \frac{1}{r} A \in \mathcal{R}:=\operatorname{conv}\left(x x^{\top}: x \in \mathbb{R}_{+}^{n}, A-x x^{\top} \geq 0, A-x x^{\top} \succeq 0\right\}
$$

$$
\tau_{\mathrm{cp}}(A):=\min \left\{\lambda: \frac{1}{\lambda} A \in \mathcal{R}\right\} \leq \operatorname{rank}_{\mathrm{cp}}(A) \quad[\text { Fawzi-Parrilo 2016] }
$$

Moment approach: Define $L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{*}$ by $L(p)=\sum_{\ell=1}^{r} p\left(a_{\ell}\right)$.
(0) $L(1)=r$
(model $\operatorname{rank}_{\mathrm{cp}}(A)$)
(1) $L\left(x_{i} x_{j}\right)=A_{i j}$
(recover A)
(2) $L \geq 0$ on $Q\left(\sqrt{A_{i i}} x_{i}-x_{i}^{2}, A_{i j}-x_{i} x_{j}\right) \quad\left(\operatorname{model} x \geq 0, A-x x^{\top} \geq 0\right)$

Bounds for cp-rank via polynomial optimization

Assume $A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{n}, r=\operatorname{rank}_{\mathrm{cp}}(A)$.

$$
\rightsquigarrow \quad \frac{1}{r} A \in \mathcal{R}:=\operatorname{conv}\left(x x^{\top}: x \in \mathbb{R}_{+}^{n}, A-x x^{\top} \geq 0, A-x x^{\top} \succeq 0\right\}
$$

$$
\tau_{\mathrm{cp}}(A):=\min \left\{\lambda: \frac{1}{\lambda} A \in \mathcal{R}\right\} \leq \operatorname{rank}_{\mathrm{cp}}(A) \quad[\text { Fawzi-Parrilo 2016] }
$$

Moment approach: Define $L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{*}$ by $L(p)=\sum_{\ell=1}^{r} p\left(a_{\ell}\right)$.
(0) $L(1)=r$
(1) $L\left(x_{i} x_{j}\right)=A_{i j}$ (model $\left.\operatorname{rank}_{\mathrm{cp}}(A)\right)$
(recover A)
(2) $L \geq 0$ on $Q\left(\sqrt{A_{i i}} x_{i}-x_{i}^{2}, A_{i j}-x_{i} x_{j}\right) \quad\left(\operatorname{model} x \geq 0, A-x x^{T} \geq 0\right)$
(3a) $L\left(\left(x x^{\top}\right)^{\otimes k}\right) \preceq A^{\otimes k}$ for $k \geq 2$
(model $A-x x^{\top} \succeq 0$)

Bounds for cp-rank via polynomial optimization

Assume $A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{n}, r=\operatorname{rank}_{\mathrm{cp}}(A)$.

$$
\rightsquigarrow \quad \frac{1}{r} A \in \mathcal{R}:=\operatorname{conv}\left(x x^{\top}: x \in \mathbb{R}_{+}^{n}, A-x x^{\top} \geq 0, A-x x^{\top} \succeq 0\right\}
$$

$$
\tau_{\mathrm{cp}}(A):=\min \left\{\lambda: \frac{1}{\lambda} A \in \mathcal{R}\right\} \leq \operatorname{rank}_{\mathrm{cp}}(A)
$$

[Fawzi-Parrilo 2016]
Moment approach: Define $L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{*}$ by $L(p)=\sum_{\ell=1}^{r} p\left(a_{\ell}\right)$.
(0) $L(1)=r$
(1) $L\left(x_{i} x_{j}\right)=A_{i j}$ (model $\operatorname{rank}_{\mathrm{cp}}(A)$)
(recover A)
(2) $L \geq 0$ on $Q\left(\sqrt{A_{i i}} x_{i}-x_{i}^{2}, A_{i j}-x_{i} x_{j}\right) \quad\left(\right.$ model $\left.x \geq 0, A-x x^{T} \geq 0\right)$
(3b) $L\left(\left(A-x x^{\top}\right) \otimes[x][x]^{\top}\right) \succeq 0$
(model $A-x x^{\top} \succeq 0$)
[Gribling-L-Steenkamp 2021]

Bounds for cp-rank via polynomial optimization

Assume $A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{n}, r=\operatorname{rank}_{\mathrm{cp}}(A)$.

$$
\rightsquigarrow \quad \frac{1}{r} A \in \mathcal{R}:=\operatorname{conv}\left(x x^{\top}: x \in \mathbb{R}_{+}^{n}, A-x x^{\top} \geq 0, A-x x^{\top} \succeq 0\right\}
$$

$$
\tau_{\mathrm{cp}}(A):=\min \left\{\lambda: \frac{1}{\lambda} A \in \mathcal{R}\right\} \leq \operatorname{rank}_{\mathrm{cp}}(A) \quad \text { [Fawzi-Parrilo 2016] }
$$

Moment approach: Define $L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{*}$ by $L(p)=\sum_{\ell=1}^{r} p\left(a_{\ell}\right)$.
(0) $L(1)=r$
(1) $L\left(x_{i} x_{j}\right)=A_{i j}$ (model $\operatorname{rank}_{\mathrm{cp}}(A)$) (recover A)
(2) $L \geq 0$ on $Q\left(\sqrt{A_{i i}} x_{i}-x_{i}^{2}, A_{i j}-x_{i} x_{j}\right) \quad\left(\right.$ model $\left.x \geq 0, A-x x^{T} \geq 0\right)$
(3b) $L\left(\left(A-x x^{\top}\right) \otimes[x][x]^{\top}\right) \succeq 0$
(model $A-x x^{\top} \succeq 0$)
[Gribling-L-Steenkamp 2021]

Theorem [Gribling-de Laat-L 2019]
The bounds ξ_{t}^{cp}, obtained by minimizing $L(1)$ over $L \in \mathbb{R}[x]_{2 t}^{*}$ satisfying the truncated versions of (1)-(3a), converge asymptotically to $\tau_{\mathrm{cp}}(A)$,

Bounds for cp-rank via polynomial optimization

Assume $A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top}$, where $a_{\ell} \in \mathbb{R}_{+}^{n}, r=\operatorname{rank}_{\mathrm{cp}}(A)$.

$$
\rightsquigarrow \quad \frac{1}{r} A \in \mathcal{R}:=\operatorname{conv}\left(x x^{\top}: x \in \mathbb{R}_{+}^{n}, A-x x^{\top} \geq 0, A-x x^{\top} \succeq 0\right\}
$$

$$
\tau_{\mathrm{cp}}(A):=\min \left\{\lambda: \frac{1}{\lambda} A \in \mathcal{R}\right\} \leq \operatorname{rank}_{\mathrm{cp}}(A) \quad \text { [Fawzi-Parrilo 2016] }
$$

Moment approach: Define $L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{*}$ by $L(p)=\sum_{\ell=1}^{r} p\left(a_{\ell}\right)$.
(0) $L(1)=r$
(1) $L\left(x_{i} x_{j}\right)=A_{i j}$
(model $\operatorname{rank}_{\mathrm{cp}}(A)$)
(recover A)
(2) $L \geq 0$ on $Q\left(\sqrt{A_{i i}} x_{i}-x_{i}^{2}, A_{i j}-x_{i} x_{j}\right) \quad\left(\right.$ model $\left.x \geq 0, A-x x^{T} \geq 0\right)$
(3b) $L\left(\left(A-x x^{\top}\right) \otimes[x][x]^{\top}\right) \succeq 0$
(model $A-x x^{\top} \succeq 0$)
[Gribling-L-Steenkamp 2021]

Theorem [Gribling-de Laat-L 2019]
The bounds ξ_{t}^{cp}, obtained by minimizing $L(1)$ over $L \in \mathbb{R}[x]_{2 t}^{*}$ satisfying the truncated versions of (1)-(3a), converge asymptotically to $\tau_{\mathrm{cp}}(A)$, and in finitely many steps under flatness.

Extension to other factorization ranks

The moment view point for polynomial optimization offers a systematic, common approach to treat many factorization ranks

- Extension to the nonnegative rank, by using two sets of variables x, y; extends also to the more general tensor setting
- Extension to the psd-rank and cpsd-rank, by taking the Gram factorization view point and using noncommutative variables

Extension to other factorization ranks

The moment view point for polynomial optimization offers a systematic, common approach to treat many factorization ranks

- Extension to the nonnegative rank, by using two sets of variables x, y; extends also to the more general tensor setting
- Extension to the psd-rank and cpsd-rank, by taking the Gram factorization view point and using noncommutative variables

Currently working (with Gribling and Steenkamp) on bounds for the separable rank of a linear operator ρ acting on $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$, asking for the smallest decomposition of the form

$$
\rho=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{\top} \otimes b_{\ell} b_{\ell}^{\top}
$$

Understanding separable states is a fundamental question in quantum information

Concluding remarks

- The two (dual) approaches via moments and sums-of-squares provide interesting complementary information
- This extends to the problem of moments (optimize over measures) and to polynomial optimization in noncommutative variables (optimize over matrix-valued variables), with many applications
- What about the quality of the relaxations? (see Lecture 2)
- Approximation hierarchies for graph problems (see Lecture 3)

> Thank you!

Some references

P. Parrilo: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, PhD thesis, CalTech, 2000.
J.B. Lasserre: Global optimization with polynomials and the problem of moments, SIAM J. Optimization, 2001.
J.B. Lasserre, M. Laurent, P. Rostalski: Semidefinite characterization and computation of real radical ideals, Foundations Comput. Math., 2008.
J.B. Lasserre: Moments, Positive Polynomials and their Applications, Imperial College Press, 2009.
M. Laurent: Sums of squares, moment matrices and optimization over polynomials, in IMA volume 149, 2009.
M. Anjos and J.-B. Lasserre (eds): Handbook of Semidefinite, Conic and Polynomial Optimization, Springer, 2011
G. Blekherman, P. Parrilo, R. Thomas (eds): Semidefinite Optimization and Convex Algebraic Geometry, MOS-SIAM Series Optimization, 2011

