Normal forms for Higgs fields over a formal 1d disc

Mykola Matviichuk

McGill University/University of Toronto

Lie theory and integrable systems in symplectic and Poisson geometry, June 6, 2020 Let X be a smooth curve over \mathbb{C} . Let V be a holomorphic vector bundle over X. A tensor $\phi \in H^0(X, End(V) \otimes \mathcal{T}_X^*)$ is called a **Higgs** field on V. A tensor $\phi \in H^0(X, End(V) \otimes \mathcal{T}_X)$ is called a **co-Higgs** field on V. If $X \subset \mathbb{C}$, then $\mathcal{T}_X^* \cong \mathcal{T}_X \cong \mathcal{O}_X$, and so, co-Higgs = Higgs.

Spectral correspondence

Let $\phi \in H^0(X, End(V) \otimes L)$, where L is a line bundle over the curve X.

$$\chi_{\phi}(\lambda) = \det(\lambda \operatorname{Id} - \phi) =$$

= $\lambda^r - s_1(\phi)\lambda^{r-1} + \dots + (-1)^{r-1}s_{r-1}(\phi)\lambda + (-1)^r s_r(\phi),$

where $r = \operatorname{rk} V$, $s_i(\phi) \in S^i(L)$, λ is the tautological section of the pullback p^*L , where $p: L \to X$. $\Sigma = \{\chi_{\phi}(\lambda) = 0\} \subset L$ is called the **spectral curve** of ϕ .

Theorem (Beauville-Narasimhan-Ramanan)

$$\left\{\begin{array}{l}V: \text{ vector bundle on } X,\\\phi \in H^0(X, End(V) \otimes L)\end{array}\right\} \xleftarrow[1-1]{} \left\{\begin{array}{l}\Sigma \subset L,\\ \text{rank 1, torsion-free}\\ \text{sheaf } \mathcal{F} \text{ on } \Sigma\end{array}\right\}$$

$$V = p_*(\mathcal{F})$$

$$\phi = p_*(\text{multiplication by } \lambda)$$

Normal forms for (co-)Higgs fields over a formal 1d disc

Let $\mathcal{U} = \operatorname{Spec} \mathbb{C}[[x]]$ be a formal 1d disc. Let $V = \mathcal{O}_{\mathcal{U}}^{\oplus r}$, and $\phi \in \operatorname{End}(V)$ a (co-)Higgs field on V. Assuming spectral curve Σ of ϕ is fixed, is there a normal form for ϕ ? E.g. if $\Sigma = \{y^r = x\}$, then ϕ is isomorphic to

Is there an analogous statement for singular Σ ?

Why consider singular spectral curves?

Let V be a holomorphic vector bundle over a curve X. A \mathbb{C}^* -invariant Poisson structure σ on $V \implies$ a co-Higgs filed ϕ on V.

 $\phi: \mathcal{T}_X^* \longrightarrow End_0(V)$

 $\alpha \longmapsto \xrightarrow{\sigma \text{-Hamiltonian vector field}} \text{of the pullback of } \alpha \text{ to } \mathbb{P}(V)$

A Poisson structure σ on $\mathbb{P}(V) \implies$ a zero-trace co-Higgs filed ϕ on V.

Theorem (M.)

Let V be a rank > 2 holomorphic vector bundle over a connected, simply connected curve $X \subseteq \mathbb{P}^1$. Let σ be either a Poisson structure on $\mathbb{P}(V)$, or a \mathbb{C}^* -invariant Poisson structure on V. Then the spectral curve of the co-Higgs field on V induced by σ , if it is

connected, must be **singular**.

Let $\mathcal{U} = \operatorname{Spec} \mathbb{C}[[x]]$ be a formal 1d disc. Let $V = \mathcal{O}_{\mathcal{U}}^{\oplus r}$, and $\phi \in \operatorname{End}(V)$ a (co-)Higgs field on V. Fix a (singular) spectral curve Σ of ϕ . What does ϕ look like? Spectral correspondence:

isomorphism classes of $\phi \xleftarrow{1-1}$ torsion-free rank 1 sheaves on Σ

Classification of torsion-free rank 1 sheaves is done for the curves with ADE singularities (Drozd-Roiter, Jacobinski, 1967), T_{pq} singularities (e.g. Schappert 1987), and a few more cases in Arnold's classification of singularities (e.g. "unimodal", "bimodal").

ADE and T_{pq} singularities

Mykola Matviichuk (McGill/UofT) Local normal forms for Higgs fields

 A_1

Higgs fields with an A_n singularity

Let $\Sigma = \{y^{n+1} = x^2\}.$ Let $\phi \in \operatorname{End}(\mathcal{O}_{\mathcal{U}}^{\oplus(n+1)})$ whose spectral curve is Σ . Then ϕ is isomorphic one of the following: corresponds to the sheaf \mathcal{O}_{Σ} corresponds to $p_*\mathcal{O}_{\widetilde{\Sigma}}$, where $p: \widetilde{\Sigma} \to \Sigma$ is a partial resolution of singularities; $\tilde{\Sigma}$ is either smooth or has an A_{n-2k} for some k.

Higgs fields with a D_4 singularity

Let $\Sigma = \{(y - \lambda_1 x)(y - \lambda_2 x)(y - \lambda_3 x) = 0\}, \lambda_i \in \mathbb{C}, \lambda_i \neq \lambda_j.$ Let $\phi \in \operatorname{End}(\mathcal{O}_{\mathcal{U}}^{\oplus 3})$ whose spectral curve is Σ . Then ϕ is isomorphic to exactly one of: $\begin{pmatrix} \lambda_1 x & & \\ 1 & \lambda_2 x & \\ & 1 & \lambda_3 x \end{pmatrix}$ $\begin{pmatrix} \lambda_i x \\ \lambda_{i+1} x \\ 1 \\ \lambda_{i+2} x \end{pmatrix} \qquad \begin{pmatrix} \lambda_1 x \\ \lambda_{i+2} x \end{pmatrix}$ $\lambda_2 x$ $\lambda_3 x$, $-y = \lambda_i x$ $\begin{pmatrix} \lambda_1 x & & \\ x & \lambda_2 x & \\ & 1 & \lambda_3 x \end{pmatrix}$ $\begin{pmatrix} \lambda_1 x & & \\ 1 & \lambda_2 x & \\ & x & \lambda_3 x \end{pmatrix}$

Mykola Matviichuk (McGill/UofT) Local normal forms for Higgs fields

Higgs fields with an E_7 singularity

Let $\Sigma = \{y^3 = x^3y\}$. Let $\phi \in \text{End}(\mathcal{O}_{\mathcal{U}}^{\oplus 3})$ whose spectral curve is Σ . Then ϕ is isomorphic to exactly one of:

Mykola Matviichuk (McGill/UofT) Local normal forms for Higgs fields

Using the classification of torsion-free rank 1 sheaves over *ADE* singularities singularities, available in the literutare on Cohen-Macaulay modules over Cohen-Macaulay curves, we deduce the normal forms for (co-)Higgs fields over formal 1d disc whose spectral curve has such a singularity (Appendix of the PhD thesis: http://blog.math.toronto.edu/GraduateBlog/2020/05/15/ departmental-phd-thesis-exam-mykola-matviichuk/)

THANK YOU!

June 6, 2020 12 / 12