Quiver gauge theories and symplectic
singularities

Alex Weekes (UBC)
June 6, 2020

Workshop on Lie Theory and Integrable Systems in Symplectic and Poisson Geometry
(Fields Institute)



Introduction

- Investigate properties of Coulomb branches of 3d N' = 4
quiver gauge theories

- Use mathematical construction of Braverman, Finkelberg
and Nakajima

- Viewpoint is algebraic geometry over C

- Plan:
1. Background
2. Coulomb branches, properties and examples
3. Discuss proof that they have symplectic singularities



Background



Symplectic singularities

- Very interesting algebraic varieties with algebraic Poisson
structures, generically (holomorphic) symplectic

- Movating examples:
- Nilpotent cone of a simple Lie algebra g over C, e.g.

No, = {A € Myyn(C) : det(t — A) = t"}
- Normalizations of nilpotent orbit closures

- Kleinian singularities, e.g. C2/(Z/nZ)

- Interesting “representation theory” and enumerative
geometry



Symplectic singularities

- Frequently arise in pairs, as Coulomb and Higgs branches
of 3d N = 4 gauge theories

- Subject* of symplectic duality program proposed by
Braden-Licata-Proudfoot-Webster

- N and Nv are dual, where g, g¥ are Langlands dual Lie
algebras

(Here the “representation theory” is of g and g¥, and more
precisely of categories O)



Symplectic singularities

- A normal affine variety X/C has symplectic singularities if:

1. Have a given symplectic form w on smooth locus X"™8

2. For some (any) resolution = : Y — X of singularities, 7*w
extends to a regular 2-form on Y

- Coordinate ring C[X] gets Poisson bracket {-,-}

- Implies X has finitely many holomorphic symplectic leaves
(Kaledin), and rational Gorenstein singularities (Beauville,
Namikawa)

Nai, = |_| 0y, O, = nilp. orbit of type A
AEn



Coulomb branches



Quiver gauge theories

- Associated to a quiver Q plus dimension vectors
v,w € ZL o, where I is the set of vertices

- For example: the A, quiver 1 — 2 < 3 — 4, with
v=(3,1,2,9)and w = (4,0,1,2)

- To this data, physicists associate a 3d A/ = 4 gauge theory.
Its Higgs branch is the Nakajima quiver variety My(v, w)



The Coulomb branch

- Braverman-Finkelberg-Nakajima have given a construction
of the Coulomb branch M¢(v, w)

- Let D = Spec C[[t]]. Define moduli space R, of data

1. Vector bundle & over D of rank v;, forall i €/
2. Trivialization ¢; of & on D*, foralli € |
3. Forallieland edgesi—j,

Sj € Hom(OD K¢ W,'75,'), Sij € Hom(E,-,Ej)
which remain regular under ¢;

- Action of G[[t]] = [[; GL(v;)[[t]]changing trivialization



The Coulomb branch

- BFN define Coulomb branch as affine scheme/C
Mc(v,w) = Spec HS[[t]](R)

Right side carries “convolution product”, making it a
commutative algebra

- BFN show M¢(v,w) is irreducible normal affine variety,
actually defined over Z

+ Also show M has a Poisson structure, symplectic on M9



Type A,

- Consider Ay quiver datum

n

@

- Mc(m,n) has description due to Kamnitzer:

() A monic, degree m,
(A(Z) B(Z)) e MyClZ)) + (i) degreesB,C < m,
(2) (iii) AD — BC = 2"



Finite ADE type and affine type A

Theorem (Braverman-Finkelberg-Nakajima)
Suppose Q is oriented finite ADE, and let G be the associated
algebraic group (of adjoint type). Then

=

Mc(v,w) =W,

isa for Gg, where
Vv Vv
)‘:ZWiwiv )\—u:ZV,'oz,»
i i
are cocharacters of Gg

Theorem (Nakajima-Takayama)
If Q is oriented affine type A, then Mc¢(v,w) is a Cherkis bow

variety.
10



Finite ADE type

- For type A and p dominant, then
Mc(v,w) =0, NS,

where @y, S,, C gly nilpotent orbit/Slodowy slice, and
A, B N partitions.

() -

gives Mc(v,w) = Ny,

- In finite ADE and affine A types, know decomposition of
Mc(v,w) into symplectic leaves (finite ADE by Muthiah-W.
and Kamnitzer-Webster-W.-Yacobi, affine type A

Nakajima-Takayama) 1



General quivers

- Quivers without loops/multiple edges correspond to
simply-laced Kac-Moody types

Can define

(generalized) affine Grassmannian slice

Mc(v,w) =:
c(v,w) for Kac-Moody group Gq

- Upshot: affine Grassmannian for Gq is not defined in
general

- BFN conjecture a version of the geometric Satake
correspondence using Mc(v,w)

12



Symplectic singularities




Theorem (W.)
Let Q be a quiver without loops or multiple edges, and v, w be
arbitrary. Then Mc¢(v,w) has symplectic singularities.

- This is conjectured by BFN for all Coulomb branches, not
just quiver gauge theories

- Known already for dominant finite ADE type by
Kamnitzer-Webster-W.-Yacobi, and affine type A by

Nakajima-Takayama

Corollary
Mc(v,w) has finitely many holomorphic symplectic leaves,
and rational Gorenstein singularities.

13



First ingredient: partial resolutions

- Coulomb branches admit partial resolutions
M(}:!(V7 W) - MC(V7 W)
2 Is cocharacter of certain “flavour symmetry” group

Special case: Springer resolution T*Fl, — N,

- There is a completely integrable system
@ : Mc(V, W) — tf/W = C2iY
It is faithfully flat, and comes from Hg(pt) — Hf[[Z”(R).

Special case: Gelfand-Tsetlin integrable system

n—1
Nai, — c, A H (coefficients of det(t — A;))
=1

14



Final ingredient: open subsets

Using results of Beauville and Bellamy-Schedler, sufficient to
give open subsets

ME(V, W) —— Mc(v,w) —— tJW

| |

u %

so that
(i) diagram is Cartesian
(ii) codime V = 4,
(iii) U is smooth and symplectic
Then codime(MZ(v, w))"9 > 4
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Second ingredient: integrable system

Theorem (W.)

1. Etale neighbourhood of any fiber of w is isomorphic to a
product

Mé’(v(1)7w(1)) W ooo X M)C{(V(Z),W(e))

2. For generic s, can choose V such that over V these
products are smooth and symplectic.

Establishes diagram on previous page, so proves theorem.



Questions

- Enumerate symplectic leaves, and their transverse slices?

- Is ME — M a Q-factorial terminalization, for generic »?
When is it a resolution?

- Quivers with loops and/or multiple edges? Symmetrizable
types?

- Other Coulomb branches?



Thank you for listening!

| refuse to answer that question on the grounds that | don’t
know the answer.

- Douglas Adams
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