The Bernstein problem for equations of minimal surface type

Connor Mooney

UC Irvine

October 20, 2020
Partly joint work with Y. Yang
The Bernstein Problem

Theorem (Bernstein, 1915)

Assume \(u \in C^2(\mathbb{R}^2) \) solves the minimal surface equation

\[
\text{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) = 0.
\]

Then \(u \) is linear.

- Different from linear case (many entire harmonic functions)

Bernstein Problem:

Prove the same result in higher dimensions, or construct a counterexample.
Solution to the Bernstein problem:

- $n = 2$ (Bernstein, 1915): Topological argument

- New proof (Fleming, 1962): Monotonicity formula, nontrivial solution in $\mathbb{R}^n \Rightarrow$ non-flat area-minimizing hypercone $K \subset \mathbb{R}^{n+1}$

- $n = 3$ (De Giorgi, 1965): $K = C \times \mathbb{R}$

- $n = 4$ (Almgren, 1966), $n \leq 7$ (Simons, 1968): Stable minimal cones are flat in low dimensions

- $n \geq 8$ (Bombieri-De Giorgi-Giusti, 1969): Counterexample!
The Bernstein Problem

- \(\det D^2w < 0 \) in \(\mathbb{R}^2 \) \(\Rightarrow \) tangent planes to graph \((w) \) disconnect it into \(\geq 4 \) unbounded pieces

- \(\text{Cor:} \) \(\frac{a_{ij}(x)}{\text{pos}} w_{ij} = 0 \) in \(\mathbb{R}^2 \) \(\Rightarrow \) \(w = \text{const.} \)

- Apply to \(w = \frac{\tan^{-1}(u)}{\text{harmonic on graph } (u)} \)
The Bernstein Problem

\[K \subset \mathbb{R}^3 \text{ cone + minimal } \Rightarrow \text{ flat} \]

(only 1 nonzero curvature)
\[K = C \times \mathbb{R} \]

non-flat area-min.

cone in \(\mathbb{R}^n \)
Bernstein’s theorem generalizes to all dimensions with growth hypotheses:

- $|\nabla u| < C$ (De Giorgi, Nash; 1958)
- $u(x) < C(1 + |x|)$ (Bombieri-De Giorgi-Miranda, 1969)
- $|\nabla u(x)| = o(|x|)$ (Ecker-Huisken, 1990)

Some beautiful open problems:

- Do all entire solutions of the MSE have polynomial growth?
- Does there exist a nonlinear polynomial that solves the MSE?
Object of interest: $\Sigma \subset \mathbb{R}^{n+1}$ oriented hypersurface, minimizes

$$A_\Phi(\Sigma) := \int_\Sigma \Phi(\nu) \, dA.$$

Here ν = unit normal, and Φ is 1-homogeneous, positive and $C^{2,\alpha}$ on \mathbb{S}^n, and $\{\Phi < 1\}$ uniformly convex (“uniform ellipticity”)

E-L Equation: $\Phi_{ij}(\nu) II_{ij} = 0$ (“balancing of principal curvatures”)

Φ-Bernstein Problem:
If Σ is the graph of a function $u : \mathbb{R}^n \to \mathbb{R}$, is it necessarily a hyperplane?
Φ-Bernstein Problem

\[
\Phi_{ij}(\nu) \Pi_{ij} = 0 \quad \iff \quad \epsilon_{ij}(\nabla \nu) \partial_{ij} = 0, \quad \text{with } \epsilon(p) := \Phi(-p, 1)
\]

\[
\text{Ellipticity degenerates as } \|\nabla \nu\| \to \infty
\]

Derivation:
\[
\int \Phi(\nu) \, dA = \int \Phi \left(\frac{-\nabla \nu}{1 + \|\nabla \nu\|^2} \right) \sqrt{1 + \|\nabla \nu\|^2} \, dx = \int \epsilon(\nabla \nu) \, dx
\]
Positive results:

- $n = 2$ (Jenkins, 1961): ν is quasiconformal
- $n = 3$ (Simon, 1977): Regularity theorem of Almgren-Schoen-Simon (1977) for parametric problem
- $n \leq 7$ if $\|\Phi - 1\|_{C^{2,1}(\mathbb{S}^n)}$ small (Simon, 1977)
- $|\nabla u| < C$ (De Giorgi-Nash) or $|u(x)| < C(1 + |x|)$ (Simon, 1971)

Question: $4 \leq n \leq 7$??
Theorem (M., 2020)

There exists a quadratic polynomial on \mathbb{R}^6 whose graph minimizes A_Φ for a uniformly elliptic integrand Φ.

- Φ necessarily far from 1 on S^6 (level sets “box-shaped”)
- The analogous quadratic polynomial does not work in \mathbb{R}^4
- Open: $n = 4, 5$
Approach of Bombieri-De Giorgi-Giusti ($\Phi|_{S^{n-1}} = 1$):

Let $(x, y) \in \mathbb{R}^8$ with $x, y \in \mathbb{R}^4$, and let $C := \{|x| = |y|\}$

- Find a smooth perturbation Σ of the Simons cone C, whose dilations foliate one side (ODE analysis)

- Notice that $\Sigma \sim \{r^3 \cos(2\theta) = 1\}$ far from the origin (here $r^2 = |x|^2 + |y|^2$, $\tan \theta = |y|/|x|$)

- Build global super/sub-solutions $\sim r^3 \cos(2\theta)$ in $\{|x| > |y|\}$ (hard), solve Dirichlet problem in larger and larger balls
$C = \{ |x| = |y|^{3/2} \}$

Σ' - minimal

R, R^2, R^4, x, y
The case $K \leq 3$
Our approach: Fix u, build Φ

- Equation is $\varphi_{ij}(\nabla u)u_{ij} = 0$ (here $\varphi(p) := \Phi(-p, 1)$), rewrite in terms of Legendre transform u^* of u as

$$ (u^*)^{ij} \varphi_{ij} = 0 $$

(a linear hyperbolic eqn for Φ)

- Let $(x, y) \in \mathbb{R}^{2k}$, $x, y \in \mathbb{R}^k$, $u = \frac{1}{2}(|x|^2 - |y|^2)$, $\varphi = \psi(|x|, |y|)$

Equation becomes

$$ \Box \psi + (k - 1) \nabla \psi \cdot \left(\frac{1}{s}, -\frac{1}{t} \right) = 0 $$

in positive quadrant (here $|x| = s$, $|y| = t$, $\Box = \partial^2_s - \partial^2_t$)
The case $k = 3$ is special:

- Equation reduces to $\Box (st \psi) = 0$, so

 $$
 \psi(s, t) = \frac{f(s + t) + g(s - t)}{st}
 $$

- Choose f, g carefully s.t. Φ is uniformly elliptic (tricky part)

One choice of Φ is

$$
\Phi(p, q, z) = \frac{((|p| + |q|)^2 + 2z^2)^{3/2} - ((|p| - |q|)^2 + 2z^2)^{3/2}}{2^{5/2}|p||q|},
$$

with $p, q \in \mathbb{R}^3$ and $z \in \mathbb{R}$.
Φ-Bernstein Problem

\[\{ \Phi = \| \mathbf{x} \|^2 \wedge \{ x_3 = 0 \} \} \]
Some remarks:

- There are many possible choices of Φ (perturb f, g)

- $\{u = \text{const.}\}$ minimize A_{Φ_0}, $\Phi_0 = \Phi|_{\{x_7=0\}}$ (homogeneity of u)

- The case $u = \frac{1}{2}(|x|^2 - |y|^2)$, $k = 2$: By above remark, $\{u = 1\}$ must minimize a uniformly elliptic functional. This is false when $k = 2$ (symmetries of $u + \text{ODE analysis}$)

However, the cone $C := \{u = 0\} \subset \mathbb{R}^4$ minimizes a uniformly elliptic functional (Morgan 1990, proof by calibration technique)...
Current Work (joint with Y. Yang)

An approach in the case $n = 4$: combine the previous ones

1. Proof by “foliation” of Morgan’s result:

Theorem (M.-Yang, 2020)

There exist analytic elliptic integrands Φ on \mathbb{R}^4 such that each side of C is foliated by A_Φ-minimizing hypersurfaces.

Furthermore, these hypersurfaces resemble level sets of γ-homogeneous functions, for any $\gamma \in (1, 3/2)$.

2. Fix an entire function u on \mathbb{R}^4 that is asymptotically γ-homogeneous with $\gamma \in (1, 3/2)$, prove that its graph minimizes a uniformly elliptic functional ($\gamma = 4/3$ looks particularly inviting)
Current Work (joint with Y. Yang)

Controlled growth question:

- Positive result if $|\nabla u|$ grows slowly enough (e.g. $|\nabla u| = O(|x|^\epsilon)$ with $\epsilon(n, \Phi)$ small)?

Regularity of Φ:

- In the 6D example, $\Phi \in C^{2,1}(S^6)$. Can we make $\Phi \in C^\infty(S^n)$? Analytic on S^n?
Thank you!