BFN Springer Theory and the Hikita conjecture

Justin Hilburn, Joel Kamnitzer, Alex Weekes

University of Toronto

June 7, 2020

Justin Hilburn, Joel Kamnitzer, Alex Weekes BFN Springer Theory and the Hikita conjecture

Higgs and Coulomb branches

G a complex reductive group, V a representation of *G* Physicists define a gauge theory from *G*, *V* and two spaces:

Higgs branch

$$\mathcal{M}_{H}(G,V) := T^{*}V /\!\!/\!\!/_{\chi} G = \mu^{-1}(0) /\!\!/_{\chi} G$$

Coulomb branch

$$\mathsf{roughly} \quad \mathcal{M}_{\mathcal{C}}(\mathcal{G},\mathcal{V}) := \operatorname{Spec} \textit{H}_{*}(\textit{Maps}(\mathbb{P}^{1},\mathcal{V}/\mathcal{G}))$$

Example

- $G = \mathbb{C}^{\times}, V = \mathbb{C}^n$
 - Higgs branch

$$\mathcal{M}_{H}(G, V) = \{A \in M_{n}(\mathbb{C}) : A^{2} = 0, \operatorname{rank} A \leq 1\}$$

Coulomb branch

$$\mathcal{M}_{\mathcal{C}}(\mathcal{G},\mathcal{V}) = \mathbb{C}^2 /\!\!/ \mathbb{Z}/n$$

Definition due to Braverman-Finkelberg-Nakajima

- $\mathcal{K} = \mathbb{C}((t)), \ \mathcal{O} = \mathbb{C}[[t]], \ Gr_G := G(\mathcal{K})/G(\mathcal{O})$
- $T_{G,V} := \{([g], v) \in Gr_G \times V \otimes \mathcal{K} : v \in g(V \otimes \mathcal{O})\} \rightarrow Gr_G,$ a vector bundle with fibre $V \otimes \mathcal{O}$
- $Z_{G,V} := T_{G,V} \times_{V \otimes \mathcal{K}} T_{G,V}$, Steinberg variety
- $\mathcal{A}_{G,V} = H^{G(\mathcal{K})}_*(Z_{G,V})$, commutative convolution algebra
- $\mathcal{A}^{\hbar}_{\mathcal{G},V} = H^{\mathcal{G}(\mathcal{K}) \rtimes \mathbb{C}^{\times}}_{*}(Z_{\mathcal{G},V})$, non-commutative deformation

Definition

Spec A(G, V) is the Coulomb branch
 A^ħ_{G V} is the Coulomb branch algebra

Hikita Conjecture

There are many (conjectural) relationships between the Higgs and Coulomb branches; today, we examine the Hikita conjecture. Since Gr_G has connected components labelled by $\pi_1(G)$:

$$\mathcal{A}^{\hbar}_{\mathcal{G},\mathcal{V}} = igoplus_{\sigma\in\pi_1(\mathcal{G})} \mathcal{A}^{\hbar}_{\mathcal{G},\mathcal{V}}(\sigma)$$

We have $\chi: \mathcal{G}
ightarrow \mathbb{C}^{ imes}$ and so $\pi_1(\mathcal{G})
ightarrow \mathbb{Z}$, so

$$\mathcal{A}^{\hbar}_{G,V} = \bigoplus_{n \in \mathbb{Z}} \mathcal{A}^{\hbar}_{G,V}(n)$$

 $B(\mathcal{A}_{G,V}^{\hbar}) = \mathcal{A}_{G,V}^{\hbar}(0) / \mathbb{C} \{ ab : a \in \mathcal{A}_{G,V}^{\hbar}(-n), b \in \mathcal{A}_{G,V}^{\hbar}(n), n > 0 \}$ Let $M = \bigoplus_{k \in \mathbb{Z}} M(k)$ be a $\mathcal{A}_{G,V}^{\hbar}$ -module with M(k) = 0 for $k > n_0$. $B(\mathcal{A}_{G,V}^{\hbar})$ acts on $M(n_0)$. If $M(n_0) = \mathbb{C}[\hbar], B(\mathcal{A}_{G,V}^{\hbar}) \to \mathbb{C}[\hbar]$, the **highest weight** of M.

Hikita and highest weights

We have a Kirwan map

$$H^*_{G imes \mathbb{C}^{ imes}}(pt) o H^*_{\mathbb{C}^{ imes}}(\mathcal{M}_H(G,V))$$

And the Gelfand-Tsetlin subalgebra, a complete integrable system

$$H^*_{G imes \mathbb{C}^{ imes}}(pt) o \mathcal{A}^{\hbar}_{G.V}(0)$$

Conjecture

 $H^*_{\mathbb{C}^{ imes}}(\mathcal{M}_H(G,V))\cong B(\mathcal{A}^{\hbar}_{G,V})$ as $H^*_{G imes\mathbb{C}^{ imes}}(pt)$ -algebras.

$$\operatorname{Spec} H^*_{\mathbb{C}^{\times}}(\mathcal{M}_H(G,V)) = \operatorname{Spec} B(\mathcal{A}^{\hbar}_{G,V}) \subset \operatorname{Spec} H^*_{G \times \mathbb{C}^{\times}}(pt)$$

Thus Hikita conjecture predicts a bijection

$$\pi_{0}(\mathcal{M}_{H}(G, V)^{\mathbb{C}^{\times}}) = \{ \text{ highest weights for } \mathcal{A}_{G, V}^{\hbar} \text{-modules } \}$$
$$v \mapsto (H_{G \times \mathbb{C}^{\times}}^{*}(pt) \to H_{\mathbb{C}^{\times}}^{*}(\mathcal{M}_{H}(G, V)) \to H_{\mathbb{C}^{\times}}^{*}(\{v\}) = \mathbb{C}[\hbar])$$

Modules from BFN Springer fibres

Goal: construct modules for Coulomb branch algebras. The **BFN Springer fibre** is the fibre of $T_{G,V}$ over $v \in V \otimes \mathcal{K}$.

$$F_{v} = \{ [g] \in Gr_{G} : v \in g(V \otimes \mathcal{O}) \}$$

Let L_v be the stablizer of v in $G(\mathcal{K}) \rtimes \mathbb{C}^{\times}$. L_v acts on F_v .

Theorem

There is an action of $\mathcal{A}_{G,V}^{\hbar}$ on $H_*^{L_v}(F_v)$.

Example

 $G = GL_n, V = \operatorname{Hom}(\mathbb{C}^n, \mathbb{C}^m), v \in V \text{ injective}$ $F_v = \{L \subseteq \mathcal{O}^n\}, \text{ positive part of the affine Grassmannian}$ $= \sqcup_{k \in \mathbb{N}} \overline{Gr^{k\omega_1}} = \sqcup \{L \subseteq \mathcal{O}^n : \dim \mathcal{O}^n / L = k\}$

Theorem

Assume that $v \in V$ be χ -stable, s.t. $[v] \in V /\!\!/_{\chi} G$ is \mathbb{C}^{\times} -fixed.

- $F_v(n) = \emptyset$ if n > 0 and $F_v(0) = pt$.
- $F_{\nu}(n)$ is a finite-dimensional projective variety, if n < 0.
- H^{C×}_{*}(F_v) is a highest weight module with highest weight given by H^{*}_{G×C×}(pt) → H^{*}_{C×}(V ∥_χ G) → H^{*}_{C×}(pt).

This establishes the Hikita bijection for those fixed points which live in the Kahler quotient $(V /\!\!/_{\chi} G)^{\mathbb{C}^{\times}} \subset \mathcal{M}_{H}(G, V)^{\mathbb{C}^{\times}}$ If we choose a different *G*-invaraint Lagrangian $L \subset V \oplus V^*$, then $\mathcal{M}_{C}(G, L) \cong \mathcal{M}_{C}(G, V)$. We establish the Hikita bijection for all fixed points in some $L /\!\!/_{\chi} G \subset \mathcal{M}_{H}(G, V)$.