$\mathrm{SU}(2)$ Representations of the

Fundamental Group of a Genus 2
 Oriented 2-manifold

Lisa Jeffrey,
Dept. of Mathematics
University of Toronto
http://www.math.toronto.edu/~jeffrey

Joint work with Nan-Kuo Ho, Paul Selick and Eugene Xia
arXiv:2005.07390

I. Background

II. Commuting elements
III. Retractions
IV. Cohomology of commuting pairs
V. Atiyah space
VI. 9-manifold
VII. Prequantum line bundle
VIII. Cohomology of 9-manifold
IX. Wall's Theorem

I. Introduction

- Let Σ be a compact two-dimensional orientable manifold of genus 2 (in other words a double torus).
- After puncturing the surface, the fundamental group is the free group on four generators.
- We consider the representations of this fundamental group into $S U(2)$ for which the loop around the puncture is sent to $-I$. This space is well studied by Desale-Ramanan (1976), and has been identified with the space of planes in the intersection of two quadrics in a Grassmannian.
- Define $M=\mu^{-1}(-I)$ where μ is the product of commutators.
- Define $A=M / G$ where $G=S U(2)$ acts by conjugation.
- Special case of Atiyah and Bott 1983, who found that these spaces of conjugacy classes of representation of the fundamental group were torsion free and computed their Betti numbers.
- The ring structure of the cohomology was discovered by Thaddeus (1992) using methods from mathematical physics and algebraic geometry.
- In this special case, we recover Atiyah and Bott's result and also Thaddeus' result.
- Our main tool is the Mayer-Vietoris sequence.

Results:

- Cell decomposition and ring structure of the space of commuting elements of $\mathrm{SU}(2)$
(Previously the cohomology groups were identified by Adem and Cohen 2006; a cell decomposition of the suspension of this space was studied by Baird, Jeffrey, Selick 2009).
- Cohomology groups of $M=\mu^{-1}(-I)$; cohomology ring of $M^{\prime}=M / M_{U}$ where M_{U} is the subset of elements where at least one element is in the center of $S U(2)$
- New calculation of the cohomology of the space A of conjugacy classes of representations.
Cohomology groups: Atiyah-Bott 1983
Cohomology ring: Thaddeus 1992 (using Verlinde formula)
- Identification of the transition functions of the principal $S U(2)$ bundle $M \rightarrow A$

II. The space of commuting elements

- The space of commuting elements is $\mathcal{T}:=\operatorname{Comm}^{-1}(I)$ where Comm : $G \times G \rightarrow G$ is the commutator.

The structure of the cohomology of \mathcal{T} as groups was discovered by Adem-Cohen (2006).
The cell decomposition of the suspension of \mathcal{T} was worked out by Baird-Jeffrey-Selick (2009) and Crabb (2011).

- We write the elements of $S U(2)$ as quaternions

$$
\left[\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right] \longleftrightarrow z+w j
$$

Let T be the maximal torus of G (the space of diagonal unitary matrices of rank 2 with determinant 1). This is isomorphic to the circle group $U(1)$.

For all $g \in G \exists \theta \in[0, \pi]$ s.t. (as quaternions) $g=h e^{i \theta} h^{-1}$ for some $h \in G$. This occurs if and only if
$\operatorname{Trace}(g)=e^{i \theta}+e^{-i \theta}=2 \cos (\theta)$. The group G is foliated by its conjugacy classes, which are parametrized by the value of the trace map.

- So $G \times G$ is foliated by the values of the trace of the commutator map:

$$
G \times G=\cup_{\theta \in[0, \pi]} W_{\theta}
$$

where

$$
W_{\theta}=\left\{(g, h) \mid[g, h] \sim e^{i \theta}\right\} .
$$

- Define

$$
X_{\theta}=\left\{(g, h) \mid[g, h]=e^{i \theta}\right\}
$$

- Define also

$$
W_{[a, b]}=\cup_{\theta \in[a, b]} W_{\theta}
$$

(similarly $X_{[a, b]}$).
Theorem [Meinrenken]: For $\theta \neq 0$,

$$
X_{\theta}=P S U(2)=S O(3)=\mathbf{R} P^{3}:=\mathcal{H}
$$

There is a homeomorphism from X_{θ} to \mathcal{H}, where T acts on X_{θ} by conjugation and acts on \mathcal{H} by left translation.

By writing down an explicit T-homeomorphism, we show that there is a T-equivariant homeomorphism from X_{θ} to \mathcal{H}.

III. RETRACTIONS

- The space $\mathcal{T}=X_{0}=\{g, h \mid[g, h]=1\}$ is the space of commuting pairs in $S U(2)$.

Theorem: There is a deformation retraction from $X_{[0, \pi)}$ to X_{0}. Recall the following theorem of Milnor:
Theorem (Milnor, Morse Theory) If $f: M \rightarrow \mathbf{R}$ is smooth and c is an isolated critical value of f, and f has no critical values in $(c, d]$, then $f^{-1}(c)$ is a deformation retract of $f^{-1}([c, d])$.
We apply this theorem to the trace function on $X_{[0, \pi)}$. The extreme value is $\operatorname{Trace}(g)=2$, in other words $\theta=0$. Instead of using Milnor's theorem, we use the gradient flow for the trace function.

Theorem: The flow lines for the vector field ∇ (Trace) are closed, and every point of X_{θ} is the endpoint of a flow line
emanating from X_{u} for some $u>0$.

- However, we cannot get a closed form solution for the equation of the flow lines.
- We have found a different retraction which is explicit, and this allows us to show that it is T-equivariant.

IV. Cohomology of Commuting Pairs

- Baird, Jeffrey, Selick (2009) gave the cohomology of the suspension of \mathcal{T}, showing that this suspension is equivalent to the suspension of $S^{3} \vee S^{3} \vee S^{2} \vee \Sigma^{2} \mathbf{R} P^{2}$.
- Instead,

$$
\begin{gathered}
S U(2) \times S U(2)=W_{[0, \pi]}=W_{[0, \pi)} \cup W_{(0, \pi]} \\
W_{[0, \pi)} \simeq W_{0}=X_{0}=\mathcal{T} \\
W_{(0, \pi]} \simeq W_{\pi}=X_{\pi}=\mathbf{R} P^{3} \\
W_{(0, \pi)}=(0, \pi) \times W_{\pi / 2}=(0, \pi) \times\left(\mathbf{R} P^{3} \times S^{2}\right)
\end{gathered}
$$

- By Mayer-Vietoris, we are able to compute the cohomology of \mathcal{T} as a ring. It turns out that all cup products are 0.
- We show that $X_{0} \simeq S^{3} \vee S^{3} \vee S^{2} \vee \Sigma^{2} \mathbf{R} P^{2}$.

See also the 2016 PhD thesis of Trefor Bazett.

V. Atiyah Space

- Let

$$
M=\mu^{-1}(-I)
$$

This level set is a 9-manifold.

- The space $A:=M / G$ (where G acts on M by conjugation). The center of G acts trivially, so we have a free $S O(3)$-action. The space $A=M / G$ is a free $S O(3)$ bundle. Theorem (Atiyah-Bott 1983)

$$
\begin{gathered}
H^{*}(A)=\mathbf{Z}, q=0,2,4,6 \\
=\mathbf{Z}^{4}, q=3
\end{gathered}
$$

All the other groups are 0 .

- We have

$$
\begin{gathered}
A_{\theta}=\left\{\left(x, y, x^{\prime}, y^{\prime}\right) \in G \mid[x, y]\left[x^{\prime}, y^{\prime}\right]=-I,[x, y] \simeq e^{i \theta}\right\} / S O(3) \\
A_{0}=\left(X_{0} \times X_{\pi}\right) / S O(3)=X_{0}=\mathcal{T} \\
A_{\pi}=\left(X_{\pi} \times X_{0}\right) / S O(3)=X_{0}=\mathcal{T}
\end{gathered}
$$

- For $\theta \in(0, \pi)$,

$$
A_{\theta}=\left(X_{\theta} \times X_{\pi-\theta}\right) / S O(3)=\mathbf{R} P^{3} \times\left(\mathbf{R} P^{3} / T\right)=\mathbf{R} P^{3} \times S^{2}
$$

- We can write an explicit retraction for this:

$$
A_{[0, \pi)} \simeq A_{0} \simeq \mathcal{T}
$$

where $A_{[0, \pi)}:=\cup_{\theta \in[0, \pi)} A_{\theta}$.

$$
A=A_{[0, \pi)} \cup_{A_{(0, \pi)}} A_{(0, \pi]} \simeq \mathcal{T} \times_{\mathbf{R} P^{3} \times S^{2}} \mathcal{T}
$$

- Mayer-Vietoris gives the cohomology groups of A as above.

VI. The 9-Manifold

Recall we defined $M=\mu^{-1}(-I)$.
Then

$$
M=\cup_{\theta \in[0, \pi]} M_{\theta},
$$

where

$$
M_{\theta}=\left\{\left(x, y, x^{\prime}, y^{\prime}\right) \in M \mid[x, y] \sim e^{i \theta}\right\} .
$$

Lemma. The bundles

$$
M_{[0, \pi)} \rightarrow A_{[0, \pi)}
$$

and

$$
M_{(0, \pi]} \rightarrow A_{(0, \pi]}
$$

are trivial.
(This implies there is a local trivialization of $M \rightarrow A$ over $\left.A=A_{[0, \pi)} \cup A_{(0, \pi]}.\right)$

Theorem: The transition function is given by

$$
A_{(0, \pi)} \simeq A_{\pi / 2}=\left(X_{\pi / 2} \times X_{\pi / 2}\right) / T=\left(\mathbf{R} P^{3} \times \mathbf{R} P^{3}\right) / T \rightarrow \mathbf{R} P^{3}
$$

where the last map is given by $(g, h) \mapsto g^{-1} h$. This is well defined because T acts by left multiplication, where we have made use of the fact that our homeomorphism $X_{\pi / 2} \rightarrow \mathbf{R} P^{3}$ is a T-map with respect to the conjugation action on $X_{\pi / 2}$ and left multiplication on $\mathbf{R} P^{3}$.

VII. Prequantum Line Bundle

Let $A^{\prime}=A / A_{U}$ where A_{U} is the subset of $x, y, x^{\prime}, y^{\prime}$ for which at least one of $x, y, x^{\prime}, y^{\prime}$ is $\pm I$. We note that $A_{\theta}^{\prime}=A_{\theta}$ for $\theta \neq 0, \pi$.

- Let \mathcal{L} be the total space of the prequantum $U(1)$ bundle over A^{\prime}. Let $\operatorname{proj}_{L}: \mathcal{L} \rightarrow A^{\prime}$ be the projection map. The space \mathcal{L} may be formed as a union of the two open sets $\operatorname{proj}_{L}^{-1}\left(A_{[0, \pi)}^{\prime}\right)$ and $\operatorname{proj}_{L}^{-1}\left(A_{(0, \pi)}^{\prime}\right)$. These sets intersect in a subset $\operatorname{proj}_{L}^{-1}\left(A_{(0, \pi)}^{\prime}\right)$. This subset is isomorphic to $\mathbf{R} P^{3} \times \mathbf{R} P^{3}$.
- So we are able to identify its cohomology groups.
- We examine the Mayer-Vietoris sequence associated to the above decomposition of \mathcal{L}. We first do this with $\mathbf{Z} / 2 \mathbf{Z}$ coefficients and obtain

$$
H^{q}(\mathcal{L} ;(\mathbf{Z} / 2 \mathbf{Z}))=\mathbf{Z} /(2 \mathbf{Z}), q=0,3,4,7
$$

and 0 for all other values of q.

- Then we study the Mayer-Vietoris sequence with integer coefficients. The sequence for

$$
0 \rightarrow \operatorname{coker}(\delta) \rightarrow H^{4}(\mathcal{L}) \rightarrow \operatorname{ker}(\delta) \rightarrow 0
$$

is

$$
0 \rightarrow \mathbf{Z} /(2 \mathbf{Z}) \rightarrow H^{4}(\mathcal{L}) \rightarrow \mathbf{Z} /(2 \mathbf{Z}) \rightarrow 0
$$

Hence $H^{4}(\mathcal{L})$ has four elements. Because we have already computed $H^{4}(\mathcal{L} ; \mathbf{Z} /(2 \mathbf{Z}))$ and this has one element, it follows that $H^{4}(\mathcal{L} ; \mathbf{Z})=\mathbf{Z} /(4 \mathbf{Z})$.

- The cohomology of the total space of the prequantum line bundle is

$$
\begin{array}{r}
H^{q}(\mathcal{L} ; \mathbf{Z})=\mathbf{Z}, \quad q=0,7 \\
\mathbf{Z} / 4 \mathbf{Z}, \quad q=4
\end{array}
$$

For all other values of q,

$$
H^{q}(\mathcal{L} ; \mathbf{Z})=0
$$

We may then make the following deduction:

- Corollary:

The ring structure of $H^{*}(A)$ is

$$
H^{*}(A)=<1, x, s_{1}, s_{2}, s_{3}, s_{4}, y, z>
$$

where the degrees of x, y and z are respectively $2,4,6$ and the degree of the s_{j} are 3 .

The relations are

$$
x^{2}=4 y, x y=s_{1} s_{3}=s_{2} s_{4}=z
$$

and all other intersection pairings are 0 .

- The cohomology ring $H^{*}\left(A^{\prime}\right)$ is the same, except with no generators in degree 3.
- These relations were first shown by Thaddeus 1992.

VIII. COHOMOLOGY OF 9-MANIFOLD

We make the following definition:

$$
M^{\prime}=M / M_{U}
$$

where M_{U} is the subset of M where at least one of $x, y, x^{\prime}, y^{\prime}$ is $\pm I$.
Since we know the transition function for the Mayer-Vietoris sequence, we can deduce

$$
H^{q}\left(M^{\prime}\right)=\mathbf{Z}, \quad q=0,2,7,9
$$

$$
\mathbf{Z} /(4 \mathbf{Z}), \quad q=4,6
$$

and all others are 0.

With some extra work, we can also get the ring structure of $H^{*}\left(M^{\prime}\right)$, and

$$
H^{q}(M)=H^{q}\left(M^{\prime}\right) \oplus R
$$

where $R^{3}=R^{6}=\mathbf{Z}^{4}, \quad R^{5}=(\mathbf{Z} / 2 \mathbf{Z})^{4}$ and all the rest are 0.

IX. WALL'S THEOREM

- We conclude by matching up our results with the work of Wall (1966) toward classifying 6-manifolds:

Theorem (C.T.C. Wall, 1966):
Let Y be a 6 -manifold with $H^{q}(Y)=\mathbf{Z}$ for $q=0,2,4,6$ and $H^{3}(Y)=\mathbf{Z}^{2 r}$. Then Y is the connected sum of some 6 -manifold Y^{\prime} with the r-fold connected sum $\left(S^{3} \times S^{3}\right)^{\# r}$, where $H^{q}\left(Y^{\prime}\right)=\mathbf{Z}, \quad q=0,2,4,6$ and 0 for all other q.

- In our case

$$
A=A^{\prime} \#\left(S^{3} \times S^{3}\right) \#\left(S^{3} \times S^{3}\right)
$$

where A^{\prime} was previously defined as $A^{\prime}=A / A_{U}$ where A_{U} is the subset of $x, y, x^{\prime}, y^{\prime}$ for which at least one of $x, y, x^{\prime}, y^{\prime}$ is $\pm I$.

- Note that part of Wall's results is that there exists a smooth manifold homeomorphic to A^{\prime}.

