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(generalized) hyperpolygons of length E
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2. Hyperpolygons to Higgs bundles

Nakajima quiver varieties
are finite-dim

'l analogues
of Hitchin systems
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For each r, n, g, c, HK reduction
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=) Existence of
sub - integrable systems
in meromorphic Hitch,h systems
that do not see one complex

geometry of the algebraic curve
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