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This is based work with Jeremy Lane (McMaster/Fields):

Canonical bases and collective integrable systems

(on arxiv soon...)



If you are a (real) symplectic geometer, the world of smooth projective
varieties is just too small.

I will illustrate this with a story.



Consider the Lie group SU(n).

For a dominant weight λ of SU(n), the coadjoint orbit Oλ of SU(n) is has
a symplectic form ωλ.

Theorem (Guillemin-Sternberg)

There is a completely integrable torus action on (Oλ, ωλ).

1 There is a continuous map µ : M → RN , which is smooth on a dense subset
of M.

2 On its smooth locus, µ is the moment map for a Hamiltonian (S1)N action
on (M, ω)

3 The action of (S1)N is locally free on a dense subset, and dimM = 2N.



Now, let K be any compact Lie group, and let λ be a dominant integral
weight of K .

Theorem (Harada-Kaveh)

There is a completely integrable torus action on (Oλ, ωλ).

In fact:
There is a real convex polyhedral cone

C ⊂ RN × t∗+,

so that

µ(Oλ) = C ∩ (RN × {λ}).

Why can’t we fill in the gaps?
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Why can’t we fill in the gaps?

(Oλ, ωλ) ∼= (G/B, ωλ) ↪→ (PK , ωFS)

Find toric degeneration π : X → C of G/B to projective toric variety X4

(π−1(t) ∼= G/B for t ∈ C×,

and π−1(0) ∼= X4)

Integrate the vector field − ∇<π
||∇<π ||2

to get a map π−1(1)→ π−1(0).

Take the moment
map for the torus action on X4.

Because we insist
on everything being projective
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If you are a (real) symplectic geometer, the world of smooth projective
varieties is just too small.

However, in this case all the coadjoint orbits of K can be realized as
reduced spaces

Oλ = (G � N) �λ T

for a singular affine variety G �N = Spec(C[G ]N), equipped with a certain
singular Kähler structure.1

(Fix an embedding of G � N into a complex inner product space E . Each smooth piece

of G � N has the restriction of the Kähler structure on E)

Other interesting families of symplectic manifolds also appear this way:

• toric symplectic manifolds

• multiplicity spaces Oλ ×Oν ×Oξ �0 K

1This is a theorem of Guillemin-Jeffrey-Sjamaar



Question: Given an affine variety X with a singular Kähler structure, can
we construct a continuous map (using toric degeneration techniques)

µ : X → RN

which restricts to the moment map of a completely integrable torus action
on each smooth piece of X?

Answer: Yes! Under certain reasonable conditions.
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Näıve approach:
Find a toric degeneration π : X → C of X to an affine toric variety XS.

The stratification of X into
smooth pieces gives a stratification
of X (away from zero fiber)

Kähler structure on X
 Kähler structure on X .

Integrate the vector field − ∇<π
||∇<π ||2

,

on each smooth piece of X .

Problem 1: The smooth
pieces of X aren’t compact.

Problem 2: Maybe the
flows don’t patch together nicely.
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Let A = C[X ], and v : A\{0} → (ZN , <) a valuation with one dimensional
leaves.

the ordering < should be something reasonable
v(fg) = v(f ) + v(g) and v(f + g) ≤ min{v(f ), v(g)} and v(C×) = 0

{f | v(f ) ≤ x}/{f | v(f ) < x} is zero- or one-dimensional for x ∈ ZN

Let S = v(A\{0}), and assume it is finitely generated.

Rees algebra construction: there is a toric degeneration π : X → C of X to
XS.



Let H be an algebraic torus. We require a linear “control map”

c: S→ X ∗(H).

We additionally require:

S is strictly convex, and c−1(0) = {0}.
c ◦ v : A\{0} → X ∗(H) makes A into a X ∗(H)-graded algebra

The decomposition of X by H-orbit types is a Whitney A
stratification into smooth manifolds

The symplectic volume of π−1(1) �λ H is equal to symplectic volume
of π−1(0) �λ H, for λ ∈ X ∗(H)⊗ R

Theorem (H-Lane)

If there exists c as above, there exists a continuous map µ : X → RN

which restricts to the moment map of a completely integrable torus action
on each smooth stratum of X . And, µ(X ) = cone(S).



Let K be any compact Lie group, and let λ be any dominant weight of K .

Theorem (H-Lane)

There is a completely integrable torus action on (Oλ, ωλ).



+ symplectic contraction arguments:

Let (M, ω, µ) be any compact Hamiltonian K -manifold, and assume
M �λ K is 0-dimensional for all λ ∈ t∗.

Theorem (H-Lane)

There is a completely integrable torus action on (M, ω).

Notably, some of these M are not Kähler!!


