Perverse equivalences and cacti

Iva Halacheva
(Northeastern University)

Workshop on Lie Theory and Integrable Systems in Symplectic and Poisson Geometry (Fields Institute) June 6, 2020

Overview

Let g be a simply-laced Kac-Moody Lie algebra.

Categorical g-action I

Warm-up case: $\mathfrak{g}=\mathfrak{s l}_{2}$
Suppose $\mathfrak{s l}_{2}=\mathbb{C}\{e, f, h\} \curvearrowright V=\bigoplus_{n \in \mathbb{Z}} V_{n}$, an integrable $\mathfrak{s l}_{2}$-rep. $e: V_{n} \rightarrow V_{n+2}, \quad f: V_{n} \rightarrow V_{n-2}, \quad(e f-f e) \mid V_{n}=n \operatorname{ld} V_{n} \quad \forall n \in \mathbb{Z}$.

Categorified $\mathfrak{s l}_{2}$-action (Chuang-Rouquier, Khovanov-Lauda):

- an abelian category $C=\bigoplus_{n} C_{n} \quad$ (with $K_{0}\left(C_{n}\right)=V_{n}$)
- exact endofunctors E, F of $C, E: C_{n} \rightarrow C_{n+2}, F: C_{n} \rightarrow C_{n-2}$
- natural transformations

$$
\begin{aligned}
& \epsilon: E F \rightarrow I, \eta: I \rightarrow F E \quad \text { (unit and counit of adjunction) } \\
& X: E \rightarrow E, T: E^{2} \rightarrow E^{2}
\end{aligned}
$$

such that...

Categorical g-action II

- For $n \geq 0$ (analogously for $n<0$), we have an isomorphism:

$$
\left(\sigma, \epsilon, \epsilon \circ X I_{F}, \ldots, \epsilon \circ X^{n-1} I_{F}\right):\left.\left.E F\right|_{C_{n}} \xrightarrow{\cong} F E\right|_{C_{n}} \oplus I_{C_{n}}^{\oplus n},
$$

where σ is composed of η, T, and ϵ.

- The natural transformations X, T give an action of the nil affine Hecke algebra H_{n} on E^{n}.

Example The adjoint representation of $\mathfrak{s l}_{2}$:

$$
\left(C_{2}=\mathbb{C}-\text { mod }\right) \underset{\text { Res }}{\stackrel{\text { Ind }}{\rightleftarrows}}\left(C_{0}=\mathbb{C}[x] / x^{2}-\text { mod }\right) \underset{\text { Ind }}{\stackrel{\text { Res }}{\rightleftarrows}}\left(C_{-2}=\mathbb{C}-\text { mod }\right)
$$

Categorical g-action III

More generally:
The 2-category \mathcal{U}_{g} categorifies (Lusztig's idempotent form) $\dot{U} \mathrm{~g}$:

- objects are elements λ of the \mathfrak{g}-weight lattice.
- 1-morphisms are generated by $E_{i}: \lambda \rightarrow \lambda+\alpha_{i}, F_{i}: \lambda \rightarrow \lambda-\alpha_{i}$.
- 2-morphisms are generated by

$$
\begin{gathered}
X_{i}=\oint_{i}: E_{i} \rightarrow E_{i}, \quad X_{i}=\phi_{i}: F_{i} \rightarrow F_{i}, \\
T_{i j}={ }_{i} X_{j}: E_{i} E_{j} \rightarrow E_{j} E_{i}, \quad T_{i j}={ }_{i} \chi_{j}: F_{i} F_{j} \rightarrow F_{j} F_{i}
\end{gathered}
$$

$\cap^{i}: E_{i} F_{i} \rightarrow I, \quad \curvearrowleft^{i}: F_{i} E_{i} \rightarrow I, \quad \cup^{i}: I \rightarrow F_{i} E_{i}, \quad \cup^{i}: I \rightarrow E_{i} F_{i}$
$+K L R$ and further relations.
A categorical \mathfrak{g}-representation is a 2 -functor $\mathcal{U g} \rightarrow \mathcal{K}$ to an appropriate 2-category.
Note: A graded version, $\mathcal{U}_{q} \mathfrak{g}$, categorifies $\dot{U}_{q} \mathfrak{g}$.

The Rickard complex I

$\mathfrak{g}=\mathfrak{s l}_{2}$: Let $s=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]=\exp (-f) \exp (e) \exp (-f) \in S L_{2}$.
Then s restricts to an isomorphism on weight spaces, of the form

$$
\left.s\right|_{V_{-n}}=\sum_{k}(-1)^{k} e^{(n+k)} f^{(k)}
$$

$$
\begin{aligned}
& \Theta_{n}: \operatorname{Comp}\left(C_{-n}\right) \rightarrow \operatorname{Comp}\left(C_{n}\right) \\
& \Theta_{n}=\left(\ldots \rightarrow E^{(n+2)} F^{(2)} \rightarrow E^{(n+1)} F^{(1)} \rightarrow \underline{E^{(n)}}\right)
\end{aligned}
$$

- $E^{(n)} \subseteq E^{n}, F^{(n)} \subseteq F^{n}$ defined using the H_{n}-action
- $E^{(n+k)} F^{(k)} \rightarrow E^{(n+k-1)} F^{(k-1)}$ comes from adjunction

The Rickard complex II

Theorem (Chuang-Rouquier '08)

Θ induces a self-equivalence on $D^{b}(C)$ and, by restriction, an equivalence $D^{b}\left(C_{-n}\right) \xrightarrow{\cong} D^{b}\left(C_{n}\right)$. Furthermore, $[\Theta]=s$.

Example: Let $R=\mathbb{C}[x] / x^{2}$. For the adjoint $\mathfrak{s l}_{2}$-representation and $\overline{N \in C_{0}}=R$ - mod,

$$
\begin{gathered}
\Theta_{0}: D^{b}(R-\bmod) \rightarrow D^{b}(R-\bmod) \\
N \mapsto(R \otimes N \xrightarrow{\text { act }})
\end{gathered}
$$

Perverse equivalences

Suppose that $\mathcal{A}, \mathcal{A}^{\prime}$ are abelian categories, $F: D^{b}(\mathcal{A}) \xrightarrow{\cong} D^{b}\left(\mathcal{A}^{\prime}\right)$, we have filtrations $\mathcal{A}_{\mathbf{0}}, \mathcal{A}^{\prime}$. by Serre subcategories

$$
\begin{aligned}
& 0=\mathcal{A}_{-1} \subset \mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \ldots \subset \mathcal{A}_{r}=\mathcal{A} \\
& 0=\mathcal{A}_{-1}^{\prime} \subset \mathcal{A}_{0}^{\prime} \subset \mathcal{A}_{1}^{\prime} \subset \ldots \subset \mathcal{A}_{r}^{\prime}=\mathcal{A}^{\prime}
\end{aligned}
$$

and a perversity function $p:\{0, \ldots, r\} \rightarrow \mathbb{Z}$.

Definition

F is perverse with respect to $\left(\mathcal{A}_{0}, \mathcal{A}_{\bullet}^{\prime}, p\right)$ if:
(1) $F[-p(i)]$ restricts to an equivalence $D_{\mathcal{A}_{i}}^{b}(\mathcal{A}) \xrightarrow{\cong} D_{\mathcal{F}_{i}^{\prime}}^{b}\left(\mathcal{A}^{\prime}\right)$.
(2) The induced $D_{\mathcal{A}_{i}}^{b}(\mathcal{A}) / D_{\mathcal{A}_{i-1}}^{b}(\mathcal{A}) \stackrel{\cong}{\rightrightarrows} D_{\mathcal{A}_{i}^{\prime}}^{b}\left(\mathcal{A}^{\prime}\right) / D_{\mathcal{A}_{i-1}^{\prime}}^{b}\left(\mathcal{A}^{\prime}\right)$ equivalence induces an equivalence

$$
\mathcal{A}_{i} / \mathcal{A}_{i-1} \xrightarrow{\cong} \mathcal{A}_{i}^{\prime} / \mathcal{A}_{i-1}^{\prime} .
$$

Perversity of the Rickard complexes

Consider C (all of whose objects have finite composition series) endowed with an $\mathfrak{s l}_{2}$-categorical action. Let S be the set of simple objects, and consider the filtrations:

$$
S_{i}=\left\{V \in S: F^{i+1} S=0\right\} \quad \text { and } \quad S_{i}^{\prime}=\left\{V \in S: E^{i+1} V=0\right\}
$$

Proposition (Chuang-Rouquier)

The equivalence $\Theta: D^{b}(C) \xrightarrow{\cong} D^{b}(C)$ is perverse with respect to ($S_{\bullet}, S_{\bullet}^{\prime}, p=I d$).

For a reduced word $w=s_{i_{1}} \ldots s_{i_{k}}$ and weight μ, consider the composition $\Theta_{\mu}^{w}=\Theta_{s_{i_{2}} \ldots s_{i_{r}}(\mu)}^{s_{s_{1}}} \circ \ldots \circ \Theta_{\mu}^{s_{i_{K}}}$.

Theorem 1 (H-Licata-Losev-Yacobi)

Let $w_{0} \in W$ be the longest element, and μ a weight of C. Then $\Theta_{\mu}^{w_{0}}: D^{b}\left(C_{\mu}\right) \rightarrow D^{b}\left(C_{w_{0}(\mu)}\right)$ is a perverse equivalence.

Braid and cactus groups

The braid group $B_{\mathfrak{g}}$ is generated by $\sigma_{i}, i \in I$, with relations:

$$
\begin{array}{ll}
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { if } i \text { and } j \text { are connected, } \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { if } i \text { and } j \text { are not connected. }
\end{array}
$$

The cactus group C_{g} is generated by $c_{J}, J \subseteq I$, with relations:

$$
\begin{array}{ll}
c_{J}^{2}=1 & \forall J \subset I \\
c_{J} c_{K}=c_{K} c_{J} & \forall J \cup K \subset I \text { not connected } \\
c_{J} c_{K}=c_{* J}(K) c_{J} & \forall K \subset J \subset I
\end{array}
$$

Where $\forall j \in J, \alpha_{j}$ simple root, $\alpha_{*_{J}(j)}=-w_{0}^{J} \alpha_{j}$.

Proposition (Cautis-Kamnitzer '10)

The Rickard complexes satisfy the braid relations.

A cactus group action

Theorem 2 (H-Licata-Losev-Yacobi)

Let $\theta_{J}: \operatorname{Irr}(C) \rightarrow \operatorname{Irr}(C)$ denote the bijection induced from $\Theta_{w_{0}^{J}}$. Then the map $c_{J} \mapsto \theta_{J}$ defines a cactus group action $C_{g} \curvearrowright \operatorname{lrr}(C)$ which coincides with the combinatorial action of the cactus group on crystals (via Schützenberger involutions).

The End

Thank you!

