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The setting

General problems

Let G be a group that acts on a simplicial complex X with a strict
fundamental domain K .

P1. Equivariantly deform X to Y where Y is of smallest possible
dimension.

P2. Relate Bredon cohomology of X and the cohomology of
subcomplexes of K .

I G is a Coxeter group and X is the Davis complex.

I X is a building and G acts chamber transitively.

I X is CAT(0).

I X is a model for classifying space EFG .
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Classifying space for a family of subgroups

Let G be a discrete group and F be a family of subgroups.

Definition
A model for the classifying space EFG is a G–CW–complex X such
that:

I each stabiliser is in F,

I for every F ∈ F the fixed point set X F is contractible (6= ∅)

Remark

I EFG always exists.

I Any two models for EFG are G–homotopy equivalent.

I EFG is denoted by EG and EG when F is the family of finite
and virtually cyclic subgroups, respectively.
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Classifying space for a family of subgroups

Examples

1.

Rs t

D∞ = 〈s, t〉 ⊂ Isom(R)

D∞ y R properly, R〈s〉 ≈ ∗, R ' ED∞

2. Let G act properly on a tree T . Then T ' EG .

3. G y X and X - CAT(0) complex. Then X ' EFG .
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Classifying space for a family of subgroups

Goal

Construct ‘minimal’ models for EFG of dimension =

vcdG - virtual cohomological dimension

cdFG - Bredon cohomological dimension

where cdFG = max{n | Hn
G (EFG ,M) 6= 0, M ∈ OF(G )}.

I Baum-Connes Conjecture

KG
∗ (EG )

∼=−→ K∗(C
∗
r (G ))

I Farrel-Jones Conjecture

HG
n (EG ;KZ)

∼=−→ Kn(ZG ),
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Davis complex for a Coxeter group

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

W = WL = 〈si ∈ V (L) | s2
i = e, si sj = sjsi iff {si , sj} ∈ E (L)〉

Examples

L

∆n (∆n)(0) L1 ∗ L2 L1 t L2

WL

(Z/2)n+1 (Z/2)∗(n+1) WL1 ×WL2 WL1 ∗WL2

EW = ΣW = Σ - Davis complex
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Let W = WL

A subset S ⊂ V (L) is spherical if WS = 〈S〉 ⊂W is finite⇐⇒
elements of S span a simplex of L

Q = poset of spherical subsets of V (L) = poset of simplices of L
+ the smallest element ∅ (〈∅〉 = {e}).
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ee
K∅ = |Q|

|Q| - mirrored space

{KS}S∈Q - mirrors, KS ⊂ |Q|

KS := |{S ′ ∈ Q | S ′ > S}|

|Q| =
⋃

S∈Q KS|Q| =
⋃

S∈Q KS

KS ∩ KT =

{
KS∪T if S ∪ T is spherical

empty otherwise
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(w1, x1) ∼ (w2, x2) ⇐⇒ x1 = x2 and w−1
1 w2 ∈WS(x1)

where KS(x1) is the smallest mirror containing x1
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Theorem (Moussong)

ΣW supports a W –invariant CAT(0) metric.

Therefore ΣW = EW .

dim(ΣWL
) = dim(|Q|) = dim(L) + 1

Example

if L = ∆n then dim(ΣWL
) = n + 1

but WL
∼= (Z/2)n+1 is finite, so EWL ' {pt}.
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Proper actions and Bestvina complex

Theorem 1 (P.-Prytu la, 2018)

There exists a WL–complex B̃WL
(‘Bestvina complex’) such that:

1. B̃WL
and ΣWL

are WL–homotopy equivalent

Therefore B̃WL
' EWL

2. dim(B̃WL
) = vcdWL = cdWL

(except it may be that cdWL = 2 but dim(B̃WL
) = 3)

+ B̃WL
‘often’ has a simpler cell structure.

Idea

ΣW = W × |Q|/ ∼

Replace |Q| with a simpler mirrored space BW and define

B̃W = W × BW / ∼
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Inductive definition of |Q|

|Q| =
⋃

S∈Q KS

Step 0: For maximal elements S ∈ Q set KS := point.

Inductive step: Given S ∈ Q, suppose that for all S ′ with S < S ′,
KS ′ is defined.
Set KS := Cone(

⋃
S<S ′ KS ′) with S - the cone point.
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Construction of BW

Definition of BW

BW =
⋃

S∈Q BS

Step 0: For maximal elements S ∈ Q set BS := point.

Inductive step: Given S ∈ Q, suppose that for all S ′ with S < S ′,
BS ′ is defined.
Set BS := smallest dimensional contractible polyhedron containing⋃

S<S ′ BS ′ .
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Simple complexes of groups

Q - finite poset

G (Q) - simple complex of groups consists of collection of:

I groups {PJ}J∈Q,

I {PJ ↪→ PT}J6T∈Q satisfying compatibility conditions.

G := colim
J∈Q

PJ

If for every J ∈ Q the map PJ → G is injective then G (Q) is
strictly developable and for K := |Q| we have a G–space

D(K ,G (Q)) := G × K/ ∼

We say that G (Q) is thin if PJ ↪→ PT is an isomorphism if and
only if J = T .
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Theorem 3 (P.-Prytu la, 2020)

Let G (Q) be a strictly developable thin simple complex of groups
with fundamental group G . Let F be the family generated by local
groups.

Suppose D(K ,G (Q)) is a model for EFG . Then TFAE

(i) D(K ,G (Q)) equivariantly deformation retracts onto
D(B,G (Q)) which is a tree.

(ii) cdFG 6 1.

(iii) Hn(K>J) = 0 for all J ∈ Q and n ≥ 1.

Conjecture

Let G be a group and F be a family of subgroups. Then cdFG ≤ 1
if and only if G acts on a tree with stabilisers generating F.
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Buildings and their realisations

Theorem 2 (P.-Prytu la, 2019)

Let G act chamber transitively on a building ∆ of type
(W ,S).There exists a realisation B(∆) of ∆ such that:

1. B(∆) and Davis realisation D(∆) are G–homotopy equivalent

Therefore B(∆) ' EFG

2. H∗F(G ;BPJ
) ∼=

⊕
g∈I

⊕
U∈Ωg

J
H∗−1(K>U)

3. cdFG = dimB(∆) = vcdW

(except it could be that cdFG = 2 but dimB(∆) = 3)

Corollary

If G is virtually torsion-free, then

vcdG ≤ vcdW + max{vcdP | P is parabolic}.
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Other applications

Theorem 4 (P.-Prytu la, 2020)

Suppose G acts properly on a CAT(0) polyhedral complex X with
a strict fundamental domain K . Let Q denote the poset of cells of
K ordered by the reverse inclusion (thus |Q| = K ′). Then

cd(G ) = max{n ∈ N | Hn(K ′C ,K
′
>C ) 6= 0 for some block C ⊆ Q}.

Example: G (Q)

A A A

B
A A

A AAA

A
A

A A

C
E

D

Elements of a block C ⊂ Q with a local group A are connected by
green lines. K ′C is in yellow.
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New counterexamples to Brown’s Conjecture

Theorem 5 (P.-Prytu la, 2020)

Let F be a finite group admitting a reflection-like action on a
compact, connected, flag simplicial complex L of dimension n ≥ 1.
Let G = WL o F be the associated semi-direct product. Suppose
that Hn(L) = 0. Then

vcdG ≤ n and cdG = n + 1.

We say that such F–action is reflection-like if:

I it has a strict fundamental domain Y ∼= Bn,

I Every interior point of Y has the same stabiliser F0,

I F0 is a proper subgroup of the stabiliser of any point in ∂Bn.
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Example

{e}

Dn 〈st〉 Dn

〈t〉

Dn

〈s〉

ts

Dn Dn/〈st〉 ∼= Z/2

deg n

[s] = [t]

The action of Dn on 2-dimensional Moore space M(Z/n, 1) is
reflection-like. Let n,m be co-prime.

F = Dn × Dm y L ∼= M(Z/n, 1)×M(Z/m, 1).

G = WL o F ⇒ vcdG = 4 and cdG = 5.
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Open problems

1. Does the Bestvina complex support a G -invariant CAT(0)
metric?

2. Is the Bestvina complex an equivariant deformation retract of
the Davis complex?

3. When can the construction of the Bestvina complex be
generalised to actions with non-compact or non-strict
fundamental domains?
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