Perverse equivalences and cacti

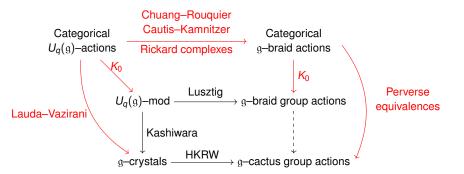
Iva Halacheva (Northeastern University)

Workshop on Lie Theory and Integrable Systems in Symplectic and Poisson Geometry (Fields Institute)

June 6, 2020

Overview

Let $\mathfrak g$ be a simply-laced Kac–Moody Lie algebra.



Categorical g-action I

Warm-up case: $g = \mathfrak{sl}_2$

Suppose $\mathfrak{sl}_2=\mathbb{C}\{e,f,h\} \curvearrowright V=\bigoplus_{n\in\mathbb{Z}} V_n$, an integrable \mathfrak{sl}_2 -rep.

$$e: V_n \to V_{n+2}, \quad f: V_n \to V_{n-2}, \quad (ef - fe)|_{V_n} = n \operatorname{Id}_{V_n} \quad \forall n \in \mathbb{Z}.$$

Categorified \$12-action (Chuang-Rouquier, Khovanov-Lauda):

- an abelian category $C = \bigoplus_n C_n$ (with $K_0(C_n) = V_n$)
- exact endofunctors E, F of C, $E: C_n \to C_{n+2}$, $F: C_n \to C_{n-2}$
- natural transformations

$$\epsilon : EF \to I, \ \eta : I \to FE$$
 (unit and counit of adjunction)
 $X : E \to E, T : E^2 \to E^2$

such that...

Categorical g-action II

• For $n \ge 0$ (analogously for n < 0), we have an isomorphism:

$$(\sigma,\epsilon,\epsilon\circ XI_F,\ldots,\epsilon\circ X^{n-1}I_F):EF|_{C_n}\stackrel{\cong}{\to} FE|_{C_n}\oplus I_{C_n}^{\oplus n},$$

where σ is composed of η , T, and ϵ .

 The natural transformations X, T give an action of the nil affine Hecke algebra H_n on Eⁿ.

Example The adjoint representation of sl₂:

$$(C_2 = \mathbb{C} - \textit{mod}) \mathop{\subset}_{\substack{\leftarrow \\ \textit{Res}}}^{\textit{Ind}} (C_0 = \mathbb{C}[x]/x^2 - \textit{mod}) \mathop{\subset}_{\substack{\leftarrow \\ \textit{Ind}}}^{\textit{Res}} (C_{-2} = \mathbb{C} - \textit{mod})$$

Categorical g-action III

More generally:

The 2-category \mathcal{U}_g categorifies (Lusztig's idempotent form) U_g :

- objects are elements λ of the g-weight lattice.
- 1-morphisms are generated by $E_i: \lambda \to \lambda + \alpha_i, F_i: \lambda \to \lambda \alpha_i$.
- 2-morphisms are generated by

$$X_{i} = \oint_{i} : E_{i} \to E_{i}, \quad X_{i} = \oint_{i} : F_{i} \to F_{i},$$

$$T_{ij} = \underset{i}{\bigvee}_{j} : E_{i}E_{j} \to E_{j}E_{i}, \quad T_{ij} = \underset{i}{\bigvee}_{j} : F_{i}F_{j} \to F_{j}F_{i}$$

$$\bigwedge^{i} : E_{i}F_{i} \to I, \quad \bigwedge^{i} : F_{i}E_{i} \to I, \quad \bigvee^{i} : I \to F_{i}E_{i}, \quad \bigvee^{i} : I \to E_{i}F_{i}$$

+KLR and further relations.

A categorical g–representation is a 2–functor $\mathcal{U}\mathfrak{g}\to\mathcal{K}$ to an appropriate 2-category.

Note: A graded version, \mathcal{U}_{qg} , categorifies U_{qg} .

The Rickard complex I

$$\underline{g} = \mathfrak{sl}_2$$
: Let $s = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = exp(-f)exp(e)exp(-f) \in SL_2$.

Then s restricts to an isomorphism on weight spaces, of the form

$$s|_{V_{-n}} = \sum_{k} (-1)^k e^{(n+k)} f^{(k)}$$

Rickard complex: Consider the complex of functors $\Theta = \bigoplus_n \Theta_n$,

$$\Theta_n : Comp(C_{-n}) \to Comp(C_n)$$

$$\Theta_n = (\dots \to E^{(n+2)}F^{(2)} \to E^{(n+1)}F^{(1)} \to \underline{E^{(n)}})$$

- $E^{(n)} \subseteq E^n$, $F^{(n)} \subseteq F^n$ defined using the H_n -action
- $E^{(n+k)}F^{(k)} \rightarrow E^{(n+k-1)}F^{(k-1)}$ comes from adjunction

The Rickard complex II

Theorem (Chuang-Rouquier '08)

 Θ induces a self-equivalence on $D^b(C)$ and, by restriction, an equivalence $D^b(C_{-n}) \stackrel{\cong}{\to} D^b(C_n)$. Furthermore, $[\Theta] = s$.

Example: Let $R = \mathbb{C}[x]/x^2$. For the adjoint \mathfrak{sl}_2 -representation and $\overline{N \in C_0} = R - mod$,

$$\Theta_0: D^b(R-mod) \to D^b(R-mod)$$
$$N \mapsto (R \otimes N \xrightarrow{act} \underline{N})$$

Perverse equivalences

Suppose that $\mathcal{A}, \mathcal{A}'$ are abelian categories, $F: D^b(\mathcal{A}) \xrightarrow{\cong} D^b(\mathcal{A}')$, we have filtrations $\mathcal{A}_{\bullet}, \mathcal{A}'_{\bullet}$ by Serre subcategories

$$0=\mathcal{A}_{-1}\subset\mathcal{A}_0\subset\mathcal{A}_1\subset\ldots\subset\mathcal{A}_r=\mathcal{A}$$

$$0=\mathcal{R}_{-1}'\subset\mathcal{R}_0'\subset\mathcal{R}_1'\subset\ldots\subset\mathcal{R}_r'=\mathcal{R}'$$

and a perversity function $p: \{0, ..., r\} \to \mathbb{Z}$.

Definition

F is **perverse** with respect to $(\mathcal{A}_{\bullet}, \mathcal{A}'_{\bullet}, p)$ if:

- F[-p(i)] restricts to an equivalence $D^b_{\mathcal{A}_i}(\mathcal{A}) \xrightarrow{\cong} D^b_{\mathcal{A}'_i}(\mathcal{A}')$.
- The induced $D^b_{\mathcal{A}_i}(\mathcal{A})/D^b_{\mathcal{A}_{i-1}}(\mathcal{A}) \xrightarrow{\cong} D^b_{\mathcal{A}'_i}(\mathcal{A}')/D^b_{\mathcal{A}'_{i-1}}(\mathcal{A}')$ equivalence induces an equivalence

$$\mathcal{A}_i/\mathcal{A}_{i-1} \xrightarrow{\cong} \mathcal{A}'_i/\mathcal{A}'_{i-1}.$$

Perversity of the Rickard complexes

Consider C (all of whose objects have finite composition series) endowed with an \mathfrak{sl}_2 -categorical action. Let S be the set of simple objects, and consider the filtrations:

$$S_i = \{ V \in S : F^{i+1}S = 0 \}$$
 and $S'_i = \{ V \in S : E^{i+1}V = 0 \}.$

Proposition (Chuang-Rouquier)

The equivalence $\Theta: D^b(C) \xrightarrow{\cong} D^b(C)$ is perverse with respect to $(S_{\bullet}, S_{\bullet}', p = \text{Id})$.

For a reduced word $w=s_{i_1}\dots s_{i_k}$ and weight μ , consider the composition $\Theta^w_\mu=\Theta^{s_{i_1}}_{s_{i_2}\dots s_{i_r}(\mu)}\circ\dots\circ\Theta^{s_{i_k}}_\mu$.

Theorem 1 (H-Licata-Losev-Yacobi)

Let $w_0 \in W$ be the longest element, and μ a weight of C. Then $\Theta_{\mu}^{w_0} : D^b(C_{\mu}) \to D^b(C_{w_0(\mu)})$ is a perverse equivalence.

Braid and cactus groups

The **braid group** B_g is generated by σ_i , $i \in I$, with relations:

$$\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$$
 if i and j are connected, $\sigma_i \sigma_j = \sigma_j \sigma_i$ if i and j are not connected.

The **cactus group** C_g is generated by c_J , $J \subseteq I$, with relations:

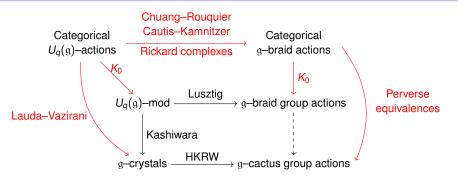
$$\begin{array}{ll} c_J^2 = 1 & \forall \ J \subset I \\ c_J c_K = c_K c_J & \forall \ J \cup K \subset I \ \text{not connected} \\ c_J c_K = c_{*_J(K)} c_J & \forall \ K \subset J \subset I \end{array}$$

Where $\forall j \in J, \alpha_j$ simple root, $\alpha_{*_J(j)} = -w_0^J \alpha_j$.

Proposition (Cautis-Kamnitzer '10)

The Rickard complexes satisfy the braid relations.

A cactus group action



Theorem 2 (H-Licata-Losev-Yacobi)

Let $\theta_J: Irr(C) \to Irr(C)$ denote the bijection induced from $\Theta_{w_0^J}$. Then the map $c_J \mapsto \theta_J$ defines a cactus group action $C_g \curvearrowright Irr(C)$ which coincides with the combinatorial action of the cactus group on crystals (via Schützenberger involutions).

The End

Thank you!