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Higgs and Coulomb branches

G a complex reductive group, V a representation of G
Physicists define a gauge theory from G ,V and two spaces:

Higgs branch

MH(G ,V ) := T ∗V ////χ G = µ−1(0) //χ G

Coulomb branch

roughly MC (G ,V ) := SpecH∗(Maps(P1,V /G ))

Example

G = C×,V = Cn

Higgs branch

MH(G ,V ) = {A ∈ Mn(C) : A2 = 0, rankA ≤ 1}

Coulomb branch

MC (G ,V ) = C2 // Z/n
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Coulomb branch algebra

Definition due to Braverman-Finkelberg-Nakajima

K = C((t)), O = C[[t]], GrG := G (K)/G (O)

TG ,V := {([g ], v) ∈ GrG × V ⊗K : v ∈ g(V ⊗O)} → GrG ,
a vector bundle with fibre V ⊗O
ZG ,V := TG ,V ×V⊗K TG ,V , Steinberg variety

AG ,V = H
G(K)
∗ (ZG ,V ), commutative convolution algebra

A~
G ,V = H

G(K)oC×

∗ (ZG ,V ), non-commutative deformation

Definition

1 SpecA(G ,V ) is the Coulomb branch

2 A~
G ,V is the Coulomb branch algebra
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Hikita Conjecture

There are many (conjectural) relationships between the Higgs and
Coulomb branches; today, we examine the Hikita conjecture.
Since GrG has connected components labelled by π1(G ):

A~
G ,V =

⊕
σ∈π1(G)

A~
G ,V (σ)

We have χ : G → C× and so π1(G )→ Z, so

A~
G ,V =

⊕
n∈Z
A~

G ,V (n)

B(A~
G ,V ) = A~

G .V (0)
/
C{ab : a ∈ A~

G ,V (−n), b ∈ A~
G ,V (n), n > 0}

Let M = ⊕k∈ZM(k) be a A~
G ,V -module with M(k) = 0 for k > n0.

B(A~
G ,V ) acts on M(n0).

If M(n0) = C[~], B(A~
G ,V )→ C[~], the highest weight of M.
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Hikita and highest weights

We have a Kirwan map

H∗G×C×(pt)→ H∗C×(MH(G ,V ))

And the Gelfand-Tsetlin subalgebra, a complete integrable system

H∗G×C×(pt)→ A~
G .V (0)

Conjecture

H∗C×(MH(G ,V )) ∼= B(A~
G ,V ) as H∗G×C×(pt)-algebras.

SpecH∗C×(MH(G ,V )) = SpecB(A~
G ,V ) ⊂ SpecH∗G×C×(pt)

Thus Hikita conjecture predicts a bijection

π0(MH(G ,V )C
×

) = { highest weights for A~
G ,V -modules }

v 7→
(
H∗G×C×(pt)→ H∗C×(MH(G ,V ))→ H∗C×({v}) = C[~]

)
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Modules from BFN Springer fibres

Goal: construct modules for Coulomb branch algebras. The BFN
Springer fibre is the fibre of TG ,V over v ∈ V ⊗K.

Fv = {[g ] ∈ GrG : v ∈ g(V ⊗O)}

Let Lv be the stablizer of v in G (K) oC×. Lv acts on Fv .

Theorem

There is an action of A~
G ,V on HLv

∗ (Fv ).

Example

G = GLn, V = Hom(Cn,Cm), v ∈ V injective

Fv = {L ⊆ On}, positive part of the affine Grassmannian

= tk∈NGrkω1 = t{L ⊆ On : dimOn/L = k}
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Modules from fixed points

Theorem

Assume that v ∈ V be χ-stable, s.t. [v ] ∈ V //χ G is C×-fixed.

Fv (n) = ∅ if n > 0 and Fv (0) = pt.

Fv (n) is a finite-dimensional projective variety, if n < 0.

HC×
∗ (Fv ) is a highest weight module with highest weight given

by H∗G×C×(pt)→ H∗C×(V //χ G )→ H∗C×(pt).

This establishes the Hikita bijection for those fixed points which
live in the Kahler quotient (V //χ G )C

× ⊂MH(G ,V )C
×

If we choose a different G -invaraint Lagrangian L ⊂ V ⊕ V ∗, then
MC (G , L) ∼=MC (G ,V ).
We establish the Hikita bijection for all fixed points in some
L //χ G ⊂MH(G ,V ).
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