The singular set in the Stefan problem

Xavier Ros-Oton

ICREA & Universitat de Barcelona

Fields Institute, October 2020

Free boundary problems

- Any PDE problem that exhibits apriori unknown (free) interfaces or boundaries
- They appear in Physics, Industry, Finance, Biology, and other areas
 - Most classical example:

Stefan problem (1831)

It describes the melting of ice.

• If $\theta(t,x)$ denotes the temperature,

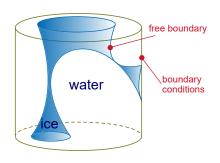
$$\theta_t = \Delta \theta$$
 in $\{\theta > 0\}$

• Free boundary determined by:

$$|\nabla_x \theta|^2 = \theta_t \quad \text{on} \quad \partial \{\theta > 0\}$$

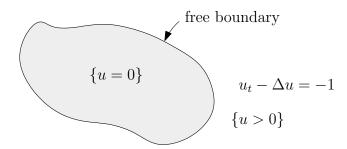
• $u := \int_0^t \theta$ solves: $u \ge 0$, $u_t \ge 0$,

$$u_t - \Delta u = -\chi_{\{u>0\}}$$



Unknowns: solution u & the contact set $\{u = 0\}$

The free boundary (FB) is the boundary $\partial \{u > 0\}$



Probability: Optimal stopping → Stefan problem

- Let X_t be a Brownian motion in \mathbb{R}^n , φ a payoff function.
 - We can stop X_t at any time $\tau \in [0, T]$, and we get a payoff $\varphi(X_\tau)$.
- Question: We want to maximize the payoff.
 - Should we stop if we are at $x \in \mathbb{R}^n$ at time $t \in [0, T)$?

We define the value function

$$v(x,t) = \max_{\text{all choices of } \tau} \mathbb{E}[\varphi(X_{\tau})]$$

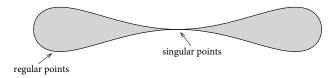
- Then $u := v \varphi$ solves a **Stefan problem** in \mathbb{R}^n !
- The "exercise region" is $\{v = \varphi\}$ (that is, the "ice" $\{u = 0\}$).
- These models are used in Mathematical Finance.
 - A typical example is the pricing of American options.

The Stefan problem

Fundamental question:

Is the Free Boundary smooth?

- First results (1960's & 1970's): Solutions u are $C_x^{1,1} \cap C_t^1$, and this is optimal.
- ullet Kinderlehrer-Nirenberg (1977): If the FB is C^1 , then it is C^∞
- Caffarelli (Acta Math. 1977): The FB is C^1 (and thus C^{∞}), possibly outside a certain set of singular points



• Let us look at the proof of this result.

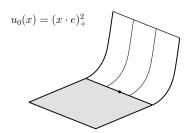
To study the regularity of the FB, one considers $\left| \, \mathrm{blow\text{-}ups} \right|$

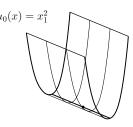
$$u_r(x) := \frac{u(rx, r^2t)}{r^2} \longrightarrow u_0(x, t)$$

The key difficulty is to classify blow-ups:

regular point
$$\implies u_0(x) = (x \cdot e)_+^2$$
 (1D solution)

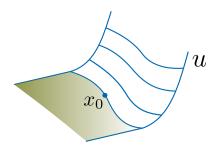
singular point
$$\implies u_0(x) = x^T A x$$
 (paraboloid)





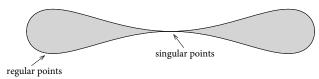
regular point
$$\implies u_0(x) = (x \cdot e)_+^2$$
 (1D solution)
singular point $\implies u_0(x) = x^T A x$ (paraboloid)

Finally, once the blow-ups are classified, we transfer the information from u_0 to u, and prove that the FB is C^1 near regular points.



Singular points

Question: What can one say about singular points?



• Caffarelli'98 & Monneau'00 & Blanchet'06: In **space**, singular points are contained in a (n-1)-dimensional C^1 manifold.

Moreover, if (0,0) is a singular point, we have

$$u(x,t) = p_2(x) + [o(|x|^2 + |t|)],$$

where p_2 is the blow-up.

 In the elliptic setting, several improvements of this result have been obtained by Weiss (1999), Colombo-Spolaor-Velichkov (2017), Figalli-Serra (2017).

Singular points

Question: What can one say about the size of the singular set?

- The previous result implies that, for each time t, the singular set is contained in a C^1 manifold of dimension (n-1).
- However, such manifold is only $C^{1/2}$ in time recall $o(|x|^2 + |t|)$. This does not even yield that the singular set is (n-1)-dimensional in space-time.
- The following question has been open for years:

Question : Is the singular set (n-1)-dimensional in space-time?

• The most natural way to measure this is in the parabolic distance

$$d_{\mathrm{par}}((x_1,t_1),(x_2,t_2)) := \sqrt{|x_1-x_2|^2 + |t_1-t_2|}$$

and the corresponding parabolic Hausdorff dimension $\dim_{\mathrm{par}}(E)$

Singular points: new results

• In a forthcoming work with Figalli and Serra, we establish for the first time:

Theorem (Figalli-R.-Serra, '20)

Let u(x,t) be any solution to Stefan problem, and Σ be the set of singular points. Then,

$$\dim_{\mathrm{par}}(\Sigma) \leq n-1$$

where $\dim_{\mathrm{par}}(E)$ denotes the parabolic Hausdorff dimension of a set $E \subset \mathbb{R}^n \times \mathbb{R}$.

- ullet This is sharp, since Σ could be (n-1)-dimensional even for a fixed time $\{t=t_0\}$.
- Since the time axis has parabolic dimension 2, our result implies that, in \mathbb{R}^2 , the free boundary is smooth for almost every time t.
- It is then natural to ask: Does the same happen in R³?
 "How often" do singular points appear?

The Stefan problem in \mathbb{R}^3

• In \mathbb{R}^3 , we establish the following.

Theorem (Figalli-R.-Serra '20)

Let u(x, t) be the solution to the Stefan problem in \mathbb{R}^3 .

Then, for almost every time t, the free boundary is C^{∞} (with no singular points).

Furthermore, if we define S as the set of "singular times", then

$$\dim_{\mathcal{H}}(\mathcal{S}) \leq \frac{1}{2}$$

- We need a much finer understanding of singular points in order to prove this!
- Is the $\frac{1}{2}$ sharp? We don't know, but it is definitely <u>critical</u>.

Dimension of the singular set: ideas of the proofs

• Let us discuss next the proof of:

Theorem (Figalli-R.-Serra, '20)

Let u(x,t) be any solution to Stefan problem, and Σ be the set of singular points. Then,

$$\dim_{\mathrm{par}}(\Sigma) \leq n-1$$

where $\dim_{\mathrm{par}}(E)$ denotes the parabolic Hausdorff dimension of a set $E \subset \mathbb{R}^n \times \mathbb{R}$.

• To prove it, it would suffice to prove, at all singular points,

$$|u(x,t)-p_2(x)|\leq Cr^3,$$

where $r = \sqrt{|x|^2 + |t|}$. (Previous results only gave $o(r^2)$.)

• Unfortunately, this is not true at all points!

Dimension of the singular set: ideas of the proofs

• We actually need to prove that, if $(0,0) \in \Sigma$, then

$$\Sigma \cap (B_r \times \{t \ge Cr^2\}) = \varnothing. \tag{*}$$

• To prove this, the idea is to combine a "cleaning lemma" with a new expansion

$$|u(x,t)-p_2(x)| \le Cr^3.$$
 (**)

- However, (**) is not true at all singular points! We split Σ as follows:
- Let Σ_m , where $\{p_2=0\}$ is m-dimensional. When $m\leq n-2$, the estimate

$$|u(x,t)-p_2(x)|\leq o(r^2)$$

cannot be improved! But the barrier is then better, so we get (*).

• In Σ_{n-1} , we can prove (**) at "most" points. In the remaining ones, $\Sigma_{n-1}^{<3}$, we need to use carefully their structure.

Dimension of the singular set: ideas of the proofs

To establish these higher order estimates (**), we study second blow-ups:

$$\frac{(u-p_2)(rx,r^2t)}{\|u-p_2\|_{Q_r}}\longrightarrow q(x,t)$$

- For this, we need a suitable truncated parabolic version of Almgren's monotonicity formula.
- In Σ_m , $m \le n-2$, we always get a quadratic polynomial again!
- In Σ_{n-1} , we can prove that q is cubic at "most" points (via dimension reduction).
- However, q is **not** a **polynomial** as in the elliptic case!

$$q(x,t)=\tfrac{1}{6}|x_n|^3+t|x_n|$$

- We cannot continue with a next blow-up: Almgren fails for $w := u p_2 q!$
- We need completely new ideas if we want to go further.

Singular points: new results

• We can say much more, and actually establish the following higher order result:

Theorem (Figalli-R.-Serra, '20)

Let u(x,t) be any solution to Stefan problem, and Σ be the set of singular points.

Then, there is Σ^* , with

$$\dim_{\mathrm{par}}(\Sigma \setminus \Sigma^*) \leq n-2$$

such that Σ^* is contained in a countable union of C^{∞} manifolds of dimension (n-1).

- This substantially improves all known results, and it is even better than our results for the elliptic setting!
- ullet Basically, in Σ^* we get a higher order expansion of order ∞

Higher order expansion at singular points

 To establish our result, we need to improve substantially the understanding of singular points:

Theorem (Figalli-R.-Serra, '20)

Let u(x,t) be any solution to the Stefan problem, and Σ be the set of singular points.

Then, there exists a set $\Sigma^* \subset \Sigma$, with $\dim_{\mathrm{par}}(\Sigma \setminus \Sigma^*) \leq n-2$, such that in Σ^* we have

$$u(x,t) = \frac{1}{2} \left(x \cdot e + V^{+}t + q_{+}(x,t) \right)_{+}^{2} + \frac{1}{2} \left(x \cdot e - V^{-}t + q_{-}(x,t) \right)_{-}^{2} + o\left(\left(|x| + \sqrt{|t|} \right)^{k} \right)$$
(1)

for all k > 0, and for t < 0.

Here, $e \in \mathbb{S}^{n-1}$, $V^{\pm} > 0$, and q_{\pm} are higher order polynomials (satisfying certain compatibility conditions).

Comments

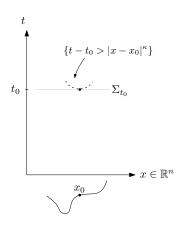
- This gives a much deeper geometric understanding of "most" singularities: ${\bf V}^\pm$ are the velocities of two fronts that collapse at t=0, while q_\pm correspond to curvature terms.
- The dimension n-2 of the set $\Sigma \setminus \Sigma^*$ is sharp!
- The most difficult step is to pass from order r^3 to $r^{3+\alpha}$.

 This requires a variety of new ideas, combining GMT tools, PDE estimates, dimension reduction... all *without* monotonicity formulas!
- After order $r^{3+\alpha}$ the proof is completely different, and we get then r^k (for all k) with an approximation argument that may have its own interest.

On the size of the singular set

Thanks to such expansions, plus a "cleaning argument", we get:

- If u has a singular point at (x_0, t_0) , then there are no singular points for $u(\cdot, t_0 + r^{\kappa})$ in a ball of radius r (for a certain κ).
- In Σ^* , we can take $\kappa \to \infty$, and thus the singular set is C^∞ -flat there!
- Thanks to this, the projection of Σ^* on the *t*-axis has zero Hausdorff dimension.



The Stefan problem in \mathbb{R}^2

• Since $\dim_{\mathrm{par}}(\Sigma \setminus \Sigma^*) \leq n-2$, then in \mathbb{R}^2 we deduce the following.

Theorem (Figalli-R.-Serra '20)

Let u(x,t) be the solution to the Stefan problem in \mathbb{R}^2 .

Let S be the set of "singular times". Then,

$$\dim(\mathcal{S})=0$$

- Proof (2D and 3D): Split Σ into Σ^* and $\Sigma \setminus \Sigma^*$, and apply the previous results.
- Recall: even the regularity for almost every time is new!
- ullet The expansion up to order ∞ is essential here.

Thank you!

