Weighted normal bundles and the isotropic embedding theorem

Eckhard Meinrenken

LIE THEORY AND INTEGRABLE SYSTEMS IN SYMPLECTIC AND POISSON GEOMETRY

Fields Institute (online), June 2020

Based on:

Euler-like vector fields, normal forms, and isotropic embeddings, arXiv:2001.10518

and forthcoming work with Y. Loizides

Review: Euler-like vector fields

Definition (Bursztyn-Lima-M)

A vector field $X \in \mathfrak{X}(M)$ is Euler-like with respect to a submanifold $N \subset M$ if $X|_{N} = 0$ and the linear approximation

$$X_{[0]} \in \mathfrak{X}(\nu(M,N))$$

is the Euler vector field \mathcal{E} .

Lemma (Bursztyn-Lima-M)

If X is Euler-like with respect to $N \subset M$, there is a unique germ of a tubular neighborhood embedding

$$\phi \colon \nu(M,N) \to M$$

such that $\phi^*X = \mathcal{E}$.

Euler-like vector fields $\stackrel{1-1}{\longleftrightarrow}$ tubular neighborhood embeddings

on level of germs along N

Review: Euler-like vector fields

Application: Let (M, ω) symplectic manifold, $N \subset M$ Lagrangian. Have linear approximation

$$\omega_{[1]} \in \Omega^2(\nu(M,N)).$$

Theorem (Weinstein)

There exists a tubular nbd ϕ : $\nu(M,N) \to M$ such that $\phi^*\omega = \omega_{[1]}$.

Sketch of proof.

- Choose $\alpha \in \Omega^1(M)$, vanishing along N, with $d\alpha = \omega$.
- 2 $X \in \mathfrak{X}(M)$ with $\iota_X \omega = \alpha$ is Euler-like, so defines ϕ with $\phi^* X = \mathcal{E}$

$$\mathcal{L}_{\mathcal{E}}\phi^*\omega = \phi^*\mathcal{L}_{\mathbf{X}}\omega = \phi^*\mathrm{d}\alpha = \phi^*\omega$$

implies that $\phi^*\omega$ is linear, i.e. equal to $\omega_{[1]}$.

Review: Euler-like vector fields

Q: What about *isotropic* submanifolds $N \subset M$?

Here $\omega_{[1]} \in \Omega^2(\nu(M, N))$ is well-defined, but not symplectic.

Reason: In some directions normal to N, the symplectic form ω vanishes to second order rather than linearly.

Idea: Use approximation with weights.

Weightings

Fix a weight sequence

$$0 \leq w_1 \leq w_2 \leq \cdots \leq w_n \leq r.$$

For $U \subseteq \mathbb{R}^n$, get filtration by ideals

$$C^{\infty}(U) = C^{\infty}(U)_{(0)} \supseteq C^{\infty}(U)_{(1)} \supseteq \cdots$$

where $C^{\infty}(U)_{(i)}$ generated by monomials

$$x^s = x_1^{s_1} \cdots x_n^{s_n}, \quad \sum_a s_a w_a \ge i.$$

Definition (Loizides-M)

An order r weighting on a manifold M is given by an atlas, where all transition maps preserve weight filtrations.

Weightings

An order r weighting on M determines a filtration

$$(*) C^{\infty}(M) = C^{\infty}(M)_{(0)} \supseteq C^{\infty}(M)_{(1)} \supseteq \cdots$$

where

$$\mathcal{I}=C^{\infty}(M)_{(1)}$$

is the vanishing ideal of a closed submanifold $N \subset M$. If N is given, we speak of a weighting along N.

The case r = 1 is trivial weighting, where $C^{\infty}(M)_{(k)} = \mathcal{I}^k$.

In general, think of $C^{\infty}(M)_{(k)}$ as vanishing to order k on $N \subset M$ in the weighted sense.

Weighted normal bundle

Theorem (Loizides-M)

An order r weighting along $N\subset M$ determines a unique fiber bundle $\nu_{\mathcal{W}}(M,N)\to N$, with an action $t\mapsto \kappa_t$ of (\mathbb{R},\cdot) , such that

• $N \subset \nu_{\mathcal{W}}(M, N)$ is the fixed point set of the (\mathbb{R}, \cdot) -action,

•

$$C^{\infty}(M)_{(k)}/C^{\infty}(M)_{(k+1)}=C^{\infty}(\nu_{\mathcal{W}}(M,N))_{[k]}$$

the functions homogeneous of degree k.

For
$$r = 1$$
, recover $\mathcal{I}^k/\mathcal{I}^{k+1} \cong \Gamma(\operatorname{Sym}^k(\nu(M, N)^*)) = C^{\infty}(\nu(M, N))_{[k]}$.

Note: Every $f \in C^{\infty}(M)_{(k)}$ determines an order k approximation

$$f_{[k]} \in C^{\infty}(\nu_{\mathcal{W}}(M,N))_{[k]}$$

Likewise for forms, vector fields, etc.

Weighted normal bundle

Remark

The weighted normal bundle $\nu_{\mathcal{W}}(M,N)$ has an alternative description as a subquotient of

$$T_rM=J_0^r(\mathbb{R},M),$$

the r-th tangent bundle.

For r = 1, this is $\nu(M, N) = TM|_N/TN$.

For r > 1, $\nu_W(M, N)$ is not a vector bundle, but is a *graded bundle* in the sense of Grabowski-Rotkievicz.

Weighted Euler-like vector fields

Let $N \subset M$ with order r weighting $\leadsto C^{\infty}(M) \supseteq C^{\infty}(M)_{(1)} \supseteq \cdots$.

Definition

 $X \in \mathfrak{X}(M)$ is weighted Euler-like if it has filtration degree 0, with weighted homogeneous approximation

$$X_{[0]} = \mathcal{E},$$

the Euler vector field of $\nu_{\mathcal{W}}(M, N)$.

Theorem

A weighted Euler-like vector field X determines a unique weighted tubular neighborhood embedding

$$\phi \colon \nu_{\mathcal{W}}(M,N) \to M$$

such that $\phi^*X = \mathcal{E}$ (the Euler vf).

Weightings for r = 2

An order r = 2 weighting along $N \subset M$ is equivalent to a subbundle

$$F \subseteq \nu(M, N)$$
.

The filtration is generated by

$$C^{\infty}(M)_{(1)} = \mathcal{I} = \text{ vanishing ideal of } N$$

$$C^{\infty}(M)_{(2)} = \mathcal{J} = \{ f \in \mathcal{I} \colon \mathrm{d}f \text{ vanishes on } \widetilde{F} \}$$

So: any subbundle $F \subseteq \nu(M,N)$ determines a weighted normal bundle

$$\nu_{\mathcal{W}}(M,N) \to N.$$

The isotropic embedding theorem

Let (M, ω) be symplectic, $N \subset M$ isotropic. Have

$$TN^{\omega}/TN \subset \nu(M, N).$$

- Get a weighting of order r=2, and corresponding $\nu_{\mathcal{W}}(M,N) \to N$.
- $\omega \in \Omega^2(M)_{(2)} \quad \rightsquigarrow \quad \omega_{[2]} \in \Omega^2(\nu_{\mathcal{W}}(M,N))_{[2]}$, symplectic.
- Choose $\alpha \in \Omega^1(M)_{(2)}$ with $d\alpha = \omega_{(2)}$, define X by $\iota_X \omega = 2\alpha$.
- X is weighted Euler-like, so get $\phi \colon \nu_{\mathcal{W}}(M,N) \to M$ with $\phi^*X = \mathcal{E}.$
- $\mathcal{L}_{\mathcal{E}}\phi^*\omega = \phi^*\mathcal{L}_X\omega = 2\omega$ implies $\phi^*\omega = \omega_{[2]}$.

The isotropic embedding theorem

In summary:

1) For every isotropic submanifold N of (M,ω) there is a canonically defined local model

$$(\nu_{\mathcal{W}}(M,N),\omega_{[2]})$$

2) There is a weighted tubular nbd embedding $\nu_{\mathcal{W}}(M,N) \to M$, preserving symplectic forms.

This is a (small) improvement of Weinstein's isotropic embedding theorem, where the construction of the 2-form on the local model

$$TN \oplus TN^{\omega}/TN$$

involves choices.

Outlook

Concluding remarks:

- The theory of weightings comes with a theory of weighted deformation spaces and weighted (real) blow-ups.
- One can generalize further to 'multi-weightings'.
- Other applications include filtered manifolds (Morimoto, Melin); these have been much studied in index theory lately (Choi-Ponge, van Erp, Yuncken, Haj-Higson, Dave-Haller, Mohsen)
- More generally, examples arise from singular Lie filtrations:

$$\mathfrak{X}(M)=\mathcal{H}_{-r}\supseteq\mathcal{H}_{-r+1}\supseteq\cdots\supseteq\mathcal{H}_0,\quad \ [\mathcal{H}_i,\mathcal{H}_j]\subseteq\mathcal{H}_{i+j}$$

(each \mathcal{H}_i locally finitely generated); every leaf of the singular foliation of \mathcal{H}_0 has a canonical weighting.

Thanks!