Hyperkähler structures on holomorphic symplectic groupoids

Maxence Mayrand

June 7, 2020

Definition

A hyperkähler manifold is a Riemannian manifold (M, g) with three complex structures I, J, K that are Kähler with respect to g and satisfy the quaternionic identities $I^2 = J^2 = K^2 = IJK = -1$.

- e.g. \mathbb{H}^n , $T^*\mathbb{CP}^n$ (Calabi 1979)
- Kähler forms: ω_I , ω_J , ω_K
- (M, g, I, J, K) hyperkähler $\Longrightarrow (M, I, \omega_J + i\omega_K)$ holomorphic symplectic
- Partial converse by Yau's solution to the Calabi conjecture:
 (M, I, Ω) compact holomorphic symplectic and Kähler ⇒ hyperkähler

Upshot of the talk:

There is a canonical **hyperkähler** structure associated to any compact holomorphic **Poisson surface** (X, π) endowed with a Kähler metric.

It lives on a local symplectic groupoid integrating (X, π) .

It is constructed by lifting special deformations of the Poisson surface.

Holomorphic symplectic groupoids

 (X,π) holomorphic Poisson manifold, $\pi \in H^0(\Lambda^2 \mathcal{T}_X)$, $[\pi,\pi] = 0$

- Induces a Lie algebroid: $\mathcal{T}_X^* \to X$ Anchor: $\mathcal{T}_X^* \to \mathcal{T}_X$, $\alpha \mapsto i_{\alpha}\pi$ Lie bracket: $[df, dg] = d\{f, g\}$
- Integrate \mathcal{T}_X^* to a local Lie groupoid $\mathcal{G} \rightrightarrows X$ (\mathcal{G}, Ω) holomorphic symplectic (induced by Ω_{can} on \mathcal{T}_X^*)



local symplectic groupoid:

- $\mathcal{G} \rightrightarrows X$ local Lie groupoid
- (\mathcal{G}, Ω) symplectic
- $\Gamma_{\mathrm{mult}} \subseteq \mathcal{G}^- \times \mathcal{G} \times \mathcal{G}$ is Lagrangian
- Conversely, given a local symplectic groupoid $\mathcal{G} \rightrightarrows X$, the symplectic form Ω descends to a Poisson structure π on X.

 $\{ \mathsf{Poisson \ manifolds} \} \longleftrightarrow \{ \mathsf{germs \ of \ local \ symplectic \ groupoids} \}$

• Intriguing phenomenon: In many examples, (\mathcal{G}, Ω) carries a hyperkähler structure.

Examples

- (X,π) holomorphic Poisson and Kähler
- $(\mathcal{G},\Omega) \rightrightarrows (X,\pi)$ local symplectic groupoid
- (1) π non-degenerate, $\mathcal{G} = X \times X$ holomorphic symplectic $(\pi^{-1}, -\pi^{-1})$ \mathcal{G} hyperkähler (if X is compact) *Proof.* (Beauville 1983) Yau's solution to the Calabi conjecture + Bochner's principle

(2)
$$\pi = 0$$
, $\mathcal{G} = T^*X$

 \mathcal{G} hyperkähler on a neighborhood of $\operatorname{id} : X \xrightarrow{0} T^*X$ *Proof.* (Feix 1999, Kaledin 1999) Twistor theory

- (3) $X = \mathfrak{g}^*$, $\mathfrak{g} = \operatorname{Lie}(G)$, G complex semisimple Lie group, $\mathcal{G} = T^*G$ \mathcal{G} hyperkähler *Proof.* (Kronheimer 1988) $T^*G \cong \{$ gauge-theoretic moduli space $\}$ (infinite-dimensional hyperkähler quotient)
- (4) (this talk) dim_{$\mathbb{C}} X = 2$, X compact $\implies \mathcal{G}$ hyperkähler</sub>

 (X, I, π) holomorphic Poisson (compact Kähler) $\pi: \mathcal{T}_X^* \to \mathcal{T}_X$ induces

 $\pi: H^1(X, \mathcal{T}^*_X) \longrightarrow H^1(X, \mathcal{T}_X) = \{ \text{1st order deformations of } (X, I) \}$

Theorem (Hitchin 2012)

Each class in the image of π integrates to a deformation (X, I_t) , and π is deformed to holomorphic Poisson structures (X, I_t, π_t) , $t \in \mathbb{C}$ small.

Symplectic foliation: Leaves stay unchanged.

Symplectic forms on leaves: Shifted by a global closed 2-form $\beta_t \in \Omega^2_X$ (L, Ω_L) symplectic leaf $\rightsquigarrow (L, \Omega_L + \iota_L^* \beta_t)$ (Gualtieri 2018)

Remark. β_t is a gauge transformation of Dirac structures: $e^{\beta_t}L_{\pi} = L_{\pi_t}$.

 β_t determines the deformation completely. The condition that $\Omega_L + \iota_L^* \beta_t$ are holomorphic symplectic imposes non-linear algebraic constraints on β_t .

HK structures near a complex Lagrangian

 (M, I, Ω) holomorphic symplectic (non-compact) $X \subseteq M$ complex Lagrangian submanifold

Theorem (M.)

{hyperkähler structure on a neighborhood of X in (M, I, Ω) }

{deformation (M, I_t, Ω_t) such that $\iota_X^* \Omega_t = t\omega$, ω Kähler form on X}

Proof. Twistor theory. Idea: $X \times S^1 \subseteq M \times \mathbb{C}$ is totally real $(\mathbb{R}^n \subseteq \mathbb{C}^n)$. $X \times S^1 \to X \times S^1 : (x, \zeta) \mapsto (x, -\zeta)$ extends to holomorphic map $M \times \mathbb{C}^* \to \overline{M \times \mathbb{C}^*}$. Glues $M \times \mathbb{C}$ and $\overline{M \times \mathbb{C}}$ to a twistor space $Z \to \mathbb{CP}^1$. For all $x \in X$, $\zeta \mapsto (x, \zeta)$ is a real twistor line.

Corollary (Feix–Kaledin metrics) $M = T^*X$, (X, ω) Kähler $\Omega_t := \Omega_{can} + t\pi^*\omega$, where $\pi : T^*X \to X$ Ω_t is holomorphic symplectic (for a unique I_t) and $\iota_X^*\Omega_t = t\omega$ Hence, T^*X has a hyperkähler structure near the zero-section.

HK structures on holomorphic symplectic groupoids

- (X, π) holomorphic Poisson (compact Kähler)
- $(\mathcal{G},\Omega)
 ightarrow (X,\pi)$ local symplectic groupoid, $\mathrm{id}: X \hookrightarrow \mathcal{G}$ Lagrangian
- Goal. Find a deformation $(\mathcal{G}, I_t, \Omega_t)$ such that $\mathrm{id}^*\Omega_t = t\omega$, ω Kähler
- Hitchin's deformation of X in the direction of a Kähler form ω: π([ω]) ∈ H¹(X, T_X) tangent to a deformation (X, I_t, π_t) same symplectic leaves symplectic forms shifted by β_t ∈ Ω²_X
- Lift the deformation to \mathcal{G} : For small $t_1, t_2 \in \mathbb{C}$,

$$\Omega_{t_1,t_2} := \Omega + \mathrm{s}^* \beta_{t_1} - \mathrm{t}^* \beta_{t_2}$$

is a holomorphic symplectic form for a unique complex structure I_{t_1,t_2} . Remark. $(\mathcal{G}, \Omega_{t_1,t_2})$ is a Morita equivalence between (X, π_{t_1}) and (X, π_{t_2})

- $\operatorname{id}^* \Omega_{t_1, t_2} = \beta_{t_1} \beta_{t_2}$ $\operatorname{id}^* \Omega_{t, -t} = \beta_t - \beta_{-t} = 2(\omega t + \beta_3 t^3 + \beta_5 t^5 + \beta_7 t^7 + \cdots)$
- Conclusion. We need a Kähler form ω on X whose Hitchin deformation can be obtained by a family β_t such that $\beta_3 = \beta_5 = \beta_7 = \cdots = 0$.
- Can be done when $\dim_{\mathbb{C}} X = 2$ (for any ω)

To get the Hitchin deformation (X, I_t, π_t) from

$$\beta_t = \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \cdots$$

we need to solve the recursive equations

$$\beta_1 = \omega, \qquad d\beta_n = 0, \qquad \beta_n^{0,2} = \sum_{i+j=n} \beta_i \pi \beta_j.$$

$$eta_n$$
 not unique: $eta_n+\partialar\partial f_n$, $f_n\in \mathcal{C}^\infty(X)$

Proposition (Key ingredient special to dimension 2) On a Kähler surface (X, I, ω) ,

$$D: C^{\infty}(X) \longrightarrow C^{\infty}(X), \quad D(f) = *(i\partial \overline{\partial} f \wedge \omega)$$

is elliptic and self-adjoint. Hence, the Poisson equation D(f) = g has a solution if and only if $\int_X g = 0$.

Can be used to pick f_{2n} such that $\beta_{2n+1} = 0$.

Theorem (M.)

Let (X, π) be a compact holomorphic Poisson surface endowed with a real-analytic Kähler form ω .

Let $(\mathcal{G}, I, \Omega) \rightrightarrows X$ be a local symplectic groupoid integrating (X, π) .

Then, there is a unique hyperkähler structure (g, I, J, K) on a neighborhood of X in \mathcal{G} such that $\mathrm{id}^*\omega_I = \omega$ and $\omega_J + i\omega_K = \Omega$.

Further questions

- Higher dimensions? Yau's theorem?
- For most X, G extends to an actual groupoid (Weinstein groupoid). When does (g, I, J, K) extend to the whole G? When is it complete?
 - $(\mathbb{CP}^2, \sigma = 0, \omega_{FS})$ gives $\mathcal{G} = T^* \mathbb{CP}^2$ with Calabi metric (complete)
 - Non-zero Poisson structures on CP² are specified by a cubic curve.
 Corollary. There is a canonical hyperkähler metric associated to any cubic curve in CP².
 Are they complete?

Are they complete?

Thank you