

Generalized orbital varieties and MV cycles

Anne Dranowski June 10, 2020

Lie theory and integrable systems in symplectic and Poisson geometry

Matrix facts

Proposition

If

$$A = \begin{bmatrix} C & v & W \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \in \mathsf{Mat}(N)$$

has Jordan type λ and C has Jordan type λ' such that $\lambda-\lambda'$ is two boxes in columns $l\leq r$, then

$$B = \begin{bmatrix} C & V \\ 0 & 0 \end{bmatrix} \in \mathsf{Mat}(N-1)$$

has Jordan type λ'' such that $\lambda - \lambda''$ is the box in column r and $r \neq l$.

Roughly, there is a natural order on Jordan types of submatrices of matrices like A.

1

In nature

These types of matrices show up when we consider the action of the indeterminate *t* on the affine Grassmannian

$$\mathcal{G}r = G(\mathcal{K})/G(\mathcal{O})$$
 $\mathcal{O} = \mathbb{C}[[t]], \, \mathcal{K} = \mathbb{C}((t))$

in type A.

In nature

If L is a free submodule of the vector space \mathcal{K}^m such that $\mathcal{K} \otimes_{\mathcal{O}} L \cong \mathcal{K}^m$ then we call it a rank m lattice.

We can identify the affine Grassmannian of GL_m with the set of all rank m lattices.

Moreover, to a weight $\mu \in \mathbb{Z}^m$ of GL_m we can associate an orbit $\mathcal{G}r_{\mu} \subset \mathcal{G}r$, and if $\mu = (\mu_1 \geq \mu_2 \geq \cdots \geq \mu_m \neq 0) \vdash N$ then any $L \in \mathcal{G}r_{\mu}$ is a sublattice of the standard lattice $L_0 = \mathcal{O}^m$ and the matrix¹

$$\left[t\big|_{L_0/L}\right]'$$

is a $\mu \times \mu$ block matrix.

The collection of all such matrices is denoted \mathbb{T}_{μ} and the subset $\mathbb{T}_{\mu} \cap \mathfrak{n}$ is a particular subset of (C, v, w, 1) matrices, assuming $\mu_m \geq 2$.

¹in the basis ([e_1],[te_1],...,[$t^{\mu_1-1}e_m$],...,[e_m],[te_m],...,[$t^{\mu_m-1}e_m$])

Examples

If $\mu = (3,2,2)$ and $L \in \mathcal{G}r_{\mu}$ then

$$\left[t \big|_{L_0/L} \right]' = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ * & * & * & * & * & * & * \\ \hline 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ * & * & 0 & * & * & * & * \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ * & * & 0 & * & * & * & * \end{bmatrix}$$

with *s denoting unconstrained entries, and $\mathbb{T}_{\mu} \cap \mathfrak{n}$ comprises

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & * & * & * & * \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} C & V & W \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

If $\mu = (1, 1, \dots, 1)$ then $\mathbb{T}_{\mu} = \mathsf{Mat}(m)$.

4

The Mirković-Vybornov isomorphism

If $\lambda \geq \mu$ then \mathbb{T}_{μ} is a transverse slice to the conjugacy class of Jordan type λ , denoted \mathbb{O}_{λ} , and

$$\overline{\mathbb{O}}_{\lambda} \cap \mathbb{T}_{\mu} \cong \overline{\mathcal{G}r^{\lambda}} \cap \mathcal{G}r_{\mu}$$

where $\mathcal{G}r^{\lambda}$ is the $G(\mathcal{O})$ orbit associated to λ .

The restricted Mirković-Vybornov isomorphism

Corollary

$$\overline{\mathbb{O}}_{\lambda} \cap \mathbb{T}_{\mu} \cap \mathfrak{n} \cong \overline{\mathcal{G}r^{\lambda}} \cap S^{\mu}_{-}$$

where S^{μ}_{-} is the $U_{-}(\mathcal{K})$ orbit associated to μ .

Here $U_- \subset GL_m$ is the subgroup of unipotent lower triangular matrices

"The left-hand side is made of $N \times N$ matrices while the right-hand side is made of $m \times m$ matrices."

Goal

Give a decomposition of the left-hand side $\overline{\mathbb{O}}_{\lambda} \cap \mathbb{T}_{\mu} \cap \mathfrak{n}$ by "generalized orbital varieties" indexed by semi-standard Young tableau matching the decomposition of (almost the right-hand side) $\overline{\mathcal{G}r^{\lambda} \cap S_{-}^{\mu}}$ into its irreducible components, the MV cycles.

Spaltenstein recipe

To tableau $\tau \in SSYT(\lambda)_{\mu}$ we can associate a matrix $A \in \mathbb{T}_{\mu} \cap \mathfrak{n}$ such that for all $1 \leq i \leq m$ the upper submatrix made of the first $i \times i$ blocks has Jordan type $\lambda^{(i)} = \text{shape of } \tau|_{1,2,\ldots,i}$

$$A_{(i)}\in \mathbb{O}_{\lambda^{(i)}}$$

By example,

$$\tau = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 \end{bmatrix} \supset \tau \big|_{1,2} = \begin{bmatrix} 1 & 1 & 2 \\ 2 \end{bmatrix} \supset \tau \big|_{1} = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

defines a matrix

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & a & b & c & c \\ \hline 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & d & d \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad a, d = 0 \text{ and } b, c \neq 0$$

Slower Spaltenstein recipe

We can slow the process down

so that a tableau of size N yields $N \ge m$ shapes

$$\lambda^{(3,1)}\supset\lambda^{(2,2)}\supset \textcolor{red}{\lambda^{(2,1)}}\supset \lambda^{(1,2)}\supset \textcolor{red}{\lambda^{(1,1)}}$$

and define a matrix A'

such that

$$A'_{(i,k)}\in \mathbb{O}_{\lambda^{(i,k)}}$$

q

Same result

We can use the (C, v, w, 1) matrix fact to show that N conditions define the same matrices as m conditions, and slowing the recipe down does not alter the result

$$\{A \in \mathbb{T}_{\mu} \cap \mathfrak{n} \big| A_{(i)} \in \mathbb{O}_{\lambda^{(i)}}\} = \{A \in \mathbb{T}_{\mu} \cap \mathfrak{n} \big| A_{(i,k)} \in \mathbb{O}_{\lambda^{(i,k)}}\}.$$

We denote this set \mathring{X}_{τ} .

Generalized orbital varieties

By induction on the restriction map

$$\mathring{X}_{\tau} \to \mathring{X}_{\tau-[m]}$$

we can show that \mathring{X}_{τ} has unique irreducible component of top dimensional.

 $X_{ au} := \dot{X}_{ au}^{top}$ is called a generalized orbital variety, and

$$\overline{\mathbb{O}}_{\lambda} \cap \mathbb{T}_{\mu} \cap \mathfrak{n} = \bigcup_{\tau} X_{\tau}$$

MV cycles

Theorem

The closure of the image of X_{τ} under the Mirković–Vybornov isomorphism is an MV cycle.

Moreover, its Lusztig datum is equal to that of τ .

Here Lusztig data are certain combinatorial fingerprints of crystal bases.

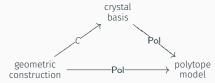
Application

We use the information of the ideal of an orbital variety corresponding to a given MV cycle to compare to perfect bases.

- the MV basis, $\{b_Z\}$, indexed by MV cycles Z
- \cdot the dual semicanonical basis, $\{\xi_{\rm M}\}$, indexed by modules ${\it M}$

Application

Both bases are $B(\infty)$ crystal bases, with compatible polytope models, i.e.



such that Pol(Z) = Pol(M) whenever $C(b_Z) = C(\xi_M)$.

Kamntizer-Knutson:

$$Pol(Z) = Pol(M) \stackrel{?}{\Longrightarrow} b_Z = \xi_M$$

Relaxed:

$$Pol(Z) = Pol(M) \stackrel{?}{\Longrightarrow} D(b_Z) = D(\xi_M)$$

Counterexample

Let (Y, Z) be such that

$$\tau(Y) = \tau(Z) = \begin{bmatrix} 1 & 1 & 5 & 5 \\ 2 & 2 & 6 & 6 \\ \hline 3 & 3 \\ 4 & 4 \end{bmatrix}$$

then X_{τ} is 16 dimensional generated in degrees 1,2,3, and 6, and

$$\sum_{\underline{\mathbf{i}}} \chi(F_{\underline{\mathbf{i}}}M) D_{\underline{\mathbf{i}}} \neq \varepsilon_0(Z)$$

implying $D(\xi_M) \neq D(b_Z)$ so $\xi_M \neq b_Z$.

