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I. Introduction

� Let Σ be a compact two-dimensional orientable manifold of

genus 2 (in other words a double torus).

� After puncturing the surface, the fundamental group is the free

group on four generators.

� We consider the representations of this fundamental group into

SU(2) for which the loop around the puncture is sent to −I.

This space is well studied by Desale-Ramanan (1976), and has

been identified with the space of planes in the intersection of

two quadrics in a Grassmannian.

� Define M = µ−1(−I) where µ is the product of commutators.

� Define A = M/G where G = SU(2) acts by conjugation.



� Special case of Atiyah and Bott 1983, who found that these

spaces of conjugacy classes of representation of the fundamental

group were torsion free and computed their Betti numbers.

� The ring structure of the cohomology was discovered by

Thaddeus (1992) using methods from mathematical physics and

algebraic geometry.

� In this special case, we recover Atiyah and Bott’s result and

also Thaddeus’ result.

� Our main tool is the Mayer-Vietoris sequence.



Results:

� Cell decomposition and ring structure of the space of

commuting elements of SU(2)

(Previously the cohomology groups were identified by Adem

and Cohen 2006; a cell decomposition of the suspension of this

space was studied by Baird, Jeffrey, Selick 2009).

� Cohomology groups of M = µ−1(−I); cohomology ring of

M ′ = M/MU where MU is the subset of elements where at least

one element is in the center of SU(2)

� New calculation of the cohomology of the space A of conjugacy

classes of representations.

Cohomology groups: Atiyah-Bott 1983

Cohomology ring: Thaddeus 1992 (using Verlinde formula)



� Identification of the transition functions of the principal SU(2)

bundle M → A



II. The space of commuting elements

� The space of commuting elements is T := Comm−1(I) where

Comm : G×G→ G is the commutator.

The structure of the cohomology of T as groups was discovered

by Adem-Cohen (2006).

The cell decomposition of the suspension of T was worked out

by Baird-Jeffrey-Selick (2009) and Crabb (2011).

� We write the elements of SU(2) as quaternions z w

− w̄ z̄

←→ z + wj

Let T be the maximal torus of G (the space of diagonal unitary

matrices of rank 2 with determinant 1). This is isomorphic to

the circle group U(1).



For all g ∈ G ∃ θ ∈ [0, π] s.t. (as quaternions) g = heiθh−1 for

some h ∈ G. This occurs if and only if

Trace(g) = eiθ + e−iθ = 2 cos(θ). The group G is foliated by its

conjugacy classes, which are parametrized by the value of the

trace map.

� So G×G is foliated by the values of the trace of the

commutator map:

G×G = ∪θ∈[0,π]Wθ

where

Wθ = {(g, h) | [g, h] ∼ eiθ}.

� Define

Xθ = {(g, h) | [g, h] = eiθ}



� Define also

W[a,b] = ∪θ∈[a,b]Wθ

(similarly X[a,b]).

Theorem [Meinrenken]: For θ 6= 0,

Xθ = PSU(2) = SO(3) = RP 3 := H

There is a homeomorphism from Xθ to H, where T acts on Xθ by

conjugation and acts on H by left translation. �

By writing down an explicit T -homeomorphism, we show that there

is a T -equivariant homeomorphism from Xθ to H.



III. RETRACTIONS

� The space T = X0 = {g, h|[g, h] = 1} is the space of commuting

pairs in SU(2).

Theorem: There is a deformation retraction from X[0,π) to X0.

Recall the following theorem of Milnor:

Theorem (Milnor, Morse Theory) If f : M → R is smooth and

c is an isolated critical value of f , and f has no critical values in

(c, d], then f−1(c) is a deformation retract of f−1([c, d]).

We apply this theorem to the trace function on X[0,π). The

extreme value is Trace(g) = 2, in other words θ = 0.

Instead of using Milnor’s theorem, we use the gradient flow for

the trace function.

Theorem: The flow lines for the vector field ∇(Trace) are

closed, and every point of Xθ is the endpoint of a flow line



emanating from Xu for some u > 0.

� However, we cannot get a closed form solution for the equation

of the flow lines.

� We have found a different retraction which is explicit, and this

allows us to show that it is T -equivariant.



IV. Cohomology of Commuting Pairs

� Baird, Jeffrey, Selick (2009) gave the cohomology of the

suspension of T , showing that this suspension is equivalent to

the suspension of S3 ∨ S3 ∨ S2 ∨ Σ2RP 2.

� Instead,

SU(2)× SU(2) = W[0,π] = W[0,π) ∪W(0,π]

W[0,π) 'W0 = X0 = T

W(0,π] 'Wπ = Xπ = RP 3

W(0,π) = (0, π)×Wπ/2 = (0, π)× (RP 3 × S2)

� By Mayer-Vietoris, we are able to compute the cohomology of

T as a ring. It turns out that all cup products are 0.

� We show that X0 ' S3 ∨ S3 ∨ S2 ∨ Σ2RP 2.



See also the 2016 PhD thesis of Trefor Bazett.



V. Atiyah Space

� Let

M = µ−1(−I).

This level set is a 9-manifold.

� The space A := M/G (where G acts on M by conjugation).

The center of G acts trivially, so we have a free SO(3)-action.

The space A = M/G is a free SO(3) bundle.

Theorem ( Atiyah-Bott 1983)

H∗(A) = Z, q = 0, 2, 4, 6

= Z4, q = 3

All the other groups are 0.



� We have

Aθ = {(x, y, x′, y′) ∈ G | [x, y][x′, y′] = −I, [x, y] ' eiθ}/SO(3)

A0 = (X0 ×Xπ)/SO(3) = X0 = T

Aπ = (Xπ ×X0)/SO(3) = X0 = T

� For θ ∈ (0, π),

Aθ = (Xθ ×Xπ−θ)/SO(3) = RP 3 × (RP 3/T ) = RP 3 × S2



� We can write an explicit retraction for this:

A[0,π) ' A0 ' T .

where A[0,π) := ∪θ∈[0,π)Aθ.

A = A[0,π) ∪A(0,π)
A(0,π] ' T ×RP 3×S2 T .

� Mayer-Vietoris gives the cohomology groups of A as above.



VI. The 9-Manifold

Recall we defined M = µ−1(−I).

Then

M = ∪θ∈[0,π]Mθ,

where

Mθ = {(x, y, x′, y′) ∈M | [x, y] ∼ eiθ}.

Lemma. The bundles

M[0,π) → A[0,π)

and

M(0,π] → A(0,π]

are trivial.



(This implies there is a local trivialization of M → A over

A = A[0,π) ∪A(0,π].)

Theorem: The transition function is given by

A(0,π) ' Aπ/2 = (Xπ/2 ×Xπ/2)/T = (RP 3 ×RP 3)/T → RP 3.

where the last map is given by (g, h) 7→ g−1h. This is well defined

because T acts by left multiplication, where we have made use of the

fact that our homeomorphism Xπ/2 → RP 3 is a T -map with respect

to the conjugation action on Xπ/2 and left multiplication on RP 3.



VII. Prequantum Line Bundle

Let A′ = A/AU where AU is the subset of x, y, x′, y′ for which at

least one of x, y, x′, y′ is ±I. We note that A′θ = Aθ for θ 6= 0, π.

� Let L be the total space of the prequantum U(1) bundle over

A′. Let projL : L → A′ be the projection map. The space L
may be formed as a union of the two open sets proj−1L (A′[0,π))

and proj−1L (A′(0,π]). These sets intersect in a subset

proj−1L (A′(0,π)). This subset is isomorphic to RP 3 ×RP 3.

� So we are able to identify its cohomology groups.

� We examine the Mayer-Vietoris sequence associated to the

above decomposition of L. We first do this with Z/2Z

coefficients and obtain

Hq(L; (Z/2Z)) = Z/(2Z), q = 0, 3, 4, 7



and 0 for all other values of q.

� Then we study the Mayer-Vietoris sequence with integer

coefficients. The sequence for

0→ coker(δ)→ H4(L)→ ker(δ)→ 0

is

0→ Z/(2Z)→ H4(L)→ Z/(2Z)→ 0

Hence H4(L) has four elements. Because we have already

computed H4(L;Z/(2Z)) and this has one element, it follows

that H4(L;Z) = Z/(4Z).

� The cohomology of the total space of the prequantum line

bundle is

Hq(L;Z) = Z, q = 0, 7;

Z/4Z, q = 4.



For all other values of q,

Hq(L;Z) = 0.

We may then make the following deduction:

� Corollary:

The ring structure of H∗(A) is

H∗(A) =< 1, x, s1, s2, s3, s4, y, z >

where the degrees of x,y and z are respectively 2, 4, 6 and the

degree of the sj are 3.

The relations are

x2 = 4y, xy = s1s3 = s2s4 = z

and all other intersection pairings are 0.



� The cohomology ring H∗(A′) is the same, except with no

generators in degree 3.

� These relations were first shown by Thaddeus 1992.



VIII. COHOMOLOGY OF 9-MANIFOLD

We make the following definition:

M ′ = M/MU

where MU is the subset of M where at least one of x, y, x′, y′ is ±I.

Since we know the transition function for the Mayer-Vietoris

sequence, we can deduce

Hq(M ′) = Z, q = 0, 2, 7, 9

Z/(4Z), q = 4, 6

and all others are 0.



With some extra work, we can also get the ring structure of

H∗(M ′), and

Hq(M) = Hq(M ′)⊕R

where R3 = R6 = Z4, R5 = (Z/2Z)4 and all the rest are 0.



IX. WALL’S THEOREM

� We conclude by matching up our results with the work of Wall

(1966) toward classifying 6-manifolds:

Theorem (C.T.C. Wall, 1966):

Let Y be a 6-manifold with Hq(Y ) = Z for q = 0, 2, 4, 6 and

H3(Y ) = Z2r. Then Y is the connected sum of some 6-manifold

Y ′ with the r-fold connected sum (S3 × S3)#r, where

Hq(Y ′) = Z, q = 0, 2, 4, 6 and 0 for all other q.

� In our case

A = A′#(S3 × S3)#(S3 × S3)

where A′ was previously defined as A′ = A/AU where AU is the

subset of x, y, x′, y′ for which at least one of x, y, x′, y′ is ±I.



� Note that part of Wall’s results is that there exists a smooth

manifold homeomorphic to A′.


