Bott Canonical Basis?

Yael Karshon
University of Toronto

Joint with Jihyeon Jessie Yang

Canonical basis

$$
K \subset V \quad \text { unitary irrep of compact Lie group } K
$$

$V=\bigoplus_{\alpha \in \mathrm{t}_{Z}^{*}} V_{\alpha} \quad$ decomposition into weights spaces for $T \subset K$

Goal: decompose $V_{\alpha}=\underbrace{\mathbb{C}_{\alpha} \oplus \ldots \oplus \mathbb{C}_{\alpha}}_{\operatorname{mult}(\alpha)}$ "canonically".

We achieve this using a complex analytic big torus action, modulo a conjectural cohomology-vanishing condition.

Big torus action

$\left(S^{1}\right)^{\text {big }} \subset \begin{gathered}L \\ \\ \\ \\ \\ \\ \\ \end{gathered}$ holomorphic, M connected and has fixed points,
then
$\Gamma_{\text {hol }}(M, L)$ splits into one dimensional weights spaces.
$\operatorname{big}:=\operatorname{dim}_{\mathbb{C}} M$

Geometric models for representations

$V=\Gamma_{\text {hol }}(M, L)$.
Borel-Weil: $M=$ flag manifold $G / B, \quad L_{\lambda}=G \times_{B} \mathbb{C}_{-\lambda}$
Demazure: $M=$ Bott-Samelson manifold

But: holomorphic for a different complex structure ("Bott tower").

Bott-Samelson manifolds

$\alpha_{i_{1}}, \ldots, \alpha_{i_{n}}$ sequence of simple positive roots.
P_{i} minimal nontrivial parabolic;
For each $\alpha_{i_{j}}$:
$K_{i j}$ maximal compact in $P_{i j}$;

e.g., $\left[\right.$| \star | \star | 0 |
| :---: | :---: | :---: |
| | | |
| | | \star |$]$ in $\mathrm{SU}(3)$

$T_{i j}$ the centre of $K_{i j} ; \quad$ e.g., $\left[\begin{array}{ccc}a & 0 \\ 0 & 0 & 0 \\ 0 & 0\end{array}\right]$
Real version (Bott\&Samelson, 1950s):

$$
K_{i_{1}} \times{ }_{T} K_{i_{2}} \times{ }_{T} \ldots \times_{T} K_{i_{n}} / T \xrightarrow{\text { multiplication }} K / T .
$$

Left action of $(T \times \ldots \times T)_{\text {eff }}=T \times{ }_{T_{i_{1}}} T \times T_{T_{i_{2}}} \ldots \times{ }_{T_{i_{n-1}}} T / T_{i_{n}}$.
Complex version (Demazure, 1970s):

$$
P_{i_{1}} \times{ }_{B} P_{i_{2}} \times B \ldots \times_{B} P_{i_{n}} / B \xrightarrow{\text { multiplication }} G / B .
$$

Also with associated line bundles.

Bott-Samelson manifold: $\left(P_{i_{1}} \times \cdots \times P_{i_{n}}\right) / B^{n}$, where

$$
\begin{aligned}
& \left(p_{1}, p_{2}, \ldots, p_{n}\right) \cdot\left(b_{1}, \ldots, b_{n}\right) \\
& \quad=\left(p_{1} b_{1}, b_{1}^{-1} p_{2} b_{2}, \ldots, b_{n-1}^{-1} p_{n} b_{n}\right)
\end{aligned}
$$

Bott tower: $\left(P_{i_{i}} \times \cdots \times P_{i_{n}}\right) / B^{n}$, where

$$
\begin{aligned}
\left(p_{1}, p_{2}, \ldots, p_{n}\right) & \cdot\left(b_{1}, \ldots, b_{n}\right) \\
= & \left(p_{1} b_{1}, \psi_{0}\left(b_{1}\right)^{-1} p_{2} b_{2}, \ldots, \psi_{0}\left(b_{n-1}\right)^{-1} p_{n} b_{n}\right)
\end{aligned}
$$

$\psi_{0}: B \rightarrow H$ projection from the Borel to the Cartan.
Has left action of $(T \times \ldots \times T)_{\text {eff }}$.

Bott Samelson family

The Bott tower and the Bott-Samelson manifold fit into a family

$$
X_{\mathbf{t}}:=\left(P_{i_{i}} \times \cdots \times P_{i_{n}}\right) / B^{n}
$$

for $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{C}^{n}$, where

$$
\begin{aligned}
& \left(p_{1}, p_{2}, \ldots, p_{n}\right) \cdot\left(b_{1}, \ldots, b_{n}\right) \\
& \quad=\left(p_{1} b_{1}, \psi_{t_{2}}\left(b_{1}\right)^{-1} p_{2} b_{2}, \ldots, \psi_{t_{n}}\left(b_{n-1}\right)^{-1} p_{n} b_{n}\right)
\end{aligned}
$$

where $\psi_{t}: B \rightarrow B$ for $t \in \mathbb{C}$ is

$$
\psi_{t}= \begin{cases}\text { conjugation by } S(t) & \text { when } t \neq 0 \\ \text { the projection } B \rightarrow H & \text { when } t=0\end{cases}
$$

for appropriate one-parameter subgroup $S: \mathbb{C}^{\times} \rightarrow H$
e.g., $t \mapsto \operatorname{diag}\left(t, 1, t^{-1}\right), \quad \psi_{t}:\left[\begin{array}{ccc}a b & c \\ 0 & c \\ 0 & d\end{array}\right] \mapsto\left[\begin{array}{ccc}a & t & t^{2} \\ 0 & t_{c} \\ 0\end{array}\right]$

Also with associated line bundles.

Equivariant families

$\left(\mathbb{C}^{\times}\right)^{n} \subset \mathfrak{L} \longrightarrow \mathfrak{X} \xrightarrow{\pi} \mathbb{C}^{n}$.
$X_{0}:=\pi^{-1}(0, \ldots, 0) ; \quad X_{1}:=\pi^{-1}(1, \ldots, 1)$.
Condition 1: the action of each $\left(\mathbb{C}^{\times}\right)_{j \text { th }}$ on X_{0} has a fixed point with all isotropy weights ≤ 0.

Condition 2: $H^{\geq 1}\left(\mathfrak{X}, \mathcal{O}_{\mathfrak{L}}\right)=\{0\}$.

- Obtain a filtration $\left\{F_{\vec{\ell}}\right\}_{\vec{\ell} \in \mathbb{Z}^{n}}$ of $V:=\Gamma_{\text {hol }}\left(X_{1}, \mathfrak{L} \mid x_{1}\right)$ and a map

$$
V_{\text {graded }}:=\bigoplus_{\vec{\ell}} F_{\vec{\ell}} / F_{>\vec{\ell}} \longrightarrow \Gamma_{\text {hol }}\left(X_{0}, \mathfrak{L} \mid x_{0}\right)
$$

whose restriction to each summand is one-to-one.

- If X_{0} is toric, each summand is one dimensional.
- $V_{\text {graded }} \rightarrow V$ is a linear isomorphism.

Putting everything together

We define a left $\left(\mathbb{C}^{\times}\right)^{n}$ action with which the Bott-Samelson family

$$
\mathfrak{X}=\left(\mathbb{C}^{n} \times P_{i_{1}} \times \cdots \times P_{i_{n}}\right) / B^{n} \xrightarrow{\pi} \mathbb{C}^{n}
$$

becomes an equivariant family with X_{0} the Bott tower and X_{1} the Bott-Samelson manifold.

If $\alpha_{i_{1}}, \ldots, \alpha_{i_{n}}$ corresponds to a reduced expression of the longest element of the Weyl group, and we take the line bundle $\mathfrak{L}=\left(\mathbb{C}^{n} \times P_{i_{1}} \times \cdots \times P_{i_{n}}\right) \times{ }_{B^{n}} \mathbb{C}_{0, \ldots, 0,-\lambda}$, then $V:=\Gamma_{\text {hol }}\left(X_{1}, \mathfrak{L} \mid x_{1}\right)$ provides a geometric model for the (restriction to B of the) irreducible representation of G with highest weight λ.

If $H^{\geq 1}\left(\mathfrak{X}, \mathcal{O}_{\mathfrak{L}}\right)=\{0\}$, we obtain a decomposition of V into one dimensional spaces that refines its decomposition into the T weights spaces.

Thank you!

