Bott Canonical Basis?

Yael Karshon

University of Toronto

Joint with Jihyeon Jessie Yang

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Canonical basis

$K \odot V$ unitary irrep of compact Lie group K

$V = igoplus_{lpha \in \mathfrak{t}_Z^*} V_lpha$ decomposition into weights spaces for $\mathcal{T} \subset \mathcal{K}$

Goal: decompose
$$V_{\alpha} = \underbrace{\mathbb{C}_{\alpha} \oplus \ldots \oplus \mathbb{C}_{\alpha}}_{\text{mult}(\alpha)}$$
 "canonically".

We achieve this using a complex analytic big torus action, modulo a conjectural cohomology-vanishing condition.

Big torus action

 $(S^1)^{\mathrm{big}} \odot \downarrow$ holomorphic, M connected and has fixed points, M then

 $\Gamma_{hol}(M, L)$ splits into one dimensional weights spaces.

big := dim_{\mathbb{C}} M

Geometric models for representations

 $V = \Gamma_{\rm hol}(M, L).$

Borel-Weil: M = flag manifold G/B, $L_{\lambda} = G \times_B \mathbb{C}_{-\lambda}$

Demazure: M = Bott-Samelson manifold

Bott's idea: use $(S^1)^{\text{big}} \oplus \downarrow \downarrow$ on Bott-Samelson manifold. M

But: holomorphic for a *different* complex structure ("Bott tower").

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$B \oplus \mathbb{C}_{-\lambda}$$
 through $\psi_0 \colon B \to H$. e.g., for SL(3, \mathbb{C}), $\psi_0 \colon \begin{bmatrix} a \star \star \\ 0 & b \star \\ 0 & 0 & c \end{bmatrix} \mapsto \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$

Bott-Samelson manifolds

 $\begin{array}{ll} \alpha_{i_1}, \ldots, \alpha_{i_n} \text{ sequence of simple positive roots.} & \text{For each } \alpha_{i_j} \\ P_{i_j} \text{ minimal nontrivial parabolic;} & \\ \mathcal{K}_{i_j} \text{ maximal compact in } P_{i_j}; & \\ \mathcal{T}_{i_j} \text{ the centre of } \mathcal{K}_{i_j}; & \\ \end{array} \\ \begin{array}{ll} \text{e.g., } \left[\begin{smallmatrix} \star & \star & 0 \\ 0 & 0 & \star \end{smallmatrix}\right] \text{ in } \text{SU}(3) \\ \text{e.g., } \left[\begin{smallmatrix} \star & \star & 0 \\ 0 & 0 & \star \end{smallmatrix}\right] \text{ in } \text{SU}(3) \end{array}$

Real version (Bott&Samelson, 1950s):

$$K_{i_1} \times_T K_{i_2} \times_T \ldots \times_T K_{i_n}/T \xrightarrow{\text{multiplication}} K/T.$$

Left action of $(T \times \ldots \times T)_{eff} = T \times_{T_{i_1}} T \times_{T_{i_2}} \ldots \times_{T_{i_{n-1}}} T/T_{i_n}$. Complex version (Demazure, 1970s):

$$P_{i_1} \times_B P_{i_2} \times_B \ldots \times_B P_{i_n}/B \xrightarrow{\text{multiplication}} G/B.$$

Also with associated line bundles.

<u>Bott-Samelson manifold</u>: $(P_{i_1} \times \cdots \times P_{i_n})/B^n$, where

$$(p_1, p_2, \ldots, p_n) \cdot (b_1, \ldots, b_n)$$

= $(p_1 b_1, b_1^{-1} p_2 b_2, \ldots, b_{n-1}^{-1} p_n b_n).$

Bott tower:
$$(P_{i_i} \times \cdots \times P_{i_n})/B^n$$
, where
 $(p_1, p_2, \dots, p_n) \cdot (b_1, \dots, b_n)$
 $= (p_1 b_1, \psi_0(b_1)^{-1} p_2 b_2, \dots, \psi_0(b_{n-1})^{-1} p_n b_n);$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\psi_0 \colon B \to H$ projection from the Borel to the Cartan. Has left action of $(T \times \ldots \times T)_{eff}$.

Bott Samelson family

The Bott tower and the Bott-Samelson manifold fit into a family

$$X_{\mathbf{t}} := (P_{i_i} \times \cdots \times P_{i_n})/B^n$$

for $\mathbf{t} = (t_1, \ldots, t_n) \in \mathbb{C}^n$, where

$$(p_1, p_2, \dots, p_n) \cdot (b_1, \dots, b_n) = (p_1 b_1, \psi_{t_2}(b_1)^{-1} p_2 b_2, \dots, \psi_{t_n}(b_{n-1})^{-1} p_n b_n),$$

where $\psi_t \colon B \to B$ for $t \in \mathbb{C}$ is

$$\psi_t = egin{cases} ext{conjugation by } S(t) & ext{when } t
eq 0 \ ext{the projection } B o H & ext{when } t = 0 \end{cases}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

for appropriate one-parameter subgroup $S \colon \mathbb{C}^{\times} \to H$ e.g., $t \mapsto \text{diag}(t, 1, t^{-1})$, $\psi_t \colon \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix} \mapsto \begin{bmatrix} a & tb & t^2c \\ 0 & d & te \\ 0 & 0 & f \end{bmatrix}$ Also with associated line bundles.

Equivariant families

$$(\mathbb{C}^{\times})^n \oplus \mathfrak{L} \longrightarrow \mathfrak{X} \longrightarrow \mathbb{C}^n$$
.
 $X_0 := \pi^{-1}(0, \dots, 0); \quad X_1 := \pi^{-1}(1, \dots, 1).$

<u>Condition 1</u>: the action of each $(\mathbb{C}^{\times})_{j^{\text{th}}}$ on X_0 has a fixed point with all isotropy weights ≤ 0 .

<u>Condition 2</u>: $H^{\geq 1}(\mathfrak{X}, \mathcal{O}_{\mathfrak{L}}) = \{0\}.$

• Obtain a filtration $\{F_{\vec{\ell}}\}_{\vec{\ell}\in\mathbb{Z}^n}$ of V := $\Gamma_{\mathsf{hol}}(X_1,\mathfrak{L}|_{X_1})$ and a map

$$V_{\mathsf{graded}} := \bigoplus_{\vec{\ell}} F_{\vec{\ell}} / F_{\vec{\ell}} \longrightarrow \Gamma_{\mathsf{hol}}(X_0, \mathfrak{L}|_{X_0})$$

whose restriction to each summand is one-to-one.

- If X_0 is toric, each summand is one dimensional.
- $V_{\text{graded}} \rightarrow V$ is a linear isomorphism.

Putting everything together

We define a left $(\mathbb{C}^{\times})^n$ action with which the Bott-Samelson family

$$\mathfrak{X} = (\mathbb{C}^n \times P_{i_1} \times \cdots \times P_{i_n})/B^n \xrightarrow{\pi} \mathbb{C}^n$$

becomes an equivariant family with X_0 the Bott tower and X_1 the Bott-Samelson manifold.

If $\alpha_{i_1}, \ldots, \alpha_{i_n}$ corresponds to a reduced expression of the longest element of the Weyl group, and we take the line bundle $\mathfrak{L} = (\mathbb{C}^n \times P_{i_1} \times \cdots \times P_{i_n}) \times_{B^n} \mathbb{C}_{0,\ldots,0,-\lambda}$, then $V := \Gamma_{hol}(X_1, \mathfrak{L}|_{X_1})$ provides a geometric model for the (restriction to *B* of the) irreducible representation of *G* with highest weight λ .

If $H^{\geq 1}(\mathfrak{X}, \mathcal{O}_{\mathfrak{L}}) = \{0\}$, we obtain a decomposition of V into one dimensional spaces that refines its decomposition into the T weights spaces.

Thank you!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ