
ON THE SUBRING OF SPECIAL CYCLES

STEPHEN S. KUDLA

Fields Number Theory Seminar

June 17, 2020

1. Orthogonal Shimura varieties

I am going to report on some results about the structure of the ring generated by the cohomology

classes of special cycles in orthogonal Shimura varieties over totally real fields. These results are

from the second of a pair of recent preprints:

Remarks on generating series for special cycles, arXiv:1908.08390v1.

On the subring of special cycles, arXiv:2001.09068v1.

The Shimura variety:

F = totally real field, |F : Q| = d

V = quadratic space over F ,

sig(V ) = (m, 2)d+ × (m+ 2, 0)d−d+ ,

Σ(V )+ = {σ | sig(Vσ) = (m, 2), Vσ = V ⊗F,σ R }

G = RF/QGSpin(V )

Dσ = { z ∈ Gro2(Vσ) | Q |z< 0 }, dimDσ = m

D =
∏
σ∈Σ+

Dσ, dimD = md+, D
+ = one component

SK = G(Q)\D ×G(Af )/K, K ⊂ G(Af ), compact open

Components:

G(Af ) =
∐
j

G(Q)+gjK

SK '
∐
j

Γj\D, Γj = G(Q)+ ∩ gjKg−1
j

Assume: V anisotropic, d+ ≥ 1, K neat

SK = smooth projective variety over C.
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Cohomology:

H•(SK) =

2md+⊕
r=0

Hr(SK ,C)

degK : H2md+(SK) −→ C

It is a graded ring under cup product with an inner product

〈z, z′〉 = degK(z ∪ z′) = vol(K/K ∩ Z(Q)) deg\K(z ∪ z′).

Passing to the limit, for the covers K ′ ⊂ K, pr : SK′ −→ SK ,

H•(S) = lim−→
K

H•(SK), Hr(SK) = Hr(S)K .

Components: G = RF/QGSpin(V )

π0(SK) ' G(Q)+\G(Af )/K ' F×Af /F
×
+ ν(K),

ν : G→ RF/QGm, the spinor norm

F×+ = the group of totally positive elements in F×.

H0(S) = C(F×Af /F
×
+ ,C) = lim−→

K

C(F×Af /F
×
+ ν(K),C)

= the space of continuous complex valued functions on F×Af /F
×
+

so there are classes

11 ∈ H0(S), χ ∈ H0(S).

Co-tautological bundle: The following variant of the Kähler class will play a role:

Dσ ' { w ∈ (Vσ)C | (w,w) = 0, (w, w̄) < 0 }/C× ⊂ P((Vσ)C)

Lσ = pr∗σ(O(−1)|Dσ) = a tautological bundle on D

prσ : D −→ Dσ

Lσ descends to SK and S

cS =
∏
σ

c1(L∨σ ) ∈ H2d+(S), product Chern class.
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2. Weighted special cycles

For a subspace:

W = totally positive definite F -subspace of V

D+
W =

∏
σ

D+
σ,W

D+
σ,W = {z ∈ D+

σ | z ⊂W⊥ ⊗F,σ R }

codimD+
W = r(W ) d+, r(W ) = dimF W,

Z(W )Γ = πΓ(D+
W ), an algebraic cycle of codimension nd+.

πΓ : D+ −→ Γ\D+

For a frame: x = [x1, . . . , xn] ∈ V (F )n, W (x) = span(x1, . . . , xn),

[Z(x)]Γ =

{
[Z(W (x))]Γ · cn−r(x)

Γ if W (x) is totally positive definite,

0 otherwise.

[Z(x)]Γ ∈ H2nd+(Γ\D+), Hodge type (nd+, nd+).

Weighted special cycles:

For

T ∈ Symn(F )≥0

ϕ ∈ S(V (Af )n)

Z(T, ϕ,K) :=
∑
j

∑
x∈V (F )n

Q(x)=T

mod Γj

ϕ(g−1
j x) [Z(x)]Γj ∈ H2nd+(SK)

Here recall that

SK '
∐
j

Γj\D, Γj = G(Q)+ ∩ gjKg−1
j .

Example:

Z(0, ϕ,K) = cnS · ϕ(0).

Pullbacks: This compatibility is a crucial property of the weighted cycles:

pr : SK′ −→ SK K ′ ⊂ K,

pr∗(Z(T, ϕ,K)) = Z(T, ϕ,K ′)

Z(T, ϕ) ∈ H2nd+(S).
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I There is a very explicit product formula of weighted special cycles:

Theorem A: For Ti ∈ Symni(F ) and ϕi ∈ S(V (Af )ni),

(2.1) Z(T1, ϕ1) · Z(T2, ϕ2) =
∑

T∈Symn1+n2
(F )≥0

T=

(
T1 ∗
t∗ T2

)
Z(T, ϕ1 ⊗ ϕ2).

I Thus, the Z(T, ϕ)’s together with the class 11 for n = 0, defines

the subring of special cycles:

SC•(V )\ ⊂ H2•d+(Sh(V )).

Note the shift in degree.

I Since our access to the structure of these rings will be via intersection numbers,

we introduce ‘reduced’ or ‘numerical’ versions.

Consider the restriction of the intersection pairing

〈z, z′〉 = degK(z · z′)

to subring of special cycles.

By associativity of the cup product, the radical of this pairing on SC•(V )\ is an ideal.

Definition. The reduced ring of special cycles is the subquotient of the cohomology ring

SC•(V ) := SC•(V )\/Rad.

The form 〈 , 〉 then defines a non-degenerate pairing on SC•(V ).

Examples:

z(T ;ϕ) = zV (T ;ϕ) = the image of Z(T ;ϕ) in SC•(V ),

SC0(V )\ = C 11, the degree 0 part, by definition.

SCm(V )\ ∩ Rad = ker(deg : SCm(V )\ → C),

SCm(V ) = C 11∨, 〈 11, 11∨ 〉 = 1.

For T ∈ Symm(F ) and ϕ ∈ S(V (Af )m),

z(T, ϕ) = deg(Z(T, ϕ)) · 11∨.
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I Recall that quadratic spaces over F are determined by

dim(V )

det(V ) ∈ F×/F×,2

χV (x) = (x, (−1)
1
2

(m+1)(m+2) det(V ))F

sig(Vσ) = signature of Vσ = V ⊗F,σ R

εv(V ) = ±1 = Hasse invariant

1 =
∏
v

εv(V ). (?)

At an archimedean place,

εσ(V ) =

{
−1 if sig(Vσ) = (m, 2),

1 if sig(Vσ) = (m+ 2, 0).
(??)

In particular, if the finite part Vf = V (Af ) is fixed, then the signatures (m, 2) and (m + 2, 0)

can be chosen arbitrarily subject to the parity condition (?).

I Here is a surprising comparison result:

Theorem B. Suppose that V and V ′ are quadratic spaces over F as above with χV = χV ′ and

V ⊗F Af ' V ′ ⊗F Af .

By (?) and (??), this implies d+(V ) and d+(V ′) have the same parity.

Then there is an isometry of graded rings

SC•(V )
∼−→ SC•(V ′), zV (T, ϕ)

∼−→ zV ′(T, ϕ
′),

where

S(V (Af )n)
∼−→ S(V ′(Af )n), ϕ 7→ ϕ′.

I Note that

dim Sh(V ) = md+(V )

dim Sh(V ′) = md+(V ′).

so the isomorphism of the theorem can involve a shift in dimensions.

I I do not know of a ‘geometric’ reason for such an isomorphism.
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3. Dual forms and generating series

I There is a generating series for cohomology classes of special cycle classes:

φn(τ ;ϕ) =
∑

T∈Symn(F )≥0

Z(T, ϕ) · qT ∈ H2nd+(S)[[q]]

where

τ = (τσ)σ∈Σ ∈ Hdn, T ∈ Symn(F ), Σ = Hom(F,R),

qT = e(
∑
σ

tr(σ(T )τσ) ), e(t) = e2πit, ϕ ∈ S(V (Af )n).

From my old work with Millson,

Theorem: (KM)

φn(τ ;ϕ) = the q-expansion of a Hilbert-Siegel modular form

of parallel weight (
m

2
+ 1, . . . ,

m

2
+ 1).

I The crucial point behind this result is that the generating series is the image in cohomology

of a theta series valued in the deRham complex.

I will be slightly ‘impressionistic’ in my description of this.

To construction ‘geometric’ theta functions, Millson and I wrote down

a Schwartz function valued in differential forms.

In the present situation:

I The Schwartz form is

ϕ(n)
∞ ∈

[
S(V n

R )⊗A(nd+,nd+)(D)
]G(R)

,

=
⊗

σ∈Σ+(V )

ϕ(n)
σ ⊗

⊗
σ/∈Σ+(V )

ϕ0
σ,+

where, for σ ∈ Σ+(V ),

ϕ(n)
σ ∈ S(V n

σ )⊗A(n,n)(Dσ)

is the Schwartz form for Vσ, and, for σ /∈ Σ+(V ), ϕ0
σ,+ ∈ S(V n

σ ) is the Gaussian for Vσ.

These forms satisfy

g∗ϕ(n)
σ (x) = ϕ(g−1x), g ∈ SO(Vσ).
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The Theta form:

I Modularity of the generating series for the cohomology classes of special cycles

can be proved using ‘geometric’ theta series.

For ϕ ∈ S(V (Af )n)K ,

ϕ(n)
∞ ⊗ ϕ ∈ S(V (A)n)⊗A(n,n)(D),

and the theta form

θ(g′;ϕ) =
∑

x∈V (F )n

ω(g′)(ϕ(n)
∞ ⊗ ϕ)(x), g′ ∈ G̃′(A) = metaplectic group,

a closed (nd+, nd+)-form on SK and, as a function of g′, is left invariant for the (canonical)

image of G′(Q) in G̃′(A).

Theorem: (KM) The cohomology class of the theta form is the generating series

N(det(v))−
m+2

4
[
θ(g′τ ;ϕ)

]
= φn(τ ;ϕ) =

∑
T∈Symn(F )≥0

Z(T, ϕ) qT .

Here g′τ = [gτ , 1] is an element of the metaplectic cover G̃′(R) where gτ ∈ G′(R) has components

(gτ )σ =

(
1 uσ

1

)(
aσ

ta−1
σ

)
, gσ(i) = τσ = uσ + ivσ ∈ Hn, vσ = aσ

taσ.

Computing degrees:

I This identity allows us to do computations with the special cycle cohomology classes.

The key is to use the Siegel-Weil formula to relate

degree integrals of theta forms to special values of Eisenstein series.

Crucial Fact: The Schwartz forms are compatible with wedge products so that, for n = n1+n2,

ϕ(n)
∞ = ϕ(n1)

∞ ∧ϕ(n2)
∞ .

Thus, τ1 ∈ Hdn1
, τ2 ∈ Hdn2

, and ϕi ∈ S(V (Af )ni), i = 1, 2,

θ(g′τ1 ;ϕ1) ∧ θ(g′τ2 ;ϕ2) = θ(g′τ ;ϕ1 ⊗ ϕ2), τ =

(
τ1

τ2

)
.
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I For n1 + n2 = m, we compute the inner product of the generating series:

〈 φn1(τ1, ϕ1), φn2(τ2, ϕ2) 〉

= deg(φn1(τ1, ϕ1) ∪ φn2(τ2, ϕ2))

= vol(K/K ∩ Z(Q))

∫
SK

θ(g′τ1 ;ϕ1) ∧ θ(g′τ2 ;ϕ2)

= (−1)md+N(det(v1) det(v2))−
m+2

4

∫
G(Q)Z(R)\G(A)

θ(g′τ , g; ϕ̆(m)
∞ ⊗ ϕ1 ⊗ ϕ2) dg.

Here in the last line, we are shifting from the integral of the top degree geometric theta series

as a top degree differential form to the group integral with respect to Tamagawa measure.

I By the Siegel-Weil formula, such an integral is given by a special value of an Eisenstein

series.

Review of the Siegel-Weil formula

Assume m is even to avoid the extra notation for the metaplectic group, etc.

G′ = Sp(n)/F

P ′ = Siegel parabolic, n(b), m(a), etc.

In(s, χV ) = degenerate principal series,

λV : S(V (A)n) −→ In(s0, χ), ϕ 7→ λV (ϕ)(g′) = ω(g′)ϕ(0), s0 =
1

2
dimV − ρn

Φ(g′, s;ϕ) = ω(g′)ϕ(0) · |a(g′)|s−s0

= standard section attached to ϕ,

E(g′, s, λV (ϕ)) =
∑

γ∈P ′(F )\G′(F )

Φ(γg′, s;ϕ)

= the Eisenstein series, Re(s) > ρn =
1

2
(n+ 1).

Theorem: (Siegel-Weil, KR 1988) Since V is anisotropic, the Eisenstein series is holomorphic

at s = s0 and

E(g′, s0, λV (ϕ)) =

∫
O(V )(F )\O(V )(AF )

θ(g′, g;ϕ) dg,

for vol(O(V )(F )\O(V )(AF ), dg) = 1.

In fact: ∫
O(V )(F )\O(V )(AF )

θ(g′, g;ϕ) dg =
1

2

∫
SO(V )(F )\SO(V )(AF )

θ(g′, g;ϕ) dT g,

where dT g is the Tamagawa measure on SO(V )(AF ).
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4. Inner products and products

Computing inner products and products.

I We clean up the notation with the definition of

the Hilbert-Siegel Eisenstein series of genus m and weight 1
2m+ 1:

E(τ, s0, λVf (ϕ)) := (−1)md+2N(det(v))−κ/2 · E(g′τ , s0, λV (ϕ̆∞ ⊗ ϕ)).

for the top degree, where ϕ ∈ S(V m(Af )).

Notes:

(1) The special value is now taken at the point s0 = κ− ρm = 1
2 ,

very close to the center of the critical strip!

(2) This is a holomorphic Siegel modular form of low weight!

The lowest holomorphic discrete series of genus m has weight m+ 1.

For m = 1, the weight is 3
2 , for m = 2 weight 2, for m = 3, weight 5

2 , etc.

(3) The archimedean component of this automorphic representation occurring here is an inter-

esting lowest weight representation. It sits in the degenerate principal series.

I Combining the steps, we get

a basic formula for the inner product of the generating series:

〈 φn1(τ1, ϕ1), φn2(τ2, ϕ2) 〉

= (−1)md+N(det(v1) det(v2))−
m+2

4

∫
G(Q)Z(R)\G(A)

θ(g′τ , g; ϕ̆(m)
∞ ⊗ ϕ1 ⊗ ϕ2) dg

= E(

(
τ1

τ2

)
,
1

2
, λVf (ϕ1 ⊗ ϕ2)).

It is a geometric version of the Rallis inner product formula.

Here we are using the fact that, for n1 + n2 = m,

ϕ(n1)
∞ ∧ϕ(n2)

∞ = ϕ(m)
∞ = ϕ̆(m)

∞ Ωm.

for a scalar valued Schwartz function ϕ̆(m)
∞ ∈ S(V m

σ ).
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I Starting with the formula

〈 φn1(τ1, ϕ1), φn2(τ2, ϕ2) 〉 = E(

(
τ1

τ2

)
,
1

2
, λVf (ϕ1 ⊗ ϕ2)),

we obtain identities among the Fourier expansions of the two sides:

E(

(
τ1

τ2

)
,
1

2
, λVf (ϕ1 ⊗ ϕ2)) :=

∑
T1∈Symn1

(F )≥0

∑
T2∈Symn2

(F )≥0

A(T1, T2;λVf (ϕ1 ⊗ ϕ2)) qT11 qT22

and

〈 φn1(τ1, ϕ1), φn2(τ2, ϕ2) 〉 =
∑

T1∈Symn1
(F )≥0

∑
T2∈Symn2

(F )≥0

〈 z(T1, ϕ1), z(T2, ϕ2) 〉 qT11 qT22 .

Theorem C: For n1 + n2 = m,

〈 z(T1, ϕ1), z(T2, ϕ2) 〉 = A(T1, T2;λVf (ϕ1 ⊗ ϕ2)).

I In short, the inner products of special cycle classes are given by Fourier coefficients of

pullbacks of Hilbert-Siegel Eisenstein series.

I Also note that such pullbacks have a non-trivial cuspidal component mediated by special

values of doubling L-functions.

But one can get more!
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I Tripling gives a formula for the product itself!

Formula for products:

For n1 + n2 + n3 = m, and for weight functions ϕi ∈ S(V (Af )ni), write

E(

τ1

τ2

τ3

 ,
1

2
, λVf (ϕ1 ⊗ ϕ2 ⊗ ϕ3))

=
∑

T1∈Symn1
(F )≥0

∑
T2∈Symn2

(F )≥0

∑
T3∈Symn3

(F )≥0

A(T1, T2, T3;λVf (ϕ1 ⊗ ϕ2 ⊗ ϕ3)) qT11 qT22 qT33 .

By the Siegel-Weil formula, this series coincides with

the degree of the triple product of generating series

〈φn1(τ1, ϕ1), φn2(τ2, ϕ2), φn3(τ3, ϕ3)〉

=
∑

T1∈Symn1
(F )≥0

∑
T2∈Symn2

(F )≥0

∑
T3∈Symn3

(F )≥0

〈 z(T1, ϕ1) · z(T2, ϕ2), z(T3, ϕ3) 〉 qT11 qT22 qT33 .

Theorem D: For n1 + n2 + n3 = m,

〈 z(T1, ϕ1) · z(T2, ϕ2), z(T3, ϕ3) 〉 = A(T1, T2, T3;λVf (ϕ1 ⊗ ϕ2 ⊗ ϕ3)).

I Since the pairing 〈 , 〉 is non-degenerate pairing on SC•(V ), this last formula uniquely

determines the product

z(T1, ϕ1) · z(T2, ϕ2) ∈ SCn1+n2(V ).

Thus the structure of the ring SC•(V ) is determined by the Fourier coefficients of triple pullbacks

of Hilbert-Siegel Eisenstein series.
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5. Comparisons

Comparison isomorphisms.

Consider two quadratic spaces V1 and V2 over F with.

dimF V1 = dimF V2

χ = χV1 = χV2 .

The Rallis maps then have the same target:

λVi : S(Vi(A)n) −→ I(s0, χ), λVi(ϕi)(g
′) = ωVi(g

′)ϕi(0),

s0 =
1

2
dimVi − ρn

Definition 5.1. Schwartz functions ϕ1 ∈ S(V1(A)n) and ϕ2 ∈ S(V2(A)n) match if

λV1(ϕ1) = λV2(ϕ2) ∈ I(s0, χ).

Basic Observations:

(i) If ϕ1 ∈ S(V1(A)n) and ϕ2 ∈ S(V2(A)n) are matching Schwartz functions, then

the associated Siegel-Eisenstein series coincide,

E(g′, s, λV1(ϕ1)) = E(g′, s, λV2(ϕ2)).

(ii) For any n, the Schwartz form ϕ
(n)
KM for signature (p, q) with p+ q = m, q even,

and the Gaussian for signature (m+ 2, 0) match locally.

I The point is that the Siegel-Eisenstein series is built out of only local data.

These observations yield a lot of non-trivial identities.
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I In certain cases we get

Automatic matching:

Suppose

V (Af )
∼−→ V ′(Af ).

This implies

d+(V ) ≡ d+(V ′) mod 2.

Then, for all n,

S(V (Af )n)
∼−→ S(V ′(Af )n), ϕ ↔ ϕ′ = ρnV,V ′(ϕ).

and this matching is compatible with tensor products.

As a consequence, we have the comparison isomorphism for special cycle rings

stated earlier:

Comparison Theorem. For such V and V ′ there is a linear map

ρV,V ′ : SC•(V ) −→ SC•(V ′)

such that, for ϕ and ϕ′ matching

ρV,V ′ : zV (T, ϕ) 7→ zV ′(T, ϕ
′).

Moreover, this map is a ring homomorphism and an isometry.

Proof. The rings SC•(V ) and SC•(V ′) are spanned by the classes zV (T, ϕ) and zV ′(T, ϕ
′).

Suppose that there is a linear relation in SCn(V )∑
i

ci zV (Ti, ϕi) = 0, ϕi ∈ S(V (Af )n), Ti ∈ Symn(F ), ci ∈ C.

Then,

0 = 〈
∑
i

ci zV (Ti, ϕi), zV (T, ϕ) 〉

=
∑
i

ci〈 zV (Ti, ϕi), zV (T, ϕ) 〉

=
∑
i

ciA(Ti, T ;λVf (ϕi ⊗ ϕ)) =
∑
i

ciA(Ti, T ;λVf (ϕ′i ⊗ ϕ′))

= 〈
∑
i

ci zV ′(Ti, ϕ
′
i), zV ′(T, ϕ

′) 〉

for all pairs T and ϕ. Here the Schwartz functions are matching those. Since the inner product

on the ring SC•(V ′) is non-degenerate by construction, we have∑
i

ci zV ′(Ti, ϕ
′
i) = 0

in SCn(V ′). Thus the linear map ρV,V ′ is well defined.

Isometry and ring homomorphism follow similarly. �
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Another comparison.

It is tempting to ask what happens when d+ = 0.

It is possible to set up a theory of ‘special cycles’ that is quite parallel to the d+ > 0 case!

I will skip to the final formulas.

V+ = totally positive definite quadratic space over F ,

dimF V+ = m+ 2

G+ = RF/QSO(V+)

H•(V+) = Ccont(G+(Q)\G+(Af ))⊗Z Z[c], cm+1 = 0

= truncated polynomial ring

deg(cr) =

{
1 r = m

0 otherwise.
z : G+(Q)\G+(Af ) −→ C[c],

degtot(z) : =

∫
G+(Q)\G+(Af )

deg(z(g)) dfg.

For ϕ ∈ S(V+(Af )n), T ∈ Symn(F ), define a special cycle:

Rep+(T, ϕ)(g) : =
∑

x∈V+(F )n

Q(x)=T

ϕ(g−1x) ∈ Ccont(G+(Q)\G+(Af )),

z(T, ϕ)\ : = Rep+(T, ϕ) cn ∈ Hn(V+).

Product formula!

z(T1, ϕ1)\ · z(T2, ϕ2)\ =
∑

T∈Symn1+n2
(F )≥0

T=

(
T1 ∗
t∗ T2

)
z(T, ϕ1 ⊗ ϕ2)\.

So we again get a subring SC•(V+)\ of ‘special cycles’ in the ‘cohomology’ ring H•(V+).

It includes 11.
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The reduced ring.

For special cycles in complementary degrees n1 and n2 with n1 + n2 = m, the inner product

is given by

〈 z(T1, ϕ1)\, z(T2, ϕ2)\ 〉 =

∫
G+(Q)\G+(Af )

Rep+(T1, ϕ1)(g) Rep+(T2, ϕ2)(g) dg.

Let

SC•(V+) = SC•(V+)\/RSC•(V+)\

We denote the image of z(T, ϕ)\ ∈ SC•(V+)\ in SC•(V+) by z(T, ϕ).

Lemma (i) For n ≤ 1
2m, the map SCn(V+)\ −→ SCn(V+) is an isomorphism.

(ii) On the other hand, for n = m, SCm(V+) = C cm and the map SCm(V+)\ −→ SCm(V+) is

given by

z\ 7→ z = degtot(z\) · cm.

Example: The middle dimension: In particular, if m = 2n is even, then

Ccont(G+(Q)\G+(Af ))
∼−→ SCn(V+), φ 7→ φ · cn,

with the inner product given by (?).

Another comparison isomorphism.

Theorem E: For a quadratic space V over F with d+(V ) even, let V+ be the associated totally

positive definite space with V (Af )
∼−→ V+(Af ). Fix an isometry ρV,V+ : V (Af )

∼−→ V+(Af ).

Then there is a linear map

ρV,V+ : SC•(V ) −→ SC•(V+)

such that, for ϕ and ϕ′ matching

ρV,V+ : zV (T, ϕ) 7→ zV+(T, ϕ′).

Moreover, this map is a ring homomorphism and an isometry.

I Thus, for d+ even, the reduced special cycle rings are given by the ‘combinatorial’ construc-

tion just described! Note the fundamental role played by the ring

Ccont(G+(Q)\G+(Af ))

for the associated totally positive definite space V+.

I Do these comparison isomorphism have a motivic origin?

I Is there a way to account for them in terms of automorphic representations, e.g., as a

consequence of functoriality among inner forms of SO(V )?

I Is there a ‘combinatorial model’ in the case where d+ is odd?


