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I. Introduction

Let > be a compact two-dimensional orientable manifold of

genus 2 (in other words a double torus).

After puncturing the surface, the fundamental group is the free

group on four generators.

We consider the representations of this fundamental group into
SU(2) for which the loop around the puncture is sent to —1.
This space is well studied by Desale-Ramanan (1976), and has

been identified with the space of planes in the intersection of

two quadrics in a Grassmannian.

Define M = p~!(—1I) where p is the product of commutators.
Define A = M /G where G = SU(2) acts by conjugation.



Special case of Atiyah and Bott 1983, who found that these
spaces of conjugacy classes of representation of the fundamental

group were torsion free and computed their Betti numbers.

The ring structure of the cohomology was discovered by
Thaddeus (1992) using methods from mathematical physics and

algebraic geometry.

In this special case, we recover Atiyah and Bott’s result and

also Thaddeus’ result.

Our main tool is the Mayer-Vietoris sequence.



Results:

e Cell decomposition and ring structure of the space of

commuting elements of SU(2)

(Previously the cohomology groups were identified by Adem
and Cohen 2006; a cell decomposition of the suspension of this
space was studied by Baird, Jeffrey, Selick 2009).

e Cohomology groups of M = u~!(—I); cohomology ring of
M'" = M /My where My is the subset of elements where at least

one element is in the center of SU(2)

e New calculation of the cohomology of the space A of conjugacy

classes of representations.
Cohomology groups: Atiyah-Bott 1983
Cohomology ring: Thaddeus 1992 (using Verlinde formula)



e Identification of the transition functions of the principal SU(2)
bundle M — A



II. The space of commuting elements

e The space of commuting elements is 7 := Comm™'(I) where

Comm : G x G — @G is the commutator.

The structure of the cohomology of 7 as groups was discovered
by Adem-Cohen (2006).

The cell decomposition of the suspension of 7 was worked out
by Baird-Jeffrey-Selick (2009) and Crabb (2011).

e We write the elements of SU(2) as quaternions

z w .
< 2+ Wy

—w z

Let T be the maximal torus of G (the space of diagonal unitary
matrices of rank 2 with determinant 1). This is isomorphic to

the circle group U(1).



For all g € G 36 € [0, 7] s.t. (as quaternions) g = he?’h~! for
some h € . This occurs if and only if

Trace(g) = e 4+ e7 = 2cos(d). The group G is foliated by its
conjugacy classes, which are parametrized by the value of the

trace map.

e So G x (G is foliated by the values of the trace of the

commutator map:

G X G = Ugegpo,n)We
where
Wo ={(g,h) | [g,h] ~ €},
e Define
Xo={(g,h) | [9,h] = €}



e Define also
Wian) = Uoela,n) Wo

(similarly X, 4)-
Theorem |[Meinrenken|: For 6 # 0,
Xp=PSU(2) =503)=RP°:=H
There is a homeomorphism from Xy to H, where 1" acts on Xy by

conjugation and acts on H by left translation. []

By writing down an explicit 7-homeomorphism, we show that there

is a T-equivariant homeomorphism from Xy to H.



[II. RETRACTIONS

e The space T = Xg = {g, h||g,h] = 1} is the space of commuting
pairs in SU(2).
Theorem: There is a deformation retraction from Xy ) to Xo.

Recall the following theorem of Milnor:

Theorem (Milnor, Morse Theory) If f: M — R is smooth and
c is an isolated critical value of f, and f has no critical values in
(¢, d], then f~1(c) is a deformation retract of f~1([e,d]).

We apply this theorem to the trace function on Xjg ). The

extreme value is Trace(g) = 2, in other words 6 = 0.

Instead of using Milnor’s theorem, we use the gradient flow for

the trace function.

Theorem: The flow lines for the vector field V(Trace) are

closed, and every point of Xy is the endpoint of a flow line



emanating from X, for some u > 0.

e However, we cannot get a closed form solution for the equation

of the flow lines.

e We have found a different retraction which is explicit, and this

allows us to show that it is T-equivariant.



IV. Cohomology of Commuting Pairs

Baird, Jeffrey, Selick (2009) gave the cohomology of the
suspension of 7, showing that this suspension is equivalent to
the suspension of S3V S3 Vv S2 Vv X2RP?.

Instead,
SU(Z) X SU(Q) = W[O,w] = W[O,w) U W(O,w]
W[O,ﬂ') ~ Wy = Xo = T
~ _ _ 3
W(O,w] ~W,.=X,=RP
Wi = (0,7) x Wyo = (0,7) x (RP? x S%)

By Mayer-Vietoris, we are able to compute the cohomology of

7T as a ring. It turns out that all cup products are O.

We show that Xy ~ S? Vv S3 Vv S?2 Vv 2R P2



See also the 2016 PhD thesis of Trefor Bazett.



V. Atiyah Space

o Let
M = (=1).

This level set is a 9-manifold.

e The space A := M /G (where G acts on M by conjugation).

The center of G acts trivially, so we have a free SO(3)-action.

The space A = M /G is a free SO(3) bundle.
Theorem ( Atiyah-Bott 1983)

H*(A)=7Z,0=0,2,4,6

All the other groups are 0.



e We have

Ag = {(z,y,2,¢/) € G| [z, 9)[2', /] = =1, [z, y] = €"}/SO(3)

AQ = (XO X Xﬁ)/SO(S)
AW = (XW X XQ)/SO(S)

Xo=T
Xo=T

e For 0 € (0, ),

Ag = (Xg X Xr_9)/SO3) = RP? x (RP?/T) =RP? x §?



e We can write an explicit retraction for this:

A[O,ﬂ') ~ AO ~ T

where Ay ) = Ugejo,n) As-

A= Apr) Yag. Aox =T Xrpsxsz T

e Mayer-Vietoris gives the cohomology groups of A as above.



V1. The 9-Manifold

Recall we defined M = =1 (—1).

Then
M = U@E[O,ﬂ'] M97

where
M@ — {($,y,$/,y/) cM | [ZE,y] ~ eie}‘

Lemma. The bundles
Mio my = Afo,m)

and

Mo,x) = A(o,]

are trivial.



(This implies there is a local trivialization of M — A over

A= A[O,TF) U A(O,Ti‘]')

Theorem: The transition function is given by

Ay = Arjg = (Xpja X X, 19)/T = (RP? x RP?)/T — RP°.

77-(-)

where the last map is given by (g, h) — g~ th. This is well defined
because T acts by left multiplication, where we have made use of the
fact that our homeomorphism X, o — RP3 is a T-map with respect

to the conjugation action on X 5 and left multiplication on RP3.



VII. Prequantum Line Bundle

Let A’ = A/Ay where Ay is the subset of x,y, ',y for which at
least one of x,y,z',y" is £1. We note that A), = Ay for 0 # 0, 7.

Let £ be the total space of the prequantum U (1) bundle over
A’. Let proj; : L — A’ be the projection map. The space L

may be formed as a union of the two open sets projzl(A’[O 7T))
and projzl(A’(Om]). These sets intersect in a subset
projzl(A’(Om)). This subset is isomorphic to RP3 x RP3.

So we are able to identify its cohomology groups.

We examine the Mayer-Vietoris sequence associated to the
above decomposition of £. We first do this with Z/2Z

coefficients and obtain

HY(L; (Z/2Z)) = Z/(2Z),q = 0,3,4, 7T



and 0 for all other values of g.

Then we study the Mayer-Vietoris sequence with integer

coefficients. The sequence for

0 — coker(d) — H*(L) — ker(6) — 0
1S

0—Z/(2Z) - H*(L) — Z/(2Z) — 0

Hence H*(L) has four elements. Because we have already
computed H*(L;Z/(2Z)) and this has one element, it follows
that H*(L;Z) = Z/(4Z).

The cohomology of the total space of the prequantum line

bundle is
HYL:Z)=7Z, q=0,T,;

Z/47, q=A4.



For all other values of g,
HY(L;Z) = 0.

We may then make the following deduction:

Corollary:
The ring structure of H*(A) is

H*(A) =< 1,x,s1, S92, 83, S4,Y, 2 >

where the degrees of x,y and z are respectively 2, 4, 6 and the

degree of the s; are 3.

The relations are

7? = 4y, xYy = S183 = S284 = 2

and all other intersection pairings are 0.



e The cohomology ring H*(A’) is the same, except with no

generators in degree 3.

e These relations were first shown by Thaddeus 1992.



VIII. COHOMOLOGY OF 9-MANIFOLD

We make the following definition:

M’ = M/My
where M is the subset of M where at least one of x,vy, 2,y is £1.

Since we know the transition function for the Mayer-Vietoris

sequence, we can deduce
HY(M'") = Z, q=20,2,7,9

7/(4Z), q=4,6

and all others are 0.



With some extra work, we can also get the ring structure of
H*(M'), and
HYM)=H{M)®R

where R = R% = Z*, R® = (Z/2Z)* and all the rest are 0.



IX. WALL’S THEOREM

e We conclude by matching up our results with the work of Wall
(1966) toward classifying 6-manifolds:

Theorem (C.T.C. Wall, 1966):

Let Y be a 6-manifold with H4(Y') = Z for ¢ = 0,2,4,6 and
H?3(Y)=7Z%". Then Y is the connected sum of some 6-manifold
Y’ with the r-fold connected sum (52 x S3)#", where

HYY" =12, ¢=0,2,4,6 and O for all other q.

e In our case
A= AH(S% x 83)#(S° x §%)
where A" was previously defined as A’ = A/Ay where Ay is the

subset of x,y, 2,y for which at least one of =, vy, 2,y is +1.



e Note that part of Wall’s results is that there exists a smooth

manifold homeomorphic to A’.



