Symplectic cohomological rigidity through toric degenerations

Susan Tolman (joint work with Milena Pabiniak)

University of Illinois at Urbana-Champaign

Lie theory and integrable systems in symplectic and Poisson geometry

Symplectic toric manifolds

A symplectic toric manifold is

- a 2*n*-dimensional closed, connected manifold *M*;
- an integral symplectic form ω ;
- a faithful $(S^1)^n$ action;
- a moment map $\mu \colon M \to \mathbb{R}^n$, i.e., $\iota_{\xi_j} \omega = -d\mu_j$ for all $1 \leq j \leq n$.

The **moment polytope** $\Delta := \mu(M)$ is a convex polytope.

Facts: [Delzant]

- M, M' are equivariantly symplectomorphic exactly if $\Delta = \Delta' + c$.
- *M* is a projective variety, i.e., $M \hookrightarrow \mathbb{P}^N$.

< 回 > < 回 > < 回 >

Hirzebruch surfaces

Consider the **Hirzebruch surface** $\Sigma_m := \mathbb{P}(\mathbb{C} \oplus \mathcal{O}(-m)) \to \mathbb{P}^1$:

- Σ_m is a \mathbb{P}^1 bundle over \mathbb{P}^1 .
- Σ_m a symplectic toric manifold. (Given $\Sigma_m \hookrightarrow \mathbb{P}^N$.)
- The moment polytope of Σ_m is a trapezoid.
- $H^*(M;\mathbb{Z}) = \mathbb{Z}[x_1,x_2]/(x_2^2,x_1^2+mx_1x_2).$

Examples: $\Sigma_0 = \mathbb{P}^1 \times \mathbb{P}^1$ and Σ_2 .

Bott manifolds

Define a **Bott manifold** $M := X_n$ inductively:

• Let
$$X_1 = \mathbb{P}^1$$
.

• Given a holomorphic line bundle $L \to X_{i-1}$, $X_i := \mathbb{P}(L \oplus \mathbb{C})$ is \mathbb{P}^1 bundle over $X_{i-1} \forall i$.

Properties:

- *M* is a symplectic toric manifold. (Given $M \hookrightarrow \mathbb{P}^N$.)
- The moment poltyope Δ is combinatorially equivalent to $[0,1]^n$.
- $\Delta = \{ p \in \mathbb{R}^n \mid \langle p, e_j \rangle \ge 0 \text{ and } \langle p, e_j + \sum_i A_j^i e_i \rangle \le \lambda_j \; \forall j \}$ for some strictly upper triangular integral matrix A and $\lambda \in \mathbb{Z}^n$.
- $H^*(M; \mathbb{Z}) = \mathbb{Z}[x_1, \dots, x_n] / (x_i^2 + \sum_j A_j^i x_i x_j)$ and $[\omega] = \sum_i \lambda_i x_i$, where x_j is dual to the preimage of $\Delta \cap \{\langle p, e_j + \sum_i A_j^i e_i \rangle = \lambda_j\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Cohomological rigidity

Let \mathcal{F} be a family of manifolds. Fix $M, M' \in \mathcal{F}$.

If M, M' are diffeomorphic, then $H^*(M; \mathbb{Z}) \simeq H^*(M'; \mathbb{Z})$ (as rings).

Question:

Does $H^*(M; \mathbb{Z}) \simeq H^*(M'; \mathbb{Z})$ imply that M, M' are diffeomorphic?

If the answer is YES, then \mathcal{F} is cohomologically rigid.

Example:

- Surfaces are cohomologically rigid.
- Hirzebruch surfaces are cohomologically rigid.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Cohomological rigidity for toric manifolds?

Question: (Masuda-Suh) Are toric manifolds cohomologically rigid?

Theorem (Masuda-Panov (2008), Choi-Masuda (2012))

Let X, X' be Bott manifolds with $H^*(X; \mathbb{Q}) \simeq H^*(X'; \mathbb{Q}) \simeq H^*((\mathbb{P}^1)^n; \mathbb{Q})$. If $H^*(X; \mathbb{Z}) \simeq H^*(X'; \mathbb{Z})$, then X, X' diffeomorphic.

Cohomological rigidity holds in other special cases. [Cho, Choi, Lee, Masuda, Panov, Park, Suh]

There are no known counterexamples.

(4) (5) (4) (5)

Symplectic cohomological rigidity

Let \mathcal{G} be a family of symplectic manifolds. Fix $(M, \omega), (M', \omega') \in \mathcal{G}$.

If M, M' are symplectomorphic, there's an isomorphism $H^*(M; \mathbb{Z}) \to H^*(M'; \mathbb{Z})$ with $[\omega] \mapsto [\omega']$.

Question:

Does an isomorphism $H^*(M; \mathbb{Z}) \to H^*(M'; \mathbb{Z})$ with $[\omega] \mapsto [\omega']$ imply that M is symplectomorphic to M'?

If the answer is YES, then ${\cal G}$ is symplectically cohomologically rigid.

Example:

- Symplectic surfaces are symplectically cohomologically rigid.
- So are symplectic Hirzebruch surfaces.

イロト 不得 トイラト イラト 一日

Symplectic rigidity for toric manifolds?

Question:

Are symplectic toric manifolds symplectically cohomologically rigid?

Theorem (McDuff, 2011)

If M is a symplectic toric manifold and $H^*(M; \mathbb{Z}) \simeq H^*(\mathbb{P}^i \times \mathbb{P}^j; \mathbb{Z})$, then M is symplectomorphic to $\mathbb{P}^i \times \mathbb{P}^j$.

Other partial results. [Karshon, Kessler, Pinsonnault, McDuff]

Our main results

Theorem (Pabiniak-T)

Let M, M' be symplectic Bott manifolds with $H^*(M; \mathbb{Q}) \simeq H^*(M'; \mathbb{Q}) \simeq H^*((\mathbb{P}^1)^n; \mathbb{Q}).$ If there's an isomorphism $H^*(M; \mathbb{Z}) \to H^*(M'; \mathbb{Z})$ with $[\omega] \mapsto [\omega']$, then M, M' are symplectomorphic.

Corollary

If *M* is a symplectic toric manifold and $H^*(M; \mathbb{Z}) \simeq H^*((\mathbb{P}^1)^n; \mathbb{Z})$, then *M* is symplectomorphic to $(\mathbb{P}^1)^n$ with symplectic form $\omega_{\lambda} := \sum_i \lambda_i \pi_i^*(\omega_{\mathsf{FS}})$.

Proof of corollary:

By a result of Masuda and Panov, M is a symplectic Bott manifold.

Note: Strong rigidity also holds.

(UICU)

(日) (同) (日) (日)

Proof of the main theorem

The key step is to construct new symplectomorphisms:

Otherwise, the proof is similar to the smooth case.

Proposition *

Let M and M' be symplectic Bott manifolds. Assume there exist $k < \ell$ and an isomorphism $H^*(M; \mathbb{Z}) \to H^*(M'; \mathbb{Z})$ with $[\omega] \mapsto [\omega']$, $x_k \mapsto x'_k - \gamma x'_\ell$ for some $\gamma \in \mathbb{Z}$, and $x_i \mapsto x'_i$ for all $i \neq k$. If $c := \frac{1}{2} \left(A^k_\ell + (A')^k_\ell \right) \ge 0$, then M, M' are symplectomorphic.

So we need to prove this proposition.

Toric degenerations

Let $X \subset \mathbb{P}^N$ be a smooth projective variety.

Fix a local coordinate system on X.

There's an associated semigroup $S = \cup_{m>0} \{m\} \times S_m \subset \mathbb{Z} \times \mathbb{Z}^n$.

The **Okounkov body** is $\Delta := \operatorname{conv} \cup_{m>0} \frac{1}{m} S_m$.

Theorem (Harada-Kaveh, 2015)

Assume S is finitely generated. $X_0 := \operatorname{Proj} \mathbb{C}[S]$ is a projective toric variety with moment polytope Δ . There's a a continuous surjective map $\Phi \colon X \to X_0$ that's a symplectomorphism on an open dense subset of X.

Key observation: If X_0 is smooth Φ is a symplectomorphism.

Idea of proof: Construct a toric degeneration of X, i.e., a flat family $\pi: \mathcal{X} \to \mathbb{C}$ with generic fiber X and $\pi^{-1}(0) = X_0$. Lift a radial vector field to construct flow.

(UICU)

Symplectic cohomological rigidity

June, 2020 11 / 13

The "slide" operator

Fix $w \in \mathbb{Z}^n \setminus \mathbb{Z}_{\geq 0}^n$. Construct the **slide** of $Q \subseteq \mathbb{Z}_{\geq 0}^n$ along w by sliding each point as far as possible within $\mathbb{Z}_{\geq 0}^n$ in the direction w.

Example:

Claim: Let M, M' be symplectic toric manifolds with moment polytopes Δ, Δ' that are equal to $\mathbb{R}^n_{\geq 0}$ near 0. If there exists $k < \ell$ and $c \geq 0$ with

$$\mathcal{S}_{-e_k+ce_\ell}(m\Delta\cap\mathbb{Z}^n)=m\Delta'\cap\mathbb{Z}^n\quad \forall m\in\mathbb{Z}_{>0},$$

then M is symplectomorphic to M'.

(UICU)

Recall:

Proposition *

Let M and M' be symplectic Bott manifolds. Assume there exist $k < \ell$ and an isomorphism $H^*(M; \mathbb{Z}) \to H^*(M'; \mathbb{Z})$ with $[\omega] \mapsto [\omega']$, $x_k \mapsto x'_k - \gamma x'_\ell$ for some $\gamma \in \mathbb{Z}$, and $x_i \mapsto x'_i$ for all $i \neq k$. If $c := \frac{1}{2} \left(A^k_\ell + (A')^k_\ell \right) \ge 0$, then M, M' are symplectomorphic.

Proof.

In the situation of Proposition \star ,

$$\mathcal{S}_{-e_k+ce_\ell}(m\Delta\cap\mathbb{Z}^n)=m\Delta'\cap\mathbb{Z}^n\quad orall m\in\mathbb{Z}_{>0}\quad (ext{or vice versa}).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >