Xiudi Tang University of Toronto joint with Joseph Palmer and Álvaro Pelayo arXiv:1909.03501

Workshop on Lie Theory and Integrable Systems in Symplectic and Poisson Geometry June 7, 2020

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1 Integrable systems

1 Integrable systems

2 Toric systems

- Definition
- Classification

1 Integrable systems

2 Toric systems

- Definition
- Classification

3 Semitoric systems

- Examples
- Definition
- Classification

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Invariants

1 Integrable systems

2 Toric systems

- Definition
- Classification

3 Semitoric systems

- Examples
- Definition
- Classification
- Invariants

4 Historical review

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Section 1

Integrable systems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Integrable systems

Definition

An integrable system consists of

- a symplectic symplectic manifold (M^{2n}, ω) ;
- a Hamiltonian \mathfrak{t}^n -action $\rho \colon \mathfrak{t}^n \to \mathfrak{X}(M)$;
- a momentum map $\mu \colon M o (\mathfrak{t}^n)^* \simeq \mathbb{R}^n$;
- so that the critical points of μ forms a null set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Integrable systems

Definition

An integrable system consists of

- a symplectic symplectic manifold (M^{2n}, ω) ;
- a Hamiltonian \mathfrak{t}^n -action $\rho \colon \mathfrak{t}^n \to \mathfrak{X}(M)$;
- a momentum map $\mu \colon M o (\mathfrak{t}^n)^* \simeq \mathbb{R}^n$;
- so that the critical points of μ forms a null set.

For any integrable system (M, ω, ρ, μ) :

- $X_{\langle \mu, a \rangle} = \rho(a)$ is parallel to fibers of μ for $a \in \mathfrak{t}^n$;
- $\rho(a)$ and $\rho(b)$ commute for $a, b \in \mathfrak{t}^n$;
- any regular fiber of μ is Lagrangian.

Harmonic oscillator

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

2-sphere

2-sphere

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

The Hamiltonian vector field act as a circle action.

Section 2

Toric systems

- Definition

Toric systems

Remark

In the examples of the harmonic oscillator and the 2-sphere, the Hamiltonian vector fields are periodic, or generates an S^1 -action. Those are 2D examples of toric integrable systems where we have torus actions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Definition

Toric systems

Remark

In the examples of the harmonic oscillator and the 2-sphere, the Hamiltonian vector fields are periodic, or generates an S^1 -action. Those are 2D examples of toric integrable systems where we have torus actions.

Definition

An integrable system (M, ω, ρ, μ) is toric if ρ integrates to a Lie group action $\tilde{\rho}: T^n \to \operatorname{Ham}(M, \omega)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

Example 3

$(S^2 imes S^2, \omega_{S^2} \oplus \omega_{S^2})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

<u> </u>	lc	pric	SV:	ste	ms

Definition

Example 4

 $(\mathbb{C}P^2, \omega_{\mathrm{FS}})$

$$CP^{2} = \{[z_{0} : z_{1} : z_{2}]\}$$

$$\mu([z_{0} : z_{1} : z_{2}]) = \begin{pmatrix} \frac{|z_{1}|^{2}}{|z_{0}|^{2} + |z_{1}|^{2} + |z_{2}|^{2}}, \frac{|z_{2}|^{2}}{|z_{0}|^{2} + |z_{1}|^{2} + |z_{2}|^{2}} \end{pmatrix}$$

$$(CP^{2}, \omega_{FS}) \xrightarrow{\mu}$$

Classification

Toric systems

Isomorphisms of toric systems

A toric system $(M_1, \omega_1, \rho_1, \mu_1)$ is isomorphic to $(M_2, \omega_2, \rho_2, \mu_2)$ if

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where φ is a symplectomorphism and G is a diffeomorphism.

Classification

Toric systems: classification

Theorem (Atiyah, Guillemin-Sternberg, Delzant 1980s)

 $\begin{aligned} \{ \textit{compact toric systems} \} & \longrightarrow & \{ \textit{Delzant polytopes} \} \\ & /\textit{isomorphisms} & /\textit{AGL}(n, \mathbb{R}) \\ & [(M, \omega, \rho, \mu)] & \longmapsto & [\mu(M)] \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Classification

Toric systems: classification

Theorem (Atiyah, Guillemin–Sternberg, Delzant 1980s)

$$\begin{aligned} \{ \textit{compact toric systems} \} & \longrightarrow & \{ \textit{Delzant polytopes} \} \\ & /\textit{isomorphisms} & / \textit{AGL}(n, \mathbb{R}) \\ & [(M, \omega, \rho, \mu)] & \longmapsto & [\mu(M)] \end{aligned}$$

Delzant polytopes

Delzant polytope: every corner is locally the standard corner up to the action of $AGL(n, \mathbb{Z})$.

イロト 不良 とうせい イロト

э

Section 3

Semitoric systems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Examples

Generalized coupled angular momentum

Examples: Hohloch–Palmer 2018

Let $M = S^2 \times S^2$ with Cartisian coordinates $(x_1, y_1, z_1, x_2, y_2, z_2)$ and $\omega = R_1 \omega_{S^2} \oplus R_2 \omega_{S^2}$ where $0 < R_1 < R_2$. Consider integrable systems $(M, \omega, \rho_s, \mu_s = (J, H_s))$ with a parameter $s \in [0, 1]$ where $J = R_1 z_1 + R_2 z_2$, $H_s = (1 - s)^2 z_1 + s^2 z_2 + 2s(1 - s)(x_1 y_1 + x_2 y_2)$.

A D N A 目 N A E N A E N A B N A C N

The systems behave differently as R_1 , R_2 , and s varies.

Semitoric systems

Examples

Example 5

Examples

Example 6

Semitoric systems

Examples

Semitoric vs toric

Comparing with toric systems					
Examples 5 or 6	a toric system				

Examples

Semitoric vs toric

Comparing with toric systems				
Examples 5 or 6	a toric system			
X_J is periodic, X_H is not	both X_J and X_H are periodic			

Examples

Semitoric vs toric

Comparing with toric systems	
Examples 5 or 6	a toric system
X_J is periodic, X_H is not	both X_J and X_H are periodic
has focus-focus singularity	all singularities are elliptic

Semitoric systems

Examples

Semitoric vs toric

Comparing with toric systems	
Examples 5 or 6	a toric system
X_J is periodic, X_H is not	both X_J and X_H are periodic
has focus-focus singularity	all singularities are elliptic
some fibers are pinched tori	all fibers are tori

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Examples

Semitoric vs toric

Comparing with toric	systems	
Examples	5 or 6	a toric system
X _J is periodic	, X _H is not	both X_J and X_H are periodic
has focus-focu	s singularity	all singularities are elliptic
some fibers are	pinched tori	all fibers are tori
no global action-a	ngle coordinates	has global action-angle coord.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Semitoric systems

Examples

Semitoric vs toric

C	omparing with toric systems	
	Examples 5 or 6	a toric system
	X_J is periodic, X_H is not	both X_J and X_H are periodic
	has focus-focus singularity	all singularities are elliptic
	some fibers are pinched tori	all fibers are tori
no global action-angle coordinates		has global action-angle coord.
	image is a curvilinear polygon	image is a polygon

Semitoric systems

Examples

Semitoric vs toric

Comparing with toric systems				
Examples 5 or 6	a toric system			
X_J is periodic, X_H is not	both X_J and X_H are periodic			
has focus-focus singularity	all singularities are elliptic			
some fibers are pinched tori	all fibers are tori			
no global action-angle coordinates	has global action-angle coord.			
image is a curvilinear polygon	image is a polygon			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This is an example of a semitoric system.

- Semitoric systems

- Definition

Semitoric systems

Definition

A 4D integrable system $(M^4, \omega, \rho, \mu = (J, H))$ is semitoric if ρ integrates to a Lie group action $\tilde{\rho}: S^1 \times \mathbb{R} \to \text{Ham}(M, \omega)$, J is proper, and all singularities are of either elliptic or focus-focus type.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Definition

Semitoric systems

Definition

A 4D integrable system $(M^4, \omega, \rho, \mu = (J, H))$ is semitoric if ρ integrates to a Lie group action $\tilde{\rho}: S^1 \times \mathbb{R} \to \text{Ham}(M, \omega)$, J is proper, and all singularities are of either elliptic or focus-focus type.

Theorem (Eliasson 1984)

For an integrable system (M, ω, ρ, μ) in a neighborhood of any nondenerate singular point of μ , there are symplectic coordinates x_i, y_i and $q = (q_1, \ldots, q_n) \colon \mathbb{R}^{2n} \to \mathbb{R}^n$ where q_i can be

- regular: $q_i = y_i$;
- elliptic: $q_i = \frac{1}{2}(x_i^2 + y_i^2);$
- hyperbolic: $q_i = x_i y_i$;
- focus-focus: $q_{i-1} = x_{i-1}y_i x_iy_{i-1}$ and $q_i = x_{i-1}y_{i-1} + x_iy_i$;

such that q_i Poisson commutes with components of μ .

- Semitoric systems

Classification

Semitoric systems

In the absense of hyperbolic components Eliasson's theorem implies that q and μ are related by a diffeomorphism of the codomain, which means that $(\mathbb{R}^{2n}, \omega_0, \rho_0, q)$ is an local model of (M, ω, ρ, μ) . Thus in the definition of semitoric systems we only rule out degenerate and hyperbolic singularities.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Semitoric systems

Classification

Semitoric systems

In the absense of hyperbolic components Eliasson's theorem implies that q and μ are related by a diffeomorphism of the codomain, which means that $(\mathbb{R}^{2n}, \omega_0, \rho_0, q)$ is an local model of (M, ω, ρ, μ) . Thus in the definition of semitoric systems we only rule out degenerate and hyperbolic singularities.

Isomorphisms of semitoric systems

Two semitoric systems $(M_i, \omega_i, \rho_i, \mu_i = (J_i, H_i))$, i = 1, 2 are isomorphic if

$$(M_1, \omega_1) \xrightarrow{\varphi} (M_2, \omega_2)$$

$$\mu_1 \downarrow \qquad \qquad \downarrow \mu_2$$

$$\mathbb{R}^2 \xrightarrow{G} \mathbb{R}^2$$

commutes where φ is a symplectomorphism and $G(J_2, H_2) = (J_1, f(J_1, H_1))$ for some smooth function f with $\frac{\partial f}{\partial H_1} > 0$.

900

Classification

Semitoric systems: classification

Theorem (Palmer–Pelayo–T 2019)

 $\{semitoric systems\} \longrightarrow /isomorphisms$

{marked VPIA Delzant polytopes with labels /VPIA group

・ロト・西ト・山田・山田・山口・

Classification

Semitoric systems: classification

Theorem (Palmer–Pelayo–T 2019)

{semitoric systems} → {marked VPIA Delzant polytopes with labels} / isomorphisms / VPIA group

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A marked VPIA Delzant polytope with labels has three parts

- a marked VPIA Delzant polytope;
- a focus-focus label for each focus-focus value;
- a twisting covector for each focus-focus value.

Classification

Semitoric systems: classification

Theorem (Palmer–Pelayo–T 2019)

{semitoric systems} → {marked VPIA Delzant polytopes with labels} / isomorphisms / VPIA group

A marked VPIA Delzant polytope with labels has three parts

- a marked VPIA Delzant polytope;
- a focus-focus label for each focus-focus value;
- a twisting covector for each focus-focus value.

VPIA stands for vertically piecewise integral affine.

Invariants

Invariants: marked polytope

The marked VPIA Delzant polytope

It is so called a Delzant VPIA polygon Δ which captures the global affine structure of $\mu(M)$.

We cut $\mu(M)$ by vertical lines through focus-focus values into pieces. Each piece is turned into a polygon piece under action coordinates. Then we glue the polygon pieces to get a polygon.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Each mark represents a focus-focus value.

Invariants

Invariants: marked polytope

Example 5

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- Semitoric systems

Invariants

Invariants: marked polytope

Group action on polygons

As a polygon in \mathbb{R}^2 , Δ is not unique. Per different choices of the action coordinates, there are many different resulting polygons Δ , which are all related to the VPIA group G_j where **j** is the set of the abscissae of focus-focus values. The group G_j is generated by T, \mathfrak{t}_j for $j \in \mathbf{j}$ and \mathfrak{y}_b for $b \in \mathbb{R}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Semitoric systems

L Invariants

Invariants: marked polytope

Example 5

Invariants

Invariants: focus-focus labels

The focus-focus labels

For every focus-focus value \times with multiplicity k, we have a tuple

$$\mathsf{I} = (\mathsf{s}_0, \mathsf{g}_{0,1}, \dots, \mathsf{g}_{0,k-1})$$

of k independent formal power series which captures the local affine structure near the focus-focus value. The tuple I is called the focus-focus label at \times .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Semitoric systems

Invariants

Invariants: focus-focus labels

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Invariants

Invariants: focus-focus labels

Example 5

For any regular value c near the focus-focus value \times : $\tau_1(c) \in S^1$ — travel time along X_J , $\tau_2(c) > 0$ — travel time along X_H . Functions τ_1 and τ_2 diverge at \times , and the monodromy causes τ_1 to increase by 2π every cycle cmoves around \times .

ヘロト ヘロト ヘロト

- Semitoric systems

Invariants

Invariants: focus-focus labels

Example 5

For any regular value c near the focus-focus value \times : $\tau_1(c) \in S^1$ — travel time along X_J , $\tau_2(c) > 0$ — travel time along X_H . Functions τ_1 and τ_2 diverge at \times , and the monodromy causes τ_1 to increase by 2π every cycle cmoves around \times .

$$\begin{split} \kappa &= -\Im \ln c \, \mathrm{d} c_1 - \Re \ln c \, \mathrm{d} c_2.\\ \sigma &= \tau_1 \, \mathrm{d} c_1 + \tau_2 \, \mathrm{d} c_2 - \kappa.\\ \text{Take function } S_0 \text{ vanishing at } \times\\ \text{and } \mathrm{d} S_0 &= \sigma.\\ \text{Then } \mathsf{s}_0 \text{ is the Taylor series of } S_0 \end{split}$$

at origin.

くちゃく ほうえん いくしゃ

Semitoric systems

Invariants

Invariants: focus-focus labels

Example 6

Invariants

Invariants: focus-focus labels

Example 6

For any regular value c near the focus-focus value \times : $\tau_1(c) \in S^1$ — travel time along X_J , $\tau_2(c) > 0$ — travel time along X_H . Functions τ_1 and τ_2 diverge at \times , and the monodromy causes τ_1 to increase by 4π every cycle cmoves around \times .

ヘロト ヘロト ヘロト

- Semitoric systems

Invariants

Invariants: focus-focus labels

Example 6

For any regular value c near the focus-focus value \times : $\tau_1(c) \in S^1$ — travel time along X_J , $\tau_2(c) > 0$ — travel time along X_H . Functions τ_1 and τ_2 diverge at \times , and the monodromy causes τ_1 to increase by 4π every cycle cmoves around \times .

$$\begin{split} \kappa &= -\Im \ln c \, \mathrm{d} c_1 - \Re \ln c \, \mathrm{d} c_2.\\ \sigma &= \tau_1 \, \mathrm{d} c_1 + \tau_2 \, \mathrm{d} c_2 - \kappa - G^*_{0,1} \kappa.\\ \text{Take function } S_0 \text{ vanishing at } \times\\ \text{and } \mathrm{d} S_0 &= \sigma. \end{split}$$

Then s_0 is the Taylor series of S_0 at origin.

- Semitoric systems

Invariants

Invariants: focus-focus labels

In Example 6 both focus-focus points lie in the same fiber. There is a choice which is m_0 and which is m_1 . After then, the Eliasson's theorem gives symplectic coordinates $(x_1^a, y_1^a, x_2^a, y_2^a)$ near m_a , for a = 0, 1, and so that $q(x_1^a, y_1^a, x_2^a, y_2^a) = \mu(E^a(z))$, for $z \in M$ and E^a a diffeomorphism. First, the series s_0 should be expanded under coordinates E^0 . Second, the series $g_{0,1}$ is the Taylor series of the second component of $G_{0,1} = E^1 \circ (E^0)^{-1}$.

Invariants

Invariants: twsting covector

The twsting covectors

For every focus-focus value \times we construct a covector r in a prescibed cotangent space with as many possible values as \mathbb{Z} which captures the Dehn twist of the trajectory of X_H in nearby fibers over \times .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Semitoric systems

L Invariants

Invariants: twsting covector

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Semitoric systems

L Invariants

Invariants: twsting covector

The twsting covector r takes value in the cotangent space of the plane at the focus-focus value defined in a certain way, and is noncanonically identified with integers.

(日) (四) (日) (日) (日)

Section 4

Historical review

Historical results

Definition

A semitoric system $(M^4, \omega, \rho, \mu = (J, H))$ is simple if J is injective on singular points of F.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Historical results

Definition

A semitoric system $(M^4, \omega, \rho, \mu = (J, H))$ is simple if J is injective on singular points of F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Neither of Example 5 nor 6 is simple.

simple semitoric system

$$R_{1} = 2, R_{2} = 1,$$

$$s = \frac{1}{2}$$

$$(S^{2} \times S^{2}, \omega_{S^{2}} \oplus \omega_{S^{2}})$$

$$\mu_{s} = (J, H_{s})$$

$$\mathbb{R}^{2}$$

900

Simple semitoric systems: classification

Theorem (Pelayo–Vũ Ngọc 2007)

 $\begin{cases} simple \ semitoric \ systems \\ \\ / isomorphisms \\ \end{cases} \xrightarrow{\begin{subarray}{c} five \ invariants \\ \\ / a \ discrete \ group \\ \end{cases}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Simple semitoric systems: classification

Theorem (Pelayo–Vũ Ngọc 2007)

Five invariants:

- a polytope invariant;
- the number of focus-focus values;
- a height invariant h > 0 for each focus-focus value;
- a Taylor series for each focus-focus value;
- an twisting index $k \in \mathbb{Z}$ for each focus-focus value.

Simple semitoric systems: classification

Theorem (Pelayo-Vũ Ngọc 2007)

- a polytope invariant;
- the number of focus-focus values;
- a height invariant h > 0 for each focus-focus value;
- a Taylor series for each focus-focus value;
- an twisting index $k \in \mathbb{Z}$ for each focus-focus value.

Simple semitoric systems: classification

Theorem (Pelayo–Vũ Ngọc 2007)

- a polytope invariant;
- the number of focus-focus values; marked VPIA Delzant polytope
- a height invariant h > 0 for each focus-focus value;
- a Taylor series for each focus-focus value;
- an twisting index $k \in \mathbb{Z}$ for each focus-focus value.

Simple semitoric systems: classification

Theorem (Pelayo–Vũ Ngọc 2007)

- a polytope invariant;
- the number of focus-focus values; | marked VPIA Delzant polytope
- a height invariant h > 0 for each focus-focus value;
- a Taylor series for each focus-focus value; >focus-focus label
- an twisting index $k \in \mathbb{Z}$ for each focus-focus value.

Simple semitoric systems: classification

Theorem (Pelayo–Vũ Ngọc 2007)

 ${simple semitoric systems} \rightarrow {five invariants} / isomorphisms / a discrete group$

- a polytope invariant;
- the number of focus-focus values; marked VPIA Delzant polytope
- a height invariant h > 0 for each focus-focus value;
- a Taylor series for each focus-focus value; >focus-focus label
- an twisting index $k \in \mathbb{Z}$ for each focus-focus value. }twisting covector

A review of sympletic classifications of integrable systems

	local	semi-local	global
toric			
simple semitoric			
semitoric	1		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A review of sympletic classifications of integrable systems

	local	semi-local	global
toric	Eliason		
simple semitoric	1004		
semitoric	1904		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A review of sympletic classifications of integrable systems

	local	semi-local	global
toric	F I:	Atiyah, Guillemii	n–Sternberg, Delzant 1980s
simple semitoric			
semitoric	1904		

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

A review of sympletic classifications of integrable systems

	local	semi-local	global
toric		Atiyah, Guillemii	n–Sternberg, Delzant 1980s
simple semitoric	Ellasson	Vũ Ngọc 2003	
semitoric	1904		

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

A review of sympletic classifications of integrable systems

	local	semi-local	global
toric	Eliasson 1984	Atiyah, Guillemin–Sternberg, Delzant 1980s	
simple semitoric		Vũ Ngọc 2003	Pelayo–Vũ Ngọc 2007
semitoric			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A review of sympletic classifications of integrable systems

	local	semi-local	global
toric	Eliasson 1984	Atiyah, Guillemin–Sternberg, Delzant 1980s	
simple semitoric		Vũ Ngọc 2003	Pelayo–Vũ Ngọc 2007
semitoric		Pelayo–T 2018	

A review of sympletic classifications of integrable systems

	local	semi-local	global
toric	Eliasson 1984	Atiyah, Guillemin–Sternberg, Delzant 1980s	
simple semitoric		Vũ Ngọc 2003	Pelayo–Vũ Ngọc 2007
semitoric		Pelayo–T 2018	Palmer–Pelayo–T 2019

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

A review of sympletic classifications of integrable systems

	local	semi-local	global
toric	Eliasson 1984	Atiyah, Guillemin–Sternberg, Delzant 1980s	
simple semitoric		Vũ Ngọc 2003	Pelayo–Vũ Ngọc 2007
semitoric		Pelayo–T 2018	Palmer–Pelayo–T 2019

Thank you!