Topological spines, minimal realisations and cohomology of strictly developable simple complexes of groups

Nansen Petrosyan

University of Southampton
25.05.2020
joint work with Tomasz Prytuła
joint work with Tomasz Prytuła
(pictures drawn by Tomasz)
joint work with Tomasz Prytuła
(pictures drawn by Tomasz)

Outline
joint work with Tomasz Prytuła
(pictures drawn by Tomasz)

Outline
1 Motivation
joint work with Tomasz Prytuła
(pictures drawn by Tomasz)

Outline
1 Motivation
2 Davis complex
joint work with Tomasz Prytuła
(pictures drawn by Tomasz)

Outline
1 Motivation
2 Davis complex
3 Bestvina complex
joint work with Tomasz Prytuła
(pictures drawn by Tomasz)

Outline
1 Motivation
2 Davis complex
3 Bestvina complex
4 Generalisations
joint work with Tomasz Prytuła
(pictures drawn by Tomasz)

Outline
1 Motivation
2 Davis complex
3 Bestvina complex
4 Generalisations
5 Applications

The setting

General problems

Let G be a group that acts on a simplicial complex X with a strict fundamental domain K.

The setting

General problems

Let G be a group that acts on a simplicial complex X with a strict fundamental domain K.

P1. Equivariantly deform X to Y where Y is of smallest possible dimension.

The setting

General problems

Let G be a group that acts on a simplicial complex X with a strict fundamental domain K.

P1. Equivariantly deform X to Y where Y is of smallest possible dimension.

P2. Relate Bredon cohomology of X and the cohomology of subcomplexes of K.

The setting

General problems

Let G be a group that acts on a simplicial complex X with a strict fundamental domain K.

P1. Equivariantly deform X to Y where Y is of smallest possible dimension.
P2. Relate Bredon cohomology of X and the cohomology of subcomplexes of K.

- G is a Coxeter group and X is the Davis complex.

The setting

General problems

Let G be a group that acts on a simplicial complex X with a strict fundamental domain K.

P1. Equivariantly deform X to Y where Y is of smallest possible dimension.
P2. Relate Bredon cohomology of X and the cohomology of subcomplexes of K.

- G is a Coxeter group and X is the Davis complex.
- X is a building and G acts chamber transitively.

The setting

General problems

Let G be a group that acts on a simplicial complex X with a strict fundamental domain K.

P1. Equivariantly deform X to Y where Y is of smallest possible dimension.
P2. Relate Bredon cohomology of X and the cohomology of subcomplexes of K.

- G is a Coxeter group and X is the Davis complex.
- X is a building and G acts chamber transitively.
- X is CAT(0).

The setting

General problems

Let G be a group that acts on a simplicial complex X with a strict fundamental domain K.

P1. Equivariantly deform X to Y where Y is of smallest possible dimension.
P2. Relate Bredon cohomology of X and the cohomology of subcomplexes of K.

- G is a Coxeter group and X is the Davis complex.
- X is a building and G acts chamber transitively.
- X is CAT(0).
- X is a model for classifying space $E_{\mathfrak{F}} G$.

Classifying space for a family of subgroups

Classifying space for a family of subgroups

Let G be a discrete group and \mathfrak{F} be a family of subgroups.

Classifying space for a family of subgroups

Let G be a discrete group and \mathfrak{F} be a family of subgroups.

Definition
A model for the classifying space $E_{\mathfrak{F}} G$ is a G-CW-complex X such that:

Classifying space for a family of subgroups

Let G be a discrete group and \mathfrak{F} be a family of subgroups.

Definition
A model for the classifying space $E_{\mathfrak{F}} G$ is a G-CW-complex X such that:

- each stabiliser is in \mathfrak{F},

Classifying space for a family of subgroups

Let G be a discrete group and \mathfrak{F} be a family of subgroups.

Definition
A model for the classifying space $E_{\overparen{F}} G$ is a G-CW-complex X such that:

- each stabiliser is in \mathfrak{F},
- for every $F \in \mathfrak{F}$ the fixed point set X^{F} is contractible $(\neq \emptyset)$

Classifying space for a family of subgroups

Let G be a discrete group and \mathfrak{F} be a family of subgroups.

Definition
A model for the classifying space $E_{\overparen{F}} G$ is a G-CW-complex X such that:

- each stabiliser is in \mathfrak{F},
- for every $F \in \mathfrak{F}$ the fixed point set X^{F} is contractible $(\neq \emptyset)$

Remark

Classifying space for a family of subgroups

Let G be a discrete group and \mathfrak{F} be a family of subgroups.

Definition
A model for the classifying space $E_{\mathfrak{F}} G$ is a G-CW-complex X such that:

- each stabiliser is in \mathfrak{F},
- for every $F \in \mathfrak{F}$ the fixed point set X^{F} is contractible $(\neq \emptyset)$

Remark

- $E_{\mathfrak{F}} G$ always exists.

Classifying space for a family of subgroups

Let G be a discrete group and \mathfrak{F} be a family of subgroups.

Definition

A model for the classifying space $E_{\overparen{F}} G$ is a G-CW-complex X such that:

- each stabiliser is in \mathfrak{F},
- for every $F \in \mathfrak{F}$ the fixed point set X^{F} is contractible $(\neq \emptyset)$

Remark

- $E_{\mathfrak{F}} G$ always exists.
- Any two models for $E_{\mathfrak{F}} G$ are G-homotopy equivalent.

Classifying space for a family of subgroups

Let G be a discrete group and \mathfrak{F} be a family of subgroups.

Definition

A model for the classifying space $E_{\mathfrak{F}} G$ is a G-CW-complex X such that:

- each stabiliser is in \mathfrak{F},
- for every $F \in \mathfrak{F}$ the fixed point set X^{F} is contractible $(\neq \emptyset)$

Remark

- $E_{\mathfrak{F}} G$ always exists.
- Any two models for $E_{\mathfrak{F}} G$ are G-homotopy equivalent.
- $E_{\mathfrak{F}} G$ is denoted by $\underline{E} G$ and $\underline{\underline{E}} G$ when \mathfrak{F} is the family of finite and virtually cyclic subgroups, respectively.

Classifying space for a family of subgroups

Examples

Classifying space for a family of subgroups

Examples
1.

Classifying space for a family of subgroups

Examples
1.

Classifying space for a family of subgroups

Examples
1.

Classifying space for a family of subgroups

Examples
1.

Classifying space for a family of subgroups

Examples
1.

$$
D_{\infty}=\langle s, t\rangle \subset \operatorname{Isom}(\mathbb{R})
$$

Classifying space for a family of subgroups

Examples
1.

$D_{\infty}=\langle s, t\rangle \subset \operatorname{Isom}(\mathbb{R})$
$D_{\infty} \curvearrowright \mathbb{R}$ properly,

Classifying space for a family of subgroups

Examples
1.

$D_{\infty}=\langle s, t\rangle \subset \operatorname{Isom}(\mathbb{R})$
$D_{\infty} \curvearrowright \mathbb{R}$ properly, $\mathbb{R}^{\langle s\rangle} \approx *$,

Classifying space for a family of subgroups

Examples
1.

$D_{\infty}=\langle s, t\rangle \subset \operatorname{Isom}(\mathbb{R})$
$D_{\infty} \curvearrowright \mathbb{R}$ properly, $\mathbb{R}^{\langle s\rangle} \approx *, \mathbb{R} \simeq \underline{E} D_{\infty}$

Classifying space for a family of subgroups

Examples
1.

$D_{\infty}=\langle s, t\rangle \subset \operatorname{Isom}(\mathbb{R})$
$D_{\infty} \curvearrowright \mathbb{R}$ properly, $\mathbb{R}^{\langle s\rangle} \approx *, \mathbb{R} \simeq \underline{E} D_{\infty}$
2. Let G act properly on a tree T.

Classifying space for a family of subgroups

Examples
1.

$D_{\infty}=\langle s, t\rangle \subset \operatorname{Isom}(\mathbb{R})$
$D_{\infty} \curvearrowright \mathbb{R}$ properly, $\mathbb{R}^{\langle s\rangle} \approx *, \mathbb{R} \simeq \underline{E} D_{\infty}$
2. Let G act properly on a tree T. Then $T \simeq \underline{E} G$.

Classifying space for a family of subgroups

Examples
1.

$$
\begin{aligned}
& \qquad D_{\infty}=\langle s, t\rangle \subset \operatorname{Isom}(\mathbb{R}) \\
& \qquad D_{\infty} \curvearrowright \mathbb{R} \text { properly, } \mathbb{R}^{\langle s\rangle} \approx *, \mathbb{R} \simeq \underline{E} D_{\infty} \\
& \text { 2. Let } G \text { act properly on a tree } T . \text { Then } T \simeq \underline{E} G . \\
& \text { 3. } G \curvearrowright X \text { and } X \text { - } \operatorname{CAT}(0) \text { complex. }
\end{aligned}
$$

Classifying space for a family of subgroups

Examples
1.

$$
\begin{aligned}
& \text { } D_{\infty}=\langle s, t\rangle \subset \operatorname{Isom}(\mathbb{R}) \\
& \\
& D_{\infty} \curvearrowright \mathbb{R} \text { properly, } \mathbb{R}^{\langle s\rangle} \approx *, \mathbb{R} \simeq \underline{E} D_{\infty} \\
& \text { 2. } \\
& \text { Let } G \text { act properly on a tree } T . \text { Then } T \simeq \underline{E} G . \\
& \text { 3. } \\
& G \curvearrowright X \text { and } X-\operatorname{CAT}(0) \text { complex. Then } X \simeq E_{\mathfrak{F}} G .
\end{aligned}
$$

Classifying space for a family of subgroups

Examples
1.

$$
\begin{aligned}
& \text { } D_{\infty}=\langle s, t\rangle \subset \operatorname{Isom}(\mathbb{R}) \\
& \\
& D_{\infty} \curvearrowright \mathbb{R} \text { properly, } \mathbb{R}^{\langle s\rangle} \approx *, \mathbb{R} \simeq \underline{E} D_{\infty} \\
& \text { 2. } \\
& \text { Let } G \text { act properly on a tree } T . \text { Then } T \simeq \underline{E} G . \\
& \text { 3. } \\
& G \curvearrowright X \text { and } X-\operatorname{CAT}(0) \text { complex. Then } X \simeq E_{\mathfrak{F}} G .
\end{aligned}
$$

Classifying space for a family of subgroups

Goal

Classifying space for a family of subgroups

Goal
Construct 'minimal' models for $E_{\mathfrak{F}} G$

Classifying space for a family of subgroups

Goal
Construct 'minimal' models for $E_{\mathfrak{F}} G$ of dimension $=$

Classifying space for a family of subgroups

Goal
Construct 'minimal' models for $E_{\mathfrak{F}} G$ of dimension $=$ $\operatorname{vcd} G$ - virtual cohomological dimension

Classifying space for a family of subgroups

Goal
Construct 'minimal' models for $E_{\mathfrak{F}} G$ of dimension $=$ $\operatorname{vcd} G$ - virtual cohomological dimension $\operatorname{cd}_{\mathfrak{F}} G$ - Bredon cohomological dimension

Classifying space for a family of subgroups

Goal

Construct 'minimal' models for $E_{\mathfrak{F}} G$ of dimension $=$ vcd G - virtual cohomological dimension $\operatorname{cd}_{\mathfrak{F}} G$ - Bredon cohomological dimension where $\operatorname{cd}_{\mathfrak{F}} G=\max \left\{n \mid H_{G}^{n}\left(E_{\mathfrak{F}} G, M\right) \neq 0, M \in \mathcal{O}_{\mathfrak{F}}(G)\right\}$.

Classifying space for a family of subgroups

Goal

Construct 'minimal' models for $E_{\mathfrak{F}} G$ of dimension $=$ vcd G - virtual cohomological dimension $\operatorname{cd}_{\mathfrak{F}} G$ - Bredon cohomological dimension where $\operatorname{cd}_{\mathfrak{F}} G=\max \left\{n \mid H_{G}^{n}\left(E_{\mathfrak{F}} G, M\right) \neq 0, M \in \mathcal{O}_{\mathfrak{F}}(G)\right\}$.

Classifying space for a family of subgroups

Goal

Construct 'minimal' models for $E_{\mathfrak{F}} G$ of dimension $=$ $\operatorname{vcd} G$ - virtual cohomological dimension $\operatorname{cd}_{\mathfrak{F}} G$ - Bredon cohomological dimension
where $\operatorname{cd}_{\mathfrak{F}} G=\max \left\{n \mid H_{G}^{n}\left(E_{\mathfrak{F}} G, M\right) \neq 0, M \in \mathcal{O}_{\mathfrak{F}}(G)\right\}$.

- Baum-Connes Conjecture

Classifying space for a family of subgroups

Goal

Construct 'minimal' models for $E_{\mathfrak{F}} G$ of dimension $=$
vcd G - virtual cohomological dimension
$\operatorname{cd}_{\mathfrak{F}} G$ - Bredon cohomological dimension
where $\operatorname{cd}_{\mathfrak{F}} G=\max \left\{n \mid H_{G}^{n}\left(E_{\mathfrak{F}} G, M\right) \neq 0, M \in \mathcal{O}_{\mathfrak{F}}(G)\right\}$.

- Baum-Connes Conjecture

$$
K_{*}^{G}(\underline{E} G) \xrightarrow{\cong} K_{*}\left(C_{r}^{*}(G)\right)
$$

Classifying space for a family of subgroups

Goal

Construct 'minimal' models for $E_{\mathfrak{F}} G$ of dimension $=$
$\operatorname{vcd} G$ - virtual cohomological dimension
$\operatorname{cd}_{\mathfrak{F}} G$ - Bredon cohomological dimension
where $\operatorname{cd}_{\mathfrak{F}} G=\max \left\{n \mid H_{G}^{n}\left(E_{\mathfrak{F}} G, M\right) \neq 0, M \in \mathcal{O}_{\mathfrak{F}}(G)\right\}$.

- Baum-Connes Conjecture

$$
K_{*}^{G}(\underline{E} G) \stackrel{\cong}{\cong} K_{*}\left(C_{r}^{*}(G)\right)
$$

- Farrel-Jones Conjecture

Classifying space for a family of subgroups

Goal

Construct 'minimal' models for $E_{\mathfrak{F}} G$ of dimension $=$
vcd G - virtual cohomological dimension
$\operatorname{cd}_{\mathfrak{F}} G$ - Bredon cohomological dimension
where $\operatorname{cd}_{\mathfrak{F}} G=\max \left\{n \mid H_{G}^{n}\left(E_{\mathfrak{F}} G, M\right) \neq 0, M \in \mathcal{O}_{\mathfrak{F}}(G)\right\}$.

- Baum-Connes Conjecture

$$
K_{*}^{G}(\underline{E} G) \stackrel{\cong}{\cong} K_{*}\left(C_{r}^{*}(G)\right)
$$

- Farrel-Jones Conjecture

$$
H_{n}^{G}\left(\underline{\underline{E} G} ; \mathbf{K}_{\mathbb{Z}}\right) \xrightarrow{\cong} K_{n}(\mathbb{Z} G),
$$

Classifying space for a family of subgroups

Goal

Construct 'minimal' models for $E_{\mathfrak{F}} G$ of dimension $=$
vcd G - virtual cohomological dimension
$\operatorname{cd}_{\mathfrak{F}} G$ - Bredon cohomological dimension
where $\operatorname{cd}_{\mathfrak{F}} G=\max \left\{n \mid H_{G}^{n}\left(E_{\mathfrak{F}} G, M\right) \neq 0, M \in \mathcal{O}_{\mathfrak{F}}(G)\right\}$.

- Baum-Connes Conjecture

$$
K_{*}^{G}(\underline{E} G) \stackrel{\cong}{\cong} K_{*}\left(C_{r}^{*}(G)\right)
$$

- Farrel-Jones Conjecture

$$
H_{n}^{G}\left(\underline{\underline{E} G} ; \mathbf{K}_{\mathbb{Z}}\right) \xrightarrow{\cong} K_{n}(\mathbb{Z} G),
$$

Davis complex for a Coxeter group

Davis complex for a Coxeter group

Right-Angled Coxeter groups

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

$$
\left.W=W_{L}=\left\langle s_{i} \in V(L)\right| s_{i}^{2}=e, s_{i} s_{j}=s_{j} s_{i} \text { iff }\left\{s_{i}, s_{j}\right\} \in E(L)\right\rangle
$$

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

$$
\left.W=W_{L}=\left\langle s_{i} \in V(L)\right| s_{i}^{2}=e, s_{i} s_{j}=s_{j} s_{i} \text { iff }\left\{s_{i}, s_{j}\right\} \in E(L)\right\rangle
$$

Examples

L				
W_{L}				

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

$$
\left.W=W_{L}=\left\langle s_{i} \in V(L)\right| s_{i}^{2}=e, s_{i} s_{j}=s_{j} s_{i} \text { iff }\left\{s_{i}, s_{j}\right\} \in E(L)\right\rangle
$$

Examples

L	Δ^{n}			
W_{L}				

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

$$
\left.W=W_{L}=\left\langle s_{i} \in V(L)\right| s_{i}^{2}=e, s_{i} s_{j}=s_{j} s_{i} \text { iff }\left\{s_{i}, s_{j}\right\} \in E(L)\right\rangle
$$

Examples

L	Δ^{n}			
W_{L}	$(\mathbb{Z} / 2)^{n+1}$			

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

$$
\left.W=W_{L}=\left\langle s_{i} \in V(L)\right| s_{i}^{2}=e, s_{i} s_{j}=s_{j} s_{i} \text { iff }\left\{s_{i}, s_{j}\right\} \in E(L)\right\rangle
$$

Examples

L	Δ^{n}	$\left(\Delta^{n}\right)^{(0)}$		
W_{L}	$(\mathbb{Z} / 2)^{n+1}$			

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

$$
\left.W=W_{L}=\left\langle s_{i} \in V(L)\right| s_{i}^{2}=e, s_{i} s_{j}=s_{j} s_{i} \text { iff }\left\{s_{i}, s_{j}\right\} \in E(L)\right\rangle
$$

Examples

L	Δ^{n}	$\left(\Delta^{n}\right)^{(0)}$		
W_{L}	$(\mathbb{Z} / 2)^{n+1}$	$(\mathbb{Z} / 2)^{*(n+1)}$		

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

$$
\left.W=W_{L}=\left\langle s_{i} \in V(L)\right| s_{i}^{2}=e, s_{i} s_{j}=s_{j} s_{i} \text { iff }\left\{s_{i}, s_{j}\right\} \in E(L)\right\rangle
$$

Examples

L	Δ^{n}	$\left(\Delta^{n}\right)^{(0)}$	$L_{1} * L_{2}$	
W_{L}	$(\mathbb{Z} / 2)^{n+1}$	$(\mathbb{Z} / 2)^{*(n+1)}$		

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

$$
\left.W=W_{L}=\left\langle s_{i} \in V(L)\right| s_{i}^{2}=e, s_{i} s_{j}=s_{j} s_{i} \text { iff }\left\{s_{i}, s_{j}\right\} \in E(L)\right\rangle
$$

Examples

L	Δ^{n}	$\left(\Delta^{n}\right)^{(0)}$	$L_{1} * L_{2}$	
W_{L}	$(\mathbb{Z} / 2)^{n+1}$	$(\mathbb{Z} / 2)^{*(n+1)}$	$W_{L_{1}} \times W_{L_{2}}$	

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

$$
\left.W=W_{L}=\left\langle s_{i} \in V(L)\right| s_{i}^{2}=e, s_{i} s_{j}=s_{j} s_{i} \text { iff }\left\{s_{i}, s_{j}\right\} \in E(L)\right\rangle
$$

Examples

L	Δ^{n}	$\left(\Delta^{n}\right)^{(0)}$	$L_{1} * L_{2}$	$L_{1} \sqcup L_{2}$
W_{L}	$(\mathbb{Z} / 2)^{n+1}$	$(\mathbb{Z} / 2)^{*(n+1)}$	$W_{L_{1}} \times W_{L_{2}}$	

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

$$
\left.W=W_{L}=\left\langle s_{i} \in V(L)\right| s_{i}^{2}=e, s_{i} s_{j}=s_{j} s_{i} \text { iff }\left\{s_{i}, s_{j}\right\} \in E(L)\right\rangle
$$

Examples

L	Δ^{n}	$\left(\Delta^{n}\right)^{(0)}$	$L_{1} * L_{2}$	$L_{1} \sqcup L_{2}$
W_{L}	$(\mathbb{Z} / 2)^{n+1}$	$(\mathbb{Z} / 2)^{*(n+1)}$	$W_{L_{1}} \times W_{L_{2}}$	$W_{L_{1}} * W_{L_{2}}$

Davis complex for a Coxeter group

Right-Angled Coxeter groups
Let L be a finite, flag simplicial complex.

$$
\left.W=W_{L}=\left\langle s_{i} \in V(L)\right| s_{i}^{2}=e, s_{i} s_{j}=s_{j} s_{i} \text { iff }\left\{s_{i}, s_{j}\right\} \in E(L)\right\rangle
$$

Examples

L	Δ^{n}	$\left(\Delta^{n}\right)^{(0)}$	$L_{1} * L_{2}$	$L_{1} \sqcup L_{2}$
W_{L}	$(\mathbb{Z} / 2)^{n+1}$	$(\mathbb{Z} / 2)^{*(n+1)}$	$W_{L_{1}} \times W_{L_{2}}$	$W_{L_{1}} * W_{L_{2}}$

$\underline{E} W=\Sigma_{W}=\Sigma$ - Davis complex

Davis complex for a Coxeter group

Davis complex for a Coxeter group

Example

Davis complex for a Coxeter group

Example

$D_{\infty}=W_{L}$ where

Davis complex for a Coxeter group

Example
$D_{\infty}=W_{L}$ where

$$
L=\quad \quad \stackrel{s}{\bullet} \quad t
$$

Davis complex for a Coxeter group

Example
$D_{\infty}=W_{L}$ where

$$
L=
$$

Davis complex for a Coxeter group

Example
$D_{\infty}=W_{L}$ where

$$
L=
$$

$\longleftarrow \quad$ Building block of Σ

Davis complex for a Coxeter group

Example
$D_{\infty}=W_{L}$ where

$$
L=\quad \stackrel{s}{\bullet} \quad t
$$

$$
C L=
$$

$\longleftarrow \quad$ Building block of Σ

$$
\Sigma_{D_{\infty}} \cong \mathbb{R}
$$

Davis complex for a Coxeter group

Example
$D_{\infty}=W_{L}$ where

$$
L=
$$

$\longleftarrow \quad$ Building block of Σ

$$
\Sigma_{D_{\infty}} \cong \mathbb{R}
$$

Davis complex for a Coxeter group

Example
$D_{\infty}=W_{L}$ where

$$
L=\quad \quad \stackrel{s}{\bullet} \quad t
$$

$C L=\underbrace{s}_{e}$
$\longleftarrow \quad$ Building block of Σ
$\Sigma_{D_{\infty}} \cong \mathbb{R}$

Davis complex for a Coxeter group

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

Davis complex for a Coxeter group

Let $W=W_{L}$
A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite

Davis complex for a Coxeter group

Let $W=W_{L}$
A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L

Davis complex for a Coxeter group

Let $W=W_{L}$
A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)$

Davis complex for a Coxeter group

Let $W=W_{L}$
A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

Let $W=W_{L}$
A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

$$
\text { Let } W=W_{L}
$$

A subset $S \subset V(L)$ is spherical if $W_{S}=\langle S\rangle \subset W$ is finite \Longleftrightarrow elements of S span a simplex of L
$\mathcal{Q}=$ poset of spherical subsets of $V(L)=$ poset of simplices of L + the smallest element $\emptyset(\langle\emptyset\rangle=\{e\})$.

Davis complex for a Coxeter group

Davis complex for a Coxeter group

Definition

$$
\Sigma:=W \times|\mathcal{Q}| / \sim
$$

Davis complex for a Coxeter group

Definition

$$
\Sigma:=W \times|\mathcal{Q}| / \sim
$$

$\left(w_{1}, x_{1}\right) \sim\left(w_{2}, x_{2}\right) \Longleftrightarrow$

Davis complex for a Coxeter group

$|\mathcal{Q}|$ - mirrored space
$\left\{K_{S}\right\}_{S \in \mathcal{Q}}$ - mirrors, $K_{S} \subset|\mathcal{Q}|$
$K_{S}:=\left|\left\{S^{\prime} \in \mathcal{Q} \mid S^{\prime} \geqslant S\right\}\right|$

$$
|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}
$$

$K_{\emptyset}=|\mathcal{Q}| \quad K_{S} \cap K_{T}=\left\{\begin{array}{l}K_{S \cup T} \text { if } S \cup T \text { is spherical } \\ \text { empty otherwise }\end{array}\right.$
Definition

$$
\begin{gathered}
\Sigma:=W \times|\mathcal{Q}| / \sim \\
\left(w_{1}, x_{1}\right) \sim\left(w_{2}, x_{2}\right) \Longleftrightarrow x_{1}=x_{2} \text { and } w_{1}^{-1} w_{2} \in W_{S\left(x_{1}\right)}
\end{gathered}
$$

Davis complex for a Coxeter group

Definition

$$
\begin{gathered}
\Sigma:=W \times|\mathcal{Q}| / \sim \\
\left(w_{1}, x_{1}\right) \sim\left(w_{2}, x_{2}\right) \Longleftrightarrow x_{1}=x_{2} \text { and } w_{1}^{-1} w_{2} \in W_{S\left(x_{1}\right)}
\end{gathered}
$$

where $K_{S\left(x_{1}\right)}$ is the smallest mirror containing x_{1}

Davis complex for a Coxeter group

Example: Klein four-group

Davis complex for a Coxeter group

Example: Klein four-group

$$
L=\stackrel{s}{s} \quad t
$$

Davis complex for a Coxeter group

Example: Klein four-group

$$
L=\stackrel{t}{\bullet} \quad W_{L} \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2
$$

Davis complex for a Coxeter group

Example: Klein four-group

$$
L=\stackrel{s}{\bullet} \quad W_{L} \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2
$$

Davis complex for a Coxeter group

Example: Klein four-group

$$
L=\underbrace{s}_{e} \quad W_{L} \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2
$$

Davis complex for a Coxeter group

Example: Klein four-group

$$
L=\stackrel{S}{0}_{s}^{s} W_{L}^{s} \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2
$$

Davis complex for a Coxeter group

Example: Klein four-group

$$
L \mathcal{Q} \mid=\underbrace{s}_{e} W_{L}^{s} \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2
$$

Davis complex for a Coxeter group

Example: Klein four-group

$$
L=\mathcal{Q}^{s} \mid
$$

Davis complex for a Coxeter group

Example: Klein four-group

$$
L=\mathcal{Q}^{s} \mid
$$

Davis complex for a Coxeter group

Example: Klein four-group

$$
L=\mathcal{Q}^{s} \mid
$$

Action of W on Σ_{W}

Davis complex for a Coxeter group

Example: Klein four-group

$$
L=W_{L}^{s} \mid
$$

Action of W on Σ_{W}

- $W \curvearrowright \Sigma_{W}$ by $w \cdot\left[w^{\prime}, x\right]=\left[w w^{\prime}, x\right]$

Davis complex for a Coxeter group

Example: Klein four-group

$$
L=W_{t}^{s} \mid
$$

Action of W on Σ_{W}

- $W \curvearrowright \Sigma_{W}$ by $w \cdot\left[w^{\prime}, x\right]=\left[w w^{\prime}, x\right]$
- $\Sigma_{W} / W=[e,|\mathcal{Q}|]=C L^{\prime}$ - strict fundamental domain

Davis complex for a Coxeter group

Example: Klein four-group

$$
\begin{aligned}
& L=\stackrel{s}{\bullet} \quad t \\
& W_{L} \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2 \\
& |\mathcal{Q}|=\frac{s s_{e}^{s, t} t}{\underbrace{}_{e}}
\end{aligned}
$$

Action of W on Σ_{W}

- $W \curvearrowright \Sigma_{W}$ by $w \cdot\left[w^{\prime}, x\right]=\left[w w^{\prime}, x\right]$
- $\Sigma_{W} / W=[e,|\mathcal{Q}|]=C L^{\prime}$ - strict fundamental domain
- Stabilisers $=$ conjugates of spherical W_{S} where $S \subset \mathcal{Q}$

Davis complex for a Coxeter group

Example: Klein four-group

$$
L=\stackrel{s}{s} \left\lvert\, \begin{gathered}
s_{L} \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2 \\
e_{e}^{s, t} t \\
e
\end{gathered}\right.
$$

Action of W on Σ_{W}

- $W \curvearrowright \Sigma_{W}$ by $w \cdot\left[w^{\prime}, x\right]=\left[w w^{\prime}, x\right]$
- $\Sigma_{W} / W=[e,|\mathcal{Q}|]=C L^{\prime}$ - strict fundamental domain
- Stabilisers $=$ conjugates of spherical W_{S} where $S \subset \mathcal{Q}$
* So $W \curvearrowright \Sigma_{W}$ is proper and cocompact

Davis complex for a Coxeter group

Theorem (Moussong)

Davis complex for a Coxeter group

Theorem (Moussong)
Σ_{W} supports a W-invariant $\operatorname{CAT}(0)$ metric.

Davis complex for a Coxeter group

Theorem (Moussong)
Σ_{W} supports a W-invariant $\operatorname{CAT}(0)$ metric.
Therefore $\Sigma_{W}=\underline{E} W$.

Davis complex for a Coxeter group

Theorem (Moussong)
Σ_{W} supports a W-invariant $\operatorname{CAT}(0)$ metric.
Therefore $\Sigma_{W}=\underline{E} W$.

$$
\operatorname{dim}\left(\Sigma_{W_{L}}\right)=\operatorname{dim}(|\mathcal{Q}|)=\operatorname{dim}(L)+1
$$

Davis complex for a Coxeter group

Theorem (Moussong)
Σ_{W} supports a W-invariant $\operatorname{CAT}(0)$ metric.
Therefore $\Sigma_{W}=\underline{E} W$.

$$
\operatorname{dim}\left(\Sigma_{W_{L}}\right)=\operatorname{dim}(|\mathcal{Q}|)=\operatorname{dim}(L)+1
$$

Example

Davis complex for a Coxeter group

Theorem (Moussong)
Σ_{W} supports a W-invariant $\operatorname{CAT}(0)$ metric.
Therefore $\Sigma_{W}=\underline{E} W$.

$$
\operatorname{dim}\left(\Sigma_{W_{L}}\right)=\operatorname{dim}(|\mathcal{Q}|)=\operatorname{dim}(L)+1
$$

Example
if $L=\Delta^{n}$

Davis complex for a Coxeter group

Theorem (Moussong)
Σ_{W} supports a W-invariant $\operatorname{CAT}(0)$ metric.
Therefore $\Sigma_{W}=\underline{E} W$.

$$
\operatorname{dim}\left(\Sigma_{W_{L}}\right)=\operatorname{dim}(|\mathcal{Q}|)=\operatorname{dim}(L)+1
$$

Example
if $L=\Delta^{n}$ then $\operatorname{dim}\left(\Sigma_{W_{L}}\right)=n+1$

Davis complex for a Coxeter group

Theorem (Moussong)
Σ_{W} supports a W-invariant $\operatorname{CAT}(0)$ metric.
Therefore $\Sigma_{W}=\underline{E} W$.

$$
\operatorname{dim}\left(\Sigma_{W_{L}}\right)=\operatorname{dim}(|\mathcal{Q}|)=\operatorname{dim}(L)+1
$$

Example
if $L=\Delta^{n}$ then $\operatorname{dim}\left(\Sigma_{W_{L}}\right)=n+1$ but $W_{L} \cong(\mathbb{Z} / 2)^{n+1}$ is finite,

Davis complex for a Coxeter group

Theorem (Moussong)
Σ_{W} supports a W-invariant $\mathrm{CAT}(0)$ metric.
Therefore $\Sigma_{W}=\underline{E} W$.

$$
\operatorname{dim}\left(\Sigma_{W_{L}}\right)=\operatorname{dim}(|\mathcal{Q}|)=\operatorname{dim}(L)+1
$$

Example
if $L=\Delta^{n}$ then $\operatorname{dim}\left(\Sigma_{W_{L}}\right)=n+1$ but $W_{L} \cong(\mathbb{Z} / 2)^{n+1}$ is finite, so $\underline{E} W_{L} \simeq\{p t\}$.

Proper actions and Bestvina complex

Proper actions and Bestvina complex

Theorem 1 (P.-Prytuła, 2018)

Proper actions and Bestvina complex

Theorem 1 (P.-Prytuła, 2018)
There exists a W_{L}-complex $\widetilde{B}_{W_{L}}$ ('Bestvina complex') such that:

Proper actions and Bestvina complex

Theorem 1 (P.-Prytuła, 2018)
There exists a W_{L}-complex $\widetilde{B}_{W_{L}}$ ('Bestvina complex') such that:

1. $\widetilde{B}_{W_{L}}$ and $\Sigma_{W_{L}}$ are W_{L}-homotopy equivalent

Proper actions and Bestvina complex

Theorem 1 (P.-Prytuła, 2018)
There exists a W_{L}-complex $\widetilde{B}_{W_{L}}$ ('Bestvina complex') such that:

1. $\widetilde{B}_{W_{L}}$ and $\Sigma_{W_{L}}$ are W_{L}-homotopy equivalent Therefore $\widetilde{B}_{W_{L}} \simeq E W_{L}$

Proper actions and Bestvina complex

Theorem 1 (P.-Prytuła, 2018)
There exists a W_{L}-complex $\widetilde{B}_{W_{L}}$ ('Bestvina complex') such that:

1. $\widetilde{B}_{W_{L}}$ and $\Sigma_{W_{L}}$ are W_{L}-homotopy equivalent

Therefore $\widetilde{B}_{W_{L}} \simeq E W_{L}$
2. $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=\operatorname{vcd} W_{L}$

Proper actions and Bestvina complex

Theorem 1 (P.-Prytuła, 2018)
There exists a W_{L}-complex $\widetilde{B}_{W_{L}}$ ('Bestvina complex') such that:

1. $\widetilde{B}_{W_{L}}$ and $\Sigma_{W_{L}}$ are W_{L}-homotopy equivalent Therefore $\widetilde{B}_{W_{L}} \simeq \underline{E} W_{L}$
2. $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=\operatorname{vcd} W_{L}=\underline{\operatorname{cd}} W_{L}$

Proper actions and Bestvina complex

Theorem 1 (P.-Prytuła, 2018)
There exists a W_{L}-complex $\widetilde{B}_{W_{L}}$ ('Bestvina complex') such that:

1. $\widetilde{B}_{W_{L}}$ and $\Sigma_{W_{L}}$ are W_{L}-homotopy equivalent Therefore $\widetilde{B}_{W_{L}} \simeq \underline{E} W_{L}$
2. $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=\operatorname{vcd} W_{L}=\underline{\operatorname{cd}} W_{L}$
(except it may be that $\underline{\operatorname{cd}} W_{L}=2$ but $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=3$)

Proper actions and Bestvina complex

Theorem 1 (P.-Prytuła, 2018)
There exists a W_{L}-complex $\widetilde{B}_{W_{L}}$ ('Bestvina complex') such that:

1. $\widetilde{B}_{W_{L}}$ and $\Sigma_{W_{L}}$ are W_{L}-homotopy equivalent

Therefore $\widetilde{B}_{W_{L}} \simeq \underline{E} W_{L}$
2. $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=\operatorname{vcd} W_{L}=\underline{\operatorname{cd}} W_{L}$
(except it may be that $\underline{\operatorname{cd}} W_{L}=2$ but $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=3$)
$+\widetilde{B}_{W_{L}}$ 'often' has a simpler cell structure.

Proper actions and Bestvina complex

Theorem 1 (P.-Prytuła, 2018)
There exists a W_{L}-complex $\widetilde{B}_{W_{L}}$ ('Bestvina complex') such that:

1. $\widetilde{B}_{W_{L}}$ and $\Sigma_{W_{L}}$ are W_{L}-homotopy equivalent Therefore $\widetilde{B}_{W_{L}} \simeq \underline{E} W_{L}$
2. $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=\operatorname{vcd} W_{L}=\underline{\operatorname{cd}} W_{L}$
(except it may be that $\underline{\operatorname{cd}} W_{L}=2$ but $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=3$)
$+\widetilde{B}_{W_{L}}$ 'often' has a simpler cell structure.
Idea

$$
\Sigma_{W}=W \times|\mathcal{Q}| / \sim
$$

Proper actions and Bestvina complex

Theorem 1 (P.-Prytuła, 2018)
There exists a W_{L}-complex $\widetilde{B}_{W_{L}}$ ('Bestvina complex') such that:

1. $\widetilde{B}_{W_{L}}$ and $\Sigma_{W_{L}}$ are W_{L}-homotopy equivalent Therefore $\widetilde{B}_{W_{L}} \simeq \underline{E} W_{L}$
2. $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=\operatorname{vcd} W_{L}=\underline{\operatorname{cd}} W_{L}$
(except it may be that $\underline{\operatorname{cd}} W_{L}=2$ but $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=3$)
$+\widetilde{B}_{W_{L}}$ 'often' has a simpler cell structure.
Idea

$$
\Sigma_{W}=W \times|\mathcal{Q}| / \sim
$$

Replace $|\mathcal{Q}|$ with a simpler mirrored space B_{W} and define

Proper actions and Bestvina complex

Theorem 1 (P.-Prytuła, 2018)
There exists a W_{L}-complex $\widetilde{B}_{W_{L}}$ ('Bestvina complex') such that:

1. $\widetilde{B}_{W_{L}}$ and $\Sigma_{W_{L}}$ are W_{L}-homotopy equivalent Therefore $\widetilde{B}_{W_{L}} \simeq \underline{E} W_{L}$
2. $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=\operatorname{vcd} W_{L}=\underline{\operatorname{cd}} W_{L}$
(except it may be that $\underline{\operatorname{cd}} W_{L}=2$ but $\operatorname{dim}\left(\widetilde{B}_{W_{L}}\right)=3$)
$+\widetilde{B}_{W_{L}}$ 'often' has a simpler cell structure.
Idea

$$
\Sigma_{W}=W \times|\mathcal{Q}| / \sim
$$

Replace $|\mathcal{Q}|$ with a simpler mirrored space B_{W} and define

$$
\widetilde{B}_{W}=W \times B_{W} / \sim
$$

Inductive definition of $|\mathcal{Q}|$

Inductive definition of $|\mathcal{Q}|$

$$
|\mathcal{Q}|=\cup_{S \in \mathcal{Q}} K_{S}
$$

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{s \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{s \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{s \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=\bigcup_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\bigcup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Inductive definition of $|\mathcal{Q}|$
$|\mathcal{Q}|=U_{S \in \mathcal{Q}} K_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $K_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $K_{S^{\prime}}$ is defined.
Set $K_{S}:=\operatorname{Cone}\left(\cup_{S<S^{\prime}} K_{S^{\prime}}\right)$ with S - the cone point.

Construction of B_{W}

Definition of B_{W}

Construction of B_{W}

Definition of B_{W}
$B_{W}=\cup_{S \in \mathcal{Q}} B_{S}$

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.

Construction of B_{W}

Definition of B_{W}
$B_{W}=U_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$, $B_{S^{\prime}}$ is defined.

Construction of B_{W}

Definition of B_{W}
$B_{W}=U_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=U_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $U_{s<s^{\prime}} B_{s^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=U_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $U_{s<s^{\prime}} B_{s^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=U_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $\bigcup_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Definition of B_{W}
$B_{W}=\bigcup_{s \in \mathcal{Q}} B_{S}$
Step 0: For maximal elements $S \in \mathcal{Q}$ set $B_{S}:=$ point.
Inductive step: Given $S \in \mathcal{Q}$, suppose that for all S^{\prime} with $S<S^{\prime}$,
$B_{S^{\prime}}$ is defined.
Set $B_{S}:=$ smallest dimensional contractible polyhedron containing $U_{S<S^{\prime}} B_{S^{\prime}}$.

Construction of B_{W}

Example

Construction of B_{W}

Example

Construction of B_{W}

Example L
$\int_{s_{2}}^{s_{1}} \cdot s_{3}$

Construction of B_{W}

Example L

$$
W_{L} \cong(\mathbb{Z} / 2 \times \mathbb{Z} / 2) * \mathbb{Z} / 2
$$

Construction of B_{W}

Example L

$$
W_{L} \cong(\mathbb{Z} / 2 \times \mathbb{Z} / 2) * \mathbb{Z} / 2
$$

Construction of B_{W}

$$
W_{L} \cong(\mathbb{Z} / 2 \times \mathbb{Z} / 2) * \mathbb{Z} / 2
$$

Construction of B_{W}

Example L

$C L^{\prime}$
B_{W}
s_{1}, s_{2}
S3

$$
W_{L} \cong(\mathbb{Z} / 2 \times \mathbb{Z} / 2) * \mathbb{Z} / 2
$$

Σ_{w}

Construction of B_{W}

Example L

$C L^{\prime}$

B_{W}

$$
\begin{equation*}
s_{1}, s_{2} \tag{3}
\end{equation*}
$$

$$
W_{L} \cong(\mathbb{Z} / 2 \times \mathbb{Z} / 2) * \mathbb{Z} / 2
$$

Construction of B_{W}

Example L

$C L^{\prime}$

B_{W}

$$
\begin{equation*}
s_{1}, s_{2} \tag{S3}
\end{equation*}
$$

$$
W_{L} \cong(\mathbb{Z} / 2 \times \mathbb{Z} / 2) * \mathbb{Z} / 2
$$

Simple complexes of groups
\mathcal{Q} - finite poset

Simple complexes of groups
\mathcal{Q} - finite poset
$G(\mathcal{Q})$ - simple complex of groups consists of collection of:

Simple complexes of groups
\mathcal{Q} - finite poset
$G(\mathcal{Q})$ - simple complex of groups consists of collection of:

- groups $\left\{P_{J}\right\}_{J \in \mathcal{Q}}$,

Simple complexes of groups
\mathcal{Q} - finite poset
$G(\mathcal{Q})$ - simple complex of groups consists of collection of:

- groups $\left\{P_{J}\right\}_{J \in \mathcal{Q}}$,
- $\left\{P_{J} \hookrightarrow P_{T}\right\}_{J \leqslant T \in \mathcal{Q}}$ satisfying compatibility conditions.

Simple complexes of groups
\mathcal{Q} - finite poset
$G(\mathcal{Q})$ - simple complex of groups consists of collection of:

- groups $\left\{P_{J}\right\}_{J \in \mathcal{Q}}$,
- $\left\{P_{J} \hookrightarrow P_{T}\right\}_{J \leqslant T \in \mathcal{Q}}$ satisfying compatibility conditions.

$$
G:=\underset{J \in \mathcal{Q}}{\operatorname{colim}} P_{J}
$$

Simple complexes of groups
\mathcal{Q} - finite poset
$G(\mathcal{Q})$ - simple complex of groups consists of collection of:

- groups $\left\{P_{J}\right\}_{J \in \mathcal{Q}}$,
- $\left\{P_{J} \hookrightarrow P_{T}\right\}_{J \leqslant T \in \mathcal{Q}}$ satisfying compatibility conditions.

$$
G:=\underset{J \in \mathcal{Q}}{\operatorname{colim}} P_{J}
$$

If for every $J \in \mathcal{Q}$ the map $P_{J} \rightarrow G$ is injective then $G(\mathcal{Q})$ is strictly developable

Simple complexes of groups
\mathcal{Q} - finite poset
$G(\mathcal{Q})$ - simple complex of groups consists of collection of:

- groups $\left\{P_{J}\right\}_{J \in \mathcal{Q}}$,
- $\left\{P_{J} \hookrightarrow P_{T}\right\}_{J \leqslant T \in \mathcal{Q}}$ satisfying compatibility conditions.

$$
G:=\underset{J \in \mathcal{Q}}{\operatorname{colim}} P_{J}
$$

If for every $J \in \mathcal{Q}$ the map $P_{J} \rightarrow G$ is injective then $G(\mathcal{Q})$ is strictly developable and for $K:=|\mathcal{Q}|$ we have a G-space

$$
D(K, G(\mathcal{Q})):=G \times K / \sim
$$

Simple complexes of groups

\mathcal{Q} - finite poset
$G(\mathcal{Q})$ - simple complex of groups consists of collection of:

- groups $\left\{P_{J}\right\}_{J \in \mathcal{Q}}$,
- $\left\{P_{J} \hookrightarrow P_{T}\right\}_{J \leqslant T \in \mathcal{Q}}$ satisfying compatibility conditions.

$$
G:=\underset{J \in \mathcal{Q}}{\operatorname{colim}} P_{J}
$$

If for every $J \in \mathcal{Q}$ the map $P_{J} \rightarrow G$ is injective then $G(\mathcal{Q})$ is strictly developable and for $K:=|\mathcal{Q}|$ we have a G-space

$$
D(K, G(\mathcal{Q})):=G \times K / \sim
$$

We say that $G(\mathcal{Q})$ is thin if $P_{J} \hookrightarrow P_{T}$ is an isomorphism if and only if $J=T$.

Theorem 3 (P.-Prytuła, 2020)

Theorem 3 (P.-Prytuła, 2020)
Let $G(\mathcal{Q})$ be a strictly developable thin simple complex of groups with fundamental group G.

Theorem 3 (P.-Prytuła, 2020)
Let $G(\mathcal{Q})$ be a strictly developable thin simple complex of groups with fundamental group G. Let \mathfrak{F} be the family generated by local groups.

Theorem 3 (P.-Prytuła, 2020)
Let $G(\mathcal{Q})$ be a strictly developable thin simple complex of groups with fundamental group G. Let \mathfrak{F} be the family generated by local groups.

Suppose $D(K, G(\mathcal{Q}))$ is a model for $E_{\mathfrak{F}} G$.

Theorem 3 (P.-Prytuła, 2020)
Let $G(\mathcal{Q})$ be a strictly developable thin simple complex of groups with fundamental group G. Let \mathfrak{F} be the family generated by local groups.

Suppose $D(K, G(\mathcal{Q}))$ is a model for $E_{\mathfrak{F}} G$. Then TFAE

Theorem 3 (P.-Prytuła, 2020)

Let $G(\mathcal{Q})$ be a strictly developable thin simple complex of groups with fundamental group G. Let \mathfrak{F} be the family generated by local groups.

Suppose $D(K, G(\mathcal{Q}))$ is a model for $E_{\mathfrak{F}} G$. Then TFAE
(i) $D(K, G(\mathcal{Q}))$ equivariantly deformation retracts onto $D(B, G(\mathcal{Q}))$ which is a tree.

Theorem 3 (P.-Prytuła, 2020)

Let $G(\mathcal{Q})$ be a strictly developable thin simple complex of groups with fundamental group G. Let \mathfrak{F} be the family generated by local groups.

Suppose $D(K, G(\mathcal{Q}))$ is a model for $E_{\mathfrak{F}} G$. Then TFAE
(i) $D(K, G(\mathcal{Q}))$ equivariantly deformation retracts onto $D(B, G(\mathcal{Q}))$ which is a tree.
(ii) $\mathrm{cd}_{\mathfrak{F}} G \leqslant 1$.

Theorem 3 (P.-Prytuła, 2020)

Let $G(\mathcal{Q})$ be a strictly developable thin simple complex of groups with fundamental group G. Let \mathfrak{F} be the family generated by local groups.

Suppose $D(K, G(\mathcal{Q}))$ is a model for $E_{\mathfrak{F}} G$. Then TFAE
(i) $D(K, G(\mathcal{Q}))$ equivariantly deformation retracts onto $D(B, G(\mathcal{Q}))$ which is a tree.
(ii) $\operatorname{cd}_{\mathfrak{F}} G \leqslant 1$.
(iii) $H^{n}\left(K_{>J}\right)=0$ for all $J \in \mathcal{Q}$ and $n \geq 1$.

Theorem 3 (P.-Prytuła, 2020)

Let $G(\mathcal{Q})$ be a strictly developable thin simple complex of groups with fundamental group G. Let \mathfrak{F} be the family generated by local groups.

Suppose $D(K, G(\mathcal{Q}))$ is a model for $E_{\mathfrak{F}} G$. Then TFAE
(i) $D(K, G(\mathcal{Q}))$ equivariantly deformation retracts onto $D(B, G(\mathcal{Q}))$ which is a tree.
(ii) $\operatorname{cd}_{\mathfrak{F}} G \leqslant 1$.
(iii) $H^{n}\left(K_{>J}\right)=0$ for all $J \in \mathcal{Q}$ and $n \geq 1$.

Conjecture

Let G be a group and \mathfrak{F} be a family of subgroups. Then $\operatorname{cd}_{\mathfrak{F}} G \leq 1$ if and only if G acts on a tree with stabilisers generating \mathfrak{F}.

Buildings and their realisations

Buildings and their realisations

Theorem 2 (P.-Prytuła, 2019)

Buildings and their realisations

Theorem 2 (P.-Prytuła, 2019)
Let G act chamber transitively on a building Δ of type (W, S).

Buildings and their realisations

Theorem 2 (P.-Prytuła, 2019)
Let G act chamber transitively on a building Δ of type (W, S).There exists a realisation $B(\Delta)$ of Δ such that:

Buildings and their realisations

Theorem 2 (P.-Prytuła, 2019)
Let G act chamber transitively on a building Δ of type (W, S).There exists a realisation $B(\Delta)$ of Δ such that:

1. $B(\Delta)$ and Davis realisation $D(\Delta)$ are G-homotopy equivalent

Buildings and their realisations

Theorem 2 (P.-Prytuła, 2019)
Let G act chamber transitively on a building Δ of type (W, S).There exists a realisation $B(\Delta)$ of Δ such that:

1. $B(\Delta)$ and Davis realisation $D(\Delta)$ are G-homotopy equivalent Therefore $B(\Delta) \simeq E_{\overparen{F}} G$

Buildings and their realisations

Theorem 2 (P.-Prytuła, 2019)
Let G act chamber transitively on a building Δ of type (W, S).There exists a realisation $B(\Delta)$ of Δ such that:

1. $B(\Delta)$ and Davis realisation $D(\Delta)$ are G-homotopy equivalent Therefore $B(\Delta) \simeq E_{\mathfrak{F}} G$
2. $H_{\mathfrak{F}}^{*}\left(G ; \mathcal{B}_{P_{J}}\right) \cong \bigoplus_{g \in \mathcal{I}} \bigoplus_{U \in \Omega_{J}^{g}} H^{*-1}\left(K_{>U}\right)$

Buildings and their realisations

Theorem 2 (P.-Prytuła, 2019)
Let G act chamber transitively on a building Δ of type (W, S).There exists a realisation $B(\Delta)$ of Δ such that:

1. $B(\Delta)$ and Davis realisation $D(\Delta)$ are G-homotopy equivalent Therefore $B(\Delta) \simeq E_{\mathfrak{F}} G$
2. $H_{\tilde{F}}^{*}\left(G ; \mathcal{B}_{P_{J}}\right) \cong \bigoplus_{g \in \mathcal{I}} \bigoplus_{U \in \Omega_{J}^{g}} H^{*-1}\left(K_{>U}\right)$
3. $\operatorname{cd}_{\mathfrak{F}} G=\operatorname{dim} B(\Delta)$

Buildings and their realisations

Theorem 2 (P.-Prytuła, 2019)
Let G act chamber transitively on a building Δ of type (W, S).There exists a realisation $B(\Delta)$ of Δ such that:

1. $B(\Delta)$ and Davis realisation $D(\Delta)$ are G-homotopy equivalent Therefore $B(\Delta) \simeq E_{\overparen{F}} G$
2. $H_{\mathfrak{F}}^{*}\left(G ; \mathcal{B}_{P_{J}}\right) \cong \bigoplus_{g \in \mathcal{I}} \bigoplus_{U \in \Omega_{J}^{g}} H^{*-1}\left(K_{>U}\right)$
3. $\operatorname{cd}_{\mathfrak{F}} G=\operatorname{dim} B(\Delta)=\operatorname{vcd} W$

Buildings and their realisations

Theorem 2 (P.-Prytuła, 2019)
Let G act chamber transitively on a building Δ of type (W, S).There exists a realisation $B(\Delta)$ of Δ such that:

1. $B(\Delta)$ and Davis realisation $D(\Delta)$ are G-homotopy equivalent Therefore $B(\Delta) \simeq E_{\overparen{F}} G$
2. $H_{\mathfrak{F}}^{*}\left(G ; \mathcal{B}_{P_{J}}\right) \cong \bigoplus_{g \in \mathcal{I}} \bigoplus_{U \in \Omega_{J}^{g}} H^{*-1}\left(K_{>U}\right)$
3. $\operatorname{cd}_{\mathfrak{F}} G=\operatorname{dim} B(\Delta)=\operatorname{vcd} W$
(except it could be that $\operatorname{cd}_{\mathfrak{F}} G=2$ but $\operatorname{dim} B(\Delta)=3$)

Buildings and their realisations

Theorem 2 (P.-Prytuła, 2019)
Let G act chamber transitively on a building Δ of type (W, S).There exists a realisation $B(\Delta)$ of Δ such that:

1. $B(\Delta)$ and Davis realisation $D(\Delta)$ are G-homotopy equivalent Therefore $B(\Delta) \simeq E_{\overparen{F}} G$
2. $H_{\tilde{F}}^{*}\left(G ; \mathcal{B}_{P_{J}}\right) \cong \bigoplus_{g \in \mathcal{I}} \bigoplus_{U \in \Omega_{J}^{g}} H^{*-1}\left(K_{>U}\right)$
3. $\operatorname{cd}_{\mathfrak{F}} G=\operatorname{dim} B(\Delta)=\operatorname{vcd} W$
(except it could be that $\operatorname{cd}_{\mathfrak{F}} G=2$ but $\operatorname{dim} B(\Delta)=3$)

Corollary
If G is virtually torsion-free, then

$$
\operatorname{vcd} G \leq \operatorname{vcd} W+\max \{\operatorname{vcd} P \mid P \text { is parabolic }\}
$$

Other applications

Theorem 4 (P.-Prytuła, 2020)

Other applications

Theorem 4 (P.-Prytuła, 2020)
Suppose G acts properly on a $\operatorname{CAT}(0)$ polyhedral complex X with a strict fundamental domain K.

Other applications

Theorem 4 (P.-Prytuła, 2020)
Suppose G acts properly on a $\operatorname{CAT}(0)$ polyhedral complex X with a strict fundamental domain K. Let \mathcal{Q} denote the poset of cells of K ordered by the reverse inclusion (thus $|\mathcal{Q}|=K^{\prime}$).

Other applications

Theorem 4 (P.-Prytuła, 2020)

Suppose G acts properly on a $\operatorname{CAT}(0)$ polyhedral complex X with a strict fundamental domain K. Let \mathcal{Q} denote the poset of cells of K ordered by the reverse inclusion (thus $|\mathcal{Q}|=K^{\prime}$). Then

$$
\underline{\operatorname{cd}}(G)=\max \left\{n \in \mathbb{N} \mid H^{n}\left(K_{C}^{\prime}, K_{>C}^{\prime}\right) \neq 0 \text { for some block } C \subseteq \mathcal{Q}\right\} .
$$

Other applications

Theorem 4 (P.-Prytuła, 2020)
Suppose G acts properly on a $\operatorname{CAT}(0)$ polyhedral complex X with a strict fundamental domain K. Let \mathcal{Q} denote the poset of cells of K ordered by the reverse inclusion (thus $|\mathcal{Q}|=K^{\prime}$). Then

$$
\underline{\operatorname{cd}}(G)=\max \left\{n \in \mathbb{N} \mid H^{n}\left(K_{C}^{\prime}, K_{>C}^{\prime}\right) \neq 0 \text { for some block } C \subseteq \mathcal{Q}\right\} .
$$

Example: $G(\mathcal{Q})$

Other applications

Theorem 4 (P.-Prytuła, 2020)
Suppose G acts properly on a $\operatorname{CAT}(0)$ polyhedral complex X with a strict fundamental domain K. Let \mathcal{Q} denote the poset of cells of K ordered by the reverse inclusion (thus $|\mathcal{Q}|=K^{\prime}$). Then $\underline{\operatorname{cd}}(G)=\max \left\{n \in \mathbb{N} \mid H^{n}\left(K_{C}^{\prime}, K_{>C}^{\prime}\right) \neq 0\right.$ for some block $\left.C \subseteq \mathcal{Q}\right\}$.

Example: $G(\mathcal{Q})$

Elements of a block $C \subset \mathcal{Q}$ with a local group A are connected by green lines.

Other applications

Theorem 4 (P.-Prytuła, 2020)
Suppose G acts properly on a $\operatorname{CAT}(0)$ polyhedral complex X with a strict fundamental domain K. Let \mathcal{Q} denote the poset of cells of K ordered by the reverse inclusion (thus $|\mathcal{Q}|=K^{\prime}$). Then $\underline{\operatorname{cd}}(G)=\max \left\{n \in \mathbb{N} \mid H^{n}\left(K_{C}^{\prime}, K_{>C}^{\prime}\right) \neq 0\right.$ for some block $\left.C \subseteq \mathcal{Q}\right\}$.

Example: $G(\mathcal{Q})$

Elements of a block $C \subset \mathcal{Q}$ with a local group A are connected by green lines. K_{C}^{\prime} is in yellow.

New counterexamples to Brown's Conjecture

New counterexamples to Brown's Conjecture

Theorem 5 (P.-Prytuła, 2020)
Let F be a finite group admitting a reflection-like action on a compact, connected, flag simplicial complex L of dimension $n \geq 1$.

New counterexamples to Brown's Conjecture

Theorem 5 (P.-Prytuła, 2020)
Let F be a finite group admitting a reflection-like action on a compact, connected, flag simplicial complex L of dimension $n \geq 1$. Let $G=W_{L} \rtimes F$ be the associated semi-direct product.

New counterexamples to Brown's Conjecture

Theorem 5 (P.-Prytuła, 2020)
Let F be a finite group admitting a reflection-like action on a compact, connected, flag simplicial complex L of dimension $n \geq 1$. Let $G=W_{L} \rtimes F$ be the associated semi-direct product. Suppose that $H^{n}(L)=0$.

New counterexamples to Brown's Conjecture

Theorem 5 (P.-Prytuła, 2020)
Let F be a finite group admitting a reflection-like action on a compact, connected, flag simplicial complex L of dimension $n \geq 1$. Let $G=W_{L} \rtimes F$ be the associated semi-direct product. Suppose that $H^{n}(L)=0$. Then

$$
\operatorname{vcd} G \leq n \quad \text { and } \quad \underline{\operatorname{cd}} G=n+1
$$

New counterexamples to Brown's Conjecture

Theorem 5 (P.-Prytuła, 2020)
Let F be a finite group admitting a reflection-like action on a compact, connected, flag simplicial complex L of dimension $n \geq 1$. Let $G=W_{L} \rtimes F$ be the associated semi-direct product. Suppose that $H^{n}(L)=0$. Then

$$
\operatorname{vcd} G \leq n \quad \text { and } \quad \underline{\operatorname{cd}} G=n+1
$$

We say that such F-action is reflection-like if:

New counterexamples to Brown's Conjecture

Theorem 5 (P.-Prytuła, 2020)
Let F be a finite group admitting a reflection-like action on a compact, connected, flag simplicial complex L of dimension $n \geq 1$. Let $G=W_{L} \rtimes F$ be the associated semi-direct product. Suppose that $H^{n}(L)=0$. Then

$$
\operatorname{vcd} G \leq n \quad \text { and } \quad \underline{\operatorname{cd}} G=n+1
$$

We say that such F-action is reflection-like if:

- it has a strict fundamental domain $Y \cong B^{n}$,

New counterexamples to Brown's Conjecture

Theorem 5 (P.-Prytuła, 2020)
Let F be a finite group admitting a reflection-like action on a compact, connected, flag simplicial complex L of dimension $n \geq 1$. Let $G=W_{L} \rtimes F$ be the associated semi-direct product. Suppose that $H^{n}(L)=0$. Then

$$
\operatorname{vcd} G \leq n \quad \text { and } \quad \underline{\operatorname{cd}} G=n+1
$$

We say that such F-action is reflection-like if:

- it has a strict fundamental domain $Y \cong B^{n}$,
- Every interior point of Y has the same stabiliser F_{0},

New counterexamples to Brown's Conjecture

Theorem 5 (P.-Prytuła, 2020)
Let F be a finite group admitting a reflection-like action on a compact, connected, flag simplicial complex L of dimension $n \geq 1$. Let $G=W_{L} \rtimes F$ be the associated semi-direct product. Suppose that $H^{n}(L)=0$. Then

$$
\operatorname{vcd} G \leq n \quad \text { and } \quad \underline{\operatorname{cd}} G=n+1
$$

We say that such F-action is reflection-like if:

- it has a strict fundamental domain $Y \cong B^{n}$,
- Every interior point of Y has the same stabiliser F_{0},
- F_{0} is a proper subgroup of the stabiliser of any point in ∂B^{n}.

Example

$$
D_{n} \longrightarrow D_{n} /\langle s t\rangle \cong \mathbb{Z} / 2
$$

Example

The action of D_{n} on 2-dimensional Moore space $M(\mathbb{Z} / n, 1)$ is reflection-like.

Example

The action of D_{n} on 2-dimensional Moore space $M(\mathbb{Z} / n, 1)$ is reflection-like. Let n, m be co-prime.

Example

The action of D_{n} on 2-dimensional Moore space $M(\mathbb{Z} / n, 1)$ is reflection-like. Let n, m be co-prime.

$$
F=D_{n} \times D_{m} \curvearrowright L \cong M(\mathbb{Z} / n, 1) \times M(\mathbb{Z} / m, 1) .
$$

Example

The action of D_{n} on 2-dimensional Moore space $M(\mathbb{Z} / n, 1)$ is reflection-like. Let n, m be co-prime.

$$
F=D_{n} \times D_{m} \curvearrowright L \cong M(\mathbb{Z} / n, 1) \times M(\mathbb{Z} / m, 1) .
$$

$$
G=W_{L} \rtimes F \Rightarrow \operatorname{vcd} G=4 \quad \text { and } \quad \underline{\operatorname{cd}} G=5 .
$$

Open problems

Open problems

1. Does the Bestvina complex support a G-invariant CAT(0) metric?

Open problems

1. Does the Bestvina complex support a G-invariant CAT(0) metric?
2. Is the Bestvina complex an equivariant deformation retract of the Davis complex?

Open problems

1. Does the Bestvina complex support a G-invariant CAT(0) metric?
2. Is the Bestvina complex an equivariant deformation retract of the Davis complex?
3. When can the construction of the Bestvina complex be generalised to actions with non-compact or non-strict fundamental domains?

THANK YOU

