Deformations of Poisson structures on Hilbert schemes

Brent Pym

匃 McGill

Based on joint work in progress with
Mykola Matviichuk (McGill) \& Travis Schedler (Imperial)

Holonomicity: nondegeneracy condition for holomorphic Poisson structures (P.-Schedler)

$$
(X, \pi) \quad \rightsquigarrow \quad\left(\wedge^{\bullet} \mathcal{T}_{X}, \mathrm{~d}_{\pi}\right) \otimes \mathcal{D}_{X} \quad \rightsquigarrow \quad \operatorname{Char}(X, \pi) \subset T^{*} X
$$

Holonomic $\Longleftrightarrow \operatorname{Char}(X, \pi)$ Lagrangian $\underset{\text { conj } \Longleftrightarrow}{\Longrightarrow}$ \# char leaves $<\infty$
Symplectic leaf is characteristic if modular vector field $\Delta \pi$ is tangent
Motivation: $\left(\wedge^{\bullet} \mathcal{T}_{X}, \mathrm{~d}_{\pi}\right)$ is perverse, so deformation theory is "topological"
This talk: an illustrative example
(X, π) smooth Poisson surface $\quad \rightsquigarrow \quad \operatorname{Hilb}^{n}(X, \pi)$ its Hilbert scheme

Poisson surface $:=\mathbb{C}$-surface X with $\pi \in H^{0}\left(K_{X}^{-1}\right)$

$$
\partial X:=\operatorname{Zeros}(\pi) \subset X
$$

$\partial^{2} X:=$ singular locus of ∂X
Nondegenerate on $X^{\circ}:=X \backslash \partial X$:

$$
X=\mathbb{P}^{2} \quad \operatorname{deg}\left(K_{X}^{-1}\right)=3 \quad Y=\text { cubic }
$$

$$
\pi \cong \partial_{q} \wedge \partial_{p} \quad \Delta \pi=0
$$

On smooth locus of ∂X :

$$
\pi \cong u \partial_{u} \wedge \partial_{v} \quad \Delta \pi=\partial_{v}
$$

Characteristic leaves: $X^{\circ}, \partial^{2} X$

holonomic $\Longleftrightarrow \partial X$ reduced $\Longleftrightarrow \omega:=\pi^{-1}$ log symplectic
Theorem (Enriques, Kodaira; Bartocci-Macrí, Ingalls) If (X, π) is a projective Poisson surface, then (X, π) is birational to:
(\mathbb{P}^{2}, cubic)
T^{*} (curve)
$\left(\mathbb{P}^{1} \times \frac{\mathbb{C}}{\Lambda}, u \partial_{u} \wedge \partial_{v}\right)$
$\left(\frac{\mathbb{C}^{2}}{\Lambda}, \partial_{q} \wedge \partial_{p}\right)$
K3

Consequently, ∂X is locally quasi-homogeneous.

Poisson cohomology of log symplectic surface (X, π)

Characteristic leaves: $\quad X^{\circ} \stackrel{j}{\longleftrightarrow} X \stackrel{i}{\longleftrightarrow} \partial^{2} X$
Theorem (Goto, P.-Schedler)
$\partial^{2} X$ quasi-homogeneous $\Longrightarrow\left(\wedge^{\bullet} \mathcal{T}_{X}, d_{\pi}\right) \cong R j_{*} \mathbb{C}_{X_{0}} \oplus i_{*} i^{*} K_{X}^{-1}[-2]$, so

$$
H P^{j}(X, \pi) \cong\{\begin{array}{ll}
H^{j}\left(X^{\circ} ; \mathbb{C}\right) & j \neq 2 \\
\underbrace{H^{2}\left(X^{\circ} ; \mathbb{C}\right)}_{\text {defs. of } \omega}
\end{array} \underbrace{H^{0}\left(i^{*} K_{X}^{-1}\right)}_{\text {smoothings of } \partial^{2} X} \quad j=2
$$

Sketch of proof.

(1) Restriction to open leaf: $j^{*}\left(\wedge^{\bullet} \mathcal{T}_{X}, \mathrm{~d}_{\pi}\right) \cong\left(\Omega_{X^{\circ}}^{\circ}, d\right) \cong \mathbb{C}_{X^{\circ}}$
(2) Therefore (adjunction): $\wedge^{\bullet} \mathcal{T}_{X} \rightarrow R j_{*} \mathbb{C}_{X}$ 。
(3) Splitting: $R j_{*} \mathbb{C}_{X^{\circ}} \cong \Omega_{X}^{\bullet}(\log \partial X) \rightarrow \wedge^{\bullet} \mathcal{T}_{X}$ via quasihomogeneous "log comparision" of [Castro-Jiménez-Narváez-Macarro-Mond]
(9) Show that $\wedge^{\bullet} \mathcal{T}_{X} / \Omega_{X}^{\bullet}(\log \partial X) \cong i_{*} i^{*} K_{X}^{-1}[-2]$

Hilbert schemes of a Poisson surface (X, π)

$$
\underbrace{\operatorname{Sym}^{n}(X):=X^{n} / S_{n}}_{\text {singular Poisson variety }} \quad \longleftarrow \quad \underbrace{\operatorname{Hilb}^{n}(X):=\{\text { length- } n \text { subschemes of } X\}}_{\text {smooth Poisson [Beauville, Bottacin, Mukai] }}
$$

For instance:

$$
\operatorname{Hilb}^{2}(X)=B I_{\Delta} \operatorname{Sym}^{2}(X)=\underbrace{\left(\operatorname{Sym}^{2}(X) \backslash \Delta\right)}_{\text {reduced schemes }} \sqcup \underbrace{\mathbb{P}\left(T_{X}\right)}_{1 \text {-jets }}
$$

Case X compact Kähler, π nondegenerate:

- Same for $\operatorname{Hilb}^{n}(X)$ [Beauville, Mukai], so hyperKähler [Calabi, Yau]
- Albanese fibres are "irreducible" [Beauville] - only other known IHSMs (up to deformation) are O'Grady's M^{6}, M^{10}
- Unobstructed deformations parameterized by $H^{2}\left(\operatorname{Hilb}^{n}(X) ; \mathbb{C}\right)$ [Beauville, Bogomolov]

Symplectic leaves of $\operatorname{Hilb}^{n}(X)$
$W \in \operatorname{Hilb}^{n}(X) \quad \rightsquigarrow \quad \partial W:=W \cap \partial X \quad$ (scheme-theoretic)
W, W^{\prime} in same symplectic leaf $\Longleftrightarrow \partial W=\partial W^{\prime}$

Locally: modular vector field $\Delta \pi$ on X lifts to $\Delta \pi_{\text {Hilb }}$

```
Proposition
leaf of W is characteristic (i.e. }\Delta\mp@subsup{\pi}{\mathrm{ Hilb tangent) }\Longleftrightarrow\partialW fixed by }{|
```


Conjecture (Matviichuk-P.-Schedler)

For $n \geq 2$, we have:
$\operatorname{Hilb}^{n}(X)$ holonomic $\quad \Longrightarrow \quad \#$ char leaves $<\infty$
$\Longleftrightarrow \quad$ every point in X has type $A_{k}, k \geq 0$
i.e. local equation $x^{2}=y^{k+1}$

Cases proven so far:

- both \Longrightarrow, both
- both \Longleftarrow for $n=2$ or ∂X smooth
- second \Longleftarrow for $k \leq 2$

Key point: type $A_{k} \Longleftrightarrow$ linearization of $\Delta \pi$ nonzero

Deformations

Theorem (Matviichuk-P.-Schedler)
For (X, π) connected log sympl. surf., ∂X locally quasi-hgns, $n \geq 2$:

$$
\begin{aligned}
&{H P^{2}\left(H i l b^{n}(X)\right)}=H^{2}\left(\operatorname{Hilb}^{n}\left(X^{\circ}\right)\right) \oplus H^{0}\left(i^{*} K_{X}^{-1}\right) \\
&=\underbrace{H P^{2}(X)}_{\operatorname{Hilb}(\operatorname{Def}(X, \pi))} \oplus \underbrace{\wedge^{2} H^{1}\left(X^{\circ} ; \mathbb{C}\right)}_{\log \operatorname{Albanese}} \oplus \underbrace{\mathbb{C} \cdot c_{1}(E)}_{\operatorname{Hilb}(\operatorname{Quant}(X, \pi))}
\end{aligned}
$$

[Hitchin, Nevins-Stafford, Rains]

Corollary (Ran)

If ∂X is smooth then deformations are unobstructed.

Corollary

Rains' Hilbert schemes of noncommutative rational surfaces form irreducible components in the moduli space of Poisson varieties

Deformations - proof

Theorem (Matviichuk-P.-Schedler)

For (X, π) connected log sympl. surf., ∂X locally quasi-hgns, $n \geq 2$:

$$
\begin{aligned}
H P^{2}\left(H i l b^{n}(X)\right) & =H^{2}\left(\operatorname{Hilb}^{n}\left(X^{\circ}\right)\right) \oplus H^{H^{0}\left(i^{*} K_{X}^{-1}\right)} \\
& =\underbrace{H P^{2}(X)}_{\operatorname{Hilb}(\operatorname{Def}(X, \pi))} \oplus \underbrace{\wedge^{2} H^{1}\left(X^{\circ} ; \mathbb{C}\right)}_{\log \text { Albanese }} \oplus \underbrace{\mathbb{C} \cdot c_{1}(E)}_{\operatorname{Hilb}(\operatorname{Quant}(X, \pi))}
\end{aligned}
$$

[Hitchin, Nevins-Stafford, Rains]

Sketch.

(1) throw out codim 4 (higher Hartogs); look at char. leaves
(2) codim 0: $R j_{*} \mathbb{C}_{\text {Hilb }^{n} X^{\circ}}, \operatorname{codim} 2: R j_{*}^{\prime} \mathbb{C}_{\text {Hilb }}{ }^{n-1} X^{\circ} \otimes H^{0}\left(i^{*} K_{X}^{-1}\right)$
(3) codim 1: no contributions, codim 3: could a priori only make $H P^{2}$ smaller, but doesn't (local calculation, or interpret deformations)

THANK YOU!

