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What is polynomial optimization?
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Minimize a polynomial function f over a region

K = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}

defined by polynomial inequalities (and equations)



Some instances



Testing nonnegativity of polynomials

The unconstrained quadratic case is easy

The quadratic form xTMx is nonnegative over Rn if and only if the
matrix M is positive semidefinite (M � 0)

This can be tested in polynomial time, using Gaussian elimination

Constrained quadratic / unconstrained quartic is hard

Testing matrix copositivity: co-NP complete [Kabadi-Murty 1987]

A symmetric matrix M is copositive if xTMx =
∑

i,j Mijxixj ≥ 0 ∀x ≥ 0

Equivalently, the quartic polynomial
∑

i,j Mijx
2
i x

2
j is nonnegative over Rn

Testing convexity: NP-hard [Ahmadi et al. 2013]

A polynomial f (x) is convex if and only if its Hessian matrix H(f )(x) is
positive semidefinite

Equivalently, g(x , y) = yTH(f )(x)y is nonnegative on Rn × Rn
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Example from distance geometry

Reconstruct the locations of objects (say) in 3D from partial
measurements of mutual distances

Given (partial) pairwise distances d = (dij)ij∈E , find (if possible)
locations u1, · · · , un ∈ Rk in given dimension k (k = 1, 2, 3, ..) such that

‖ui − uj‖2 = dij for all {i , j} ∈ E



Formulations via SDP and polynomial optimization

Find (if possible) vectors u1, · · · , un ∈ Rk (k = 1, 2, 3, ..) such that

‖ui − uj‖2 = dij ({i , j} ∈ E )

m X = (〈ui , uj〉)
Find (if possible) a solution X with rank ≤ k to the semidefinite program

X � 0, Xii + Xjj − 2Xij = dij ({i , j} ∈ E )

m
Decide if pmin = 0 and find a global minimizer to the quartic polynomial

min
x∈Rkn

p(x) =
∑
{i,j}∈E

(
dij −

k∑
h=1

(xih − xjh)2
)2

Hard problem, already in dimension k = 1 when G is cycle Cn [Saxe’79]
Given a1, . . . , an ∈ N, assign distance di,i+1 = ai to the edges of Cn. Then

∃ locations in R ⇐⇒ ∃ε ∈ {±1}n s.t.
n∑

i=1

εiai = 0

 hard partition problem



Formulations via SDP and polynomial optimization

Find (if possible) vectors u1, · · · , un ∈ Rk (k = 1, 2, 3, ..) such that

‖ui − uj‖2 = dij ({i , j} ∈ E )

m X = (〈ui , uj〉)
Find (if possible) a solution X with rank ≤ k to the semidefinite program

X � 0, Xii + Xjj − 2Xij = dij ({i , j} ∈ E )

m
Decide if pmin = 0 and find a global minimizer to the quartic polynomial

min
x∈Rkn

p(x) =
∑
{i,j}∈E

(
dij −

k∑
h=1

(xih − xjh)2
)2

Hard problem, already in dimension k = 1 when G is cycle Cn [Saxe’79]
Given a1, . . . , an ∈ N, assign distance di,i+1 = ai to the edges of Cn. Then

∃ locations in R ⇐⇒ ∃ε ∈ {±1}n s.t.
n∑

i=1

εiai = 0

 hard partition problem



Formulations via SDP and polynomial optimization

Find (if possible) vectors u1, · · · , un ∈ Rk (k = 1, 2, 3, ..) such that

‖ui − uj‖2 = dij ({i , j} ∈ E )

m X = (〈ui , uj〉)
Find (if possible) a solution X with rank ≤ k to the semidefinite program

X � 0, Xii + Xjj − 2Xij = dij ({i , j} ∈ E )

m
Decide if pmin = 0 and find a global minimizer to the quartic polynomial

min
x∈Rkn

p(x) =
∑
{i,j}∈E

(
dij −

k∑
h=1

(xih − xjh)2
)2

Hard problem, already in dimension k = 1 when G is cycle Cn [Saxe’79]
Given a1, . . . , an ∈ N, assign distance di,i+1 = ai to the edges of Cn. Then

∃ locations in R ⇐⇒ ∃ε ∈ {±1}n s.t.
n∑

i=1

εiai = 0

 hard partition problem



Formulations via SDP and polynomial optimization

Find (if possible) vectors u1, · · · , un ∈ Rk (k = 1, 2, 3, ..) such that

‖ui − uj‖2 = dij ({i , j} ∈ E )

m X = (〈ui , uj〉)
Find (if possible) a solution X with rank ≤ k to the semidefinite program

X � 0, Xii + Xjj − 2Xij = dij ({i , j} ∈ E )

m
Decide if pmin = 0 and find a global minimizer to the quartic polynomial

min
x∈Rkn

p(x) =
∑
{i,j}∈E

(
dij −

k∑
h=1

(xih − xjh)2
)2

Hard problem, already in dimension k = 1 when G is cycle Cn [Saxe’79]

Given a1, . . . , an ∈ N, assign distance di,i+1 = ai to the edges of Cn. Then

∃ locations in R ⇐⇒ ∃ε ∈ {±1}n s.t.
n∑

i=1

εiai = 0

 hard partition problem



Formulations via SDP and polynomial optimization

Find (if possible) vectors u1, · · · , un ∈ Rk (k = 1, 2, 3, ..) such that

‖ui − uj‖2 = dij ({i , j} ∈ E )

m X = (〈ui , uj〉)
Find (if possible) a solution X with rank ≤ k to the semidefinite program

X � 0, Xii + Xjj − 2Xij = dij ({i , j} ∈ E )

m
Decide if pmin = 0 and find a global minimizer to the quartic polynomial

min
x∈Rkn

p(x) =
∑
{i,j}∈E

(
dij −

k∑
h=1

(xih − xjh)2
)2

Hard problem, already in dimension k = 1 when G is cycle Cn [Saxe’79]
Given a1, . . . , an ∈ N, assign distance di,i+1 = ai to the edges of Cn. Then

∃ locations in R ⇐⇒ ∃ε ∈ {±1}n s.t.
n∑

i=1

εiai = 0

 hard partition problem



Examples from combinatorial problems in graphs

α = 4 χ = 3

• stability number α(G ):

maximum cardinality of a set of pairwise
non-adjacent vertices (stable set)

• coloring number χ(G ):

minimum number of colors needed to
properly color the vertices of G

α(G ), χ(G ) are NP-complete [Karp 1972]

Chvátal’s reduction of coloring to the stability number:

χ(G ) is the smallest integer c such that α(G�Kc) = |V (G )|
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Polynomial optimization formulations for α(G )

• Basic 0/1 formulation:

α(G ) = max
∑
i∈V

xi s.t. xixj = 0 ({i , j} ∈ E ), x2i = xi (i ∈ V )

• Motzkin-Straus formulation:

1

α(G )
= min xT (I + AG )x s.t.

∑
i∈V

xi = 1, xi ≥ 0 (i ∈ V )

1

α(G )
= min (x◦2)T (I + AG )x◦2 s.t.

∑
i∈V

x2i = 1

• Copositive formulation:

α(G ) = min λ s.t. λ(I + AG )− J is copositive

 optimization over the boolean cube {0, 1}n, the standard simplex
∆n, the unit sphere Sn−1, the copositive cone COPn

 More in Lecture 3
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Basic semidefinite bounds for α(G ) and χ(G )

S stable x = (1, 0, 0, 1, 0)T X =
(1
x

)(1
x

)T

X � 0 positive semidefinite
X ≥ 0 entry-wise nonnegative

Theta number: [Lovász 1979]

ϑ(G ) = max
X�0

∑
i∈V

X0i s.t. X00 = 1, X0i = Xii (i ∈ V ), Xij = 0 ({i , j} ∈ E )

Strengthen with non-negativity: [McEliece et al. 1978] [Schrijver 1979]

ϑ′(G ) = max
X�0,X≥0

∑
i∈V

Xii s.t. X00 = 1, X0i = Xii (i ∈ V ), Xij = 0 ({i , j} ∈ E )

’Sandwich’ inequalities: α(G ) ≤ ϑ′(G ) ≤ ϑ(G ) ≤ χ(G )

Stronger bounds?
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Some key ideas

to get stronger bounds



I Lift to higher dimensional space: add new variables modeling
products of original variables, such as xixj , xixjxk , xixjxkxl ,...

I Use sums of squares of polynomials as a ’proxy’ for
non-negativity of polynomials to get tractable relaxations

Key fact: One can model sums of squares of polynomials
efficiently using semidefinite programming (SDP)
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Model sums of squares of polynomials with SDP

f (x) =
∑
|α|≤2d

fαx
α is a sum of squares of polynomials

f (x) =
∑

i pi (x)2

[ write pi (x) = pi
T [x ]d , [x ]d = (xα)]

m

f (x) =
∑
i

[x ]Td pi pi
T [x ]d = [x ]Td

(∑
i

pi pi
T

︸ ︷︷ ︸
M�0

)
[x ]d =

∑
β,γ

Mβ,γx
β+γ

m

The SDP


∑

β,γ|β+γ=α

Mβ,γ = fα (|α| ≤ 2d)

M � 0

is feasible

Gram-matrix method [Powers-Wörmann 1998]
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Linear Programming vs Semidefinite Programming
Optimize a linear function over

a polyhedron a convex set (spectrahedron)

aTj x = bj , x ≥ 0 〈Aj ,X 〉 = bj , X � 0

LP SDP

There are efficient algorithms to solve LP
and SDP (up to any precision)
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About the complexity of SDP

I 1980’s: There are efficient algorithms to find an almost optimal
solution, under some assumptions

Roughly: one needs a feasible point, an inscribed ball and a
circumscribed ball to the feasible region

- Grötschel-Lovász-Schrijver: based on Khachiyan ellipsoid method

- Karmarkar, Nesterov-Nemirovski: interior point algorithms

I Testing feasibility of SDP: Given rational Aj , bj , decide

(F) ∃X � 0 s.t. 〈Aj ,X 〉 = bj (j ∈ [m]) ?

- Ramana (1997): (F) ∈ NP ⇐⇒ (F) ∈ co-NP

- Porkolab-Khachiyan (1997): (F) ∈ P for fixed n or m

mnO(min{m,n2}) arithmetic operations on LnO(min{m,n2})-bit length numbers

I Well developed duality theory for LP, SDP, conic programs
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General approach to
polynomial optimization



Strategy

(P) fmin = min
x∈K

f (x)

Approximate (P) by a hierarchy of convex (semidefinite) relaxations

These relaxations can be constructed using

sums of squares of polynomials

and

the dual theory of moments

Shor (1987), Nesterov (2000), Lasserre, Parrilo (2000–)



Sums of squares

approach



Strategy (use sums of squares)

(P)
fmin = min

x∈K
f (x) = sup

λ∈R
λ s.t. f (x)− λ ≥ 0 ∀x ∈ K

Testing whether a polynomial f is nonnegative is hard

but one can test the sufficient condition:

f is a sum of squares of polynomials (SoS)

using semidefinite programming



Are all nonnegative polynomials SoS?

Hilbert [1888]: Every nonnegative polynomial
in n variables and even degree d is a sum of
squares of polynomials ⇐⇒
n = 1, or d = 2, or (n = 2 and d = 4)

Hilbert’s 17th problem [1900]: Is every nonneg-
ative polynomial is a sum of squares of rational
functions?

Artin [1927]: Yes
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p = x4y2+x2y4+1−3x2y2

is nonnegative,

not a sum of squares,

but (x2 + y2)2p is SoS
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Positivity certificates over K

K = {x | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

Quadratic module: Q(g) = {s0 + s1g1 + . . .+ smgm | sj SoS}

Preordering: P(g) = {
∑

e∈{0,1}m seg
e1
1 · · · g em

m | se SoS} ⊃ Q(g)

Theorem: Assume K compact.

• [Schmüdgen 1991] f > 0 on K =⇒ f ∈ P(g)

• [Putinar 1993] Archimedean condition: ∃R : R −
∑

i x
2
i ∈ Q(g)

f > 0 on K =⇒ f ∈ Q(g)

Observation: If we know a ball of radius R containing K , then just add
the (redundant) constraint R2 −

∑
i x

2
i ≥ 0 to the description of K
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• [Schmüdgen 1991] f > 0 on K =⇒ f ∈ P(g)

• [Putinar 1993] Archimedean condition: ∃R : R −
∑

i x
2
i ∈ Q(g)

f > 0 on K =⇒ f ∈ Q(g)

Observation: If we know a ball of radius R containing K , then just add
the (redundant) constraint R2 −

∑
i x

2
i ≥ 0 to the description of K



Positivity certificates over K

K = {x | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

Quadratic module: Q(g) = {s0 + s1g1 + . . .+ smgm | sj SoS}

Preordering: P(g) = {
∑

e∈{0,1}m seg
e1
1 · · · g em

m | se SoS} ⊃ Q(g)

Theorem: Assume K compact.
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SoS relaxations for (P)

Truncated quadratic module:

Q(g)t := { s0︸︷︷︸
deg≤2t

+ s1g1︸︷︷︸
deg≤2t

+ . . .+ smgm︸ ︷︷ ︸
deg≤2t

| sj SoS}

Replace

(P) fmin = infx∈K f (x) = sup λ s.t. f − λ ≥ 0 on K

by

(SOSt) f sost = sup λ s.t. f − λ ∈ Q(g)t

I Each bound f sost can be computed with SDP

I f sost ≤ f sost+1 ≤ fmin

I Asymptotic convergence: limt→∞ f sost = fmin [Lasserre 2001]
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Moment approach



fmin = inf
x∈K

f (x) = inf
µ

∫
K

f (x)dµ s.t. µ is a probability measure on K

= inf
L∈R[x]∗

L(f ) s.t. L has a representing measure µ on K

Deciding if a linear functional L ∈ R[x ]∗ has a representing measure µ on K

is the (difficult) classical moment problem.

But one can use the necessary condition:

L is nonnegative on the quadratic module Q(g) = {s0 +
∑

j sjgj : sj SOS}:

L(p2) ≥ 0 ∀p, i.e., M(L) = (L(xα+β))α,β∈Nn � 0

and L(gjp
2) ≥ 0 ∀p, i.e., M(gjL) = (L(gjx

α+β))α,β∈Nn � 0

L(p2) = L((
∑
α pαx

α)2) =
∑
α,β pαpβL(xα+β) = pTM(L)p

M(L) is a moment matrix and M(gjL) are localizing moment matrices
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Moment relaxations for (P)

(P)
fmin = inf

L∈R[x]∗
L(f ) s.t. L has a representing measure µ on K

Truncate at degree 2t:

(MOMt)

f mom
t = inf

L∈R[x]∗2t
L(f ) s.t. L(1) = 1, L ≥ 0 on Q(g)t

i.e., Mt(L) � 0, Mt−dj (gjL) � 0 ∀j

(SOSt) f sost = sup λ s.t. f − λ ∈ Q(g)t

f sost ≤ f mom
t ≤ fmin  dual sdp bounds
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Some results on the full/truncated moment problem

Theorem [Putinar 1997]
Assume L ∈ R[x ]∗ is nonnegative on the (archimedean) quadratic module Q(g).

• Then L has a representing measure µ supported by K : L(f ) =
∫
f (x)µ(dx)

• [Tchakaloff 1957] For any fixed degree k , the restriction of L to R[x ]k has a
representing measure supported by K , which is finite atomic.

Theorem [Curto-Fialkow 1996 - L 2005: short algebraic proof]

Assume L ∈ R[x ]∗2t is nonnegative on Qt(g), i.e., Mt(L) � 0,
and rank Mt(L) = rank Mt−1(L) [flatness condition]

Then L has a finite atomic representing measure µ on K .

Main steps of proof:

I Extend L to L ∈ R[x ]∗ with rank M(L) = rankMt(L) =: r

I M(L) � 0 with finite rank r =⇒ L has an r -atomic measure µ
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Optimality criterion for moment relaxation (MOMt)

K = {x | g1(x) ≥ 0, . . . , gm(x) ≥ 0} dK = maxjddeg(gj)/2e

f mom
t = inf

L∈R[x]∗2t
L(f ) s.t. L(1) = 1, Mt(L) � 0, Mt−dj (gjL) � 0 ∀j

Theorem [CF 2000 + Henrion-Lasserre 2005 + Lasserre-L-Rostalski 2008]

Assume L is an optimal solution of (MOMt) such that

rank Ms(L) = rank Ms−dK (L) for some dK ≤ s ≤ t.

• Then the relaxation is exact: f mom
t = fmin.

• Moreover, one can compute the global minimizers:

V (KerMs(L)) ⊆ { global minimizers of f on K},

with equality if rank Mt(L) is maximum (rank = # minimizers).
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Some properties

I Interior point algos for SDP give a maximum rank optimal solution

I Finite convergence holds in finite variety case [L 2007, Nie 2013]
in convex case [Lasserre 2009, de Klerk-L 2011]
generically [Nie 2014]

I Can exploit structure (like sparsity, symmetry, equations) to design
more economical SDP relaxations

I Algorithm for computing the (finitely many) real roots of
polynomial equations (and real radical ideals)

[Lasserre-L-Rostalski 2008,2009]
[Lasserre-L-Mourrain-Rostalski-Trebuchet 2013]

 large literature, surveys, monographs
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Application for bounding
matrix factorization ranks

using the moment approach



Matrix factorization ranks

I Nonnegative factorization of A ∈ Rm×n
+ :

A =
∑r
`=1 a`b

T
` , where a` ∈ Rm

+, b` ∈ Rn
+ [atomic decomposition]

A = (〈ui , vj〉)i∈[m],j∈[n], where ui , vj ∈ Rr
+ [Gram factorization]

Smallest such r : rank+(A)  nonnegative rank

I CP-factorization of A ∈ Sn: symmetric nonnegative factorization:

restrict to a` = b` ∀` and to ui = vi ∀i
Smallest such r : rankcp(A)  cp-rank

rankcp(A) <∞ when A is completely positive

I PSD factorization of A ∈ Rm×n
+ :

A = (〈Ui ,Vj〉)i∈[m],j∈[n], where Ui ,Vj ∈ Sr+ [Gram factorization]

Smallest such r : rankpsd(A)  psd-rank

Symmetric analogue: require Ui = Vi ∀i  cpsd-rank

Applications: extended formulations (LP/SDP) of polytopes
(quantum) communication complexity
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Nonnegative/psd rank and extended formulations

Theorem [Yannakakis 1991 - Gouveia-Parrilo-Thomas 2013]

For a polytope P = conv(V ) = {x ∈ Rn : aTi x ≤ bi ∀i ∈ [m]}

its slack-matrix is S = (bi − aTi v)v∈V ,i∈[m] ∈ R|V |×m+

• Smallest r s.t. P is projection of affine section of Rr
+ is rank+(S)

• Smallest r s.t. P is projection of affine section of Sr+ is rankpsd(S)
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Bounds for cp-rank via polynomial optimization

Assume A =
∑r
`=1 a`a

T
` , where a` ∈ Rn

+, r = rankcp(A).

 
1

r
A ∈ R := conv(xxT : x ∈ Rn

+, A− xxT ≥ 0, A− xxT � 0}

τcp(A) := min
{
λ : 1

λA ∈ R
}
≤ rankcp(A) [Fawzi-Parrilo 2016]

Moment approach: Define L ∈ R[x1, . . . , xn]∗ by L(p) =
∑r
`=1 p(a`).

(0) L(1) = r (model rankcp(A))

(1) L(xixj) = Aij (recover A)

(2) L ≥ 0 on Q(
√
Aiixi − x2i , Aij − xixj) (model x ≥ 0, A− xxT ≥ 0)

(3a) L((xxT )⊗k) � A⊗k for k ≥ 2 (model A− xxT � 0)(3b) L((A− xxT)⊗ [x ][x ]T) � 0 (model A− xxT � 0)
[Gribling-L-Steenkamp 2021]

Theorem [Gribling-de Laat-L 2019]
The bounds ξcpt , obtained by minimizing L(1) over L ∈ R[x ]∗2t satisfying the
truncated versions of (1)-(3a), converge asymptotically to τcp(A),

and in finitely many steps under flatness.
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(1) L(xixj) = Aij (recover A)
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Aiixi − x2i , Aij − xixj) (model x ≥ 0, A− xxT ≥ 0)
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Theorem [Gribling-de Laat-L 2019]
The bounds ξcpt , obtained by minimizing L(1) over L ∈ R[x ]∗2t satisfying the
truncated versions of (1)-(3a), converge asymptotically to τcp(A),

and in finitely many steps under flatness.
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Extension to other factorization ranks

The moment view point for polynomial optimization offers a systematic,
common approach to treat many factorization ranks

I Extension to the nonnegative rank, by using two sets of variables
x , y ; extends also to the more general tensor setting

I Extension to the psd-rank and cpsd-rank, by taking the Gram
factorization view point and using noncommutative variables

Currently working (with Gribling and Steenkamp) on bounds for the
separable rank of a linear operator ρ acting on Cn ⊗ Cn, asking for the
smallest decomposition of the form

ρ =
r∑
`=1

a`a
T
` ⊗ b`b

T
`

Understanding separable states is a fundamental question in quantum
information
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Concluding remarks

I The two (dual) approaches via moments and sums-of-squares
provide interesting complementary information

I This extends to the problem of moments (optimize over measures)
and to polynomial optimization in noncommutative variables
(optimize over matrix-valued variables), with many applications

I What about the quality of the relaxations? (see Lecture 2)

I Approximation hierarchies for graph problems (see Lecture 3)

Thank you !
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