Constructing Bisimplices

Nima Hoda

École Normale Supérieure

May 27, 2020

Table of Contents

Motivation and Basic Construction

Discrete Morse Theory and Forman's Sphere Theorem

PL-spheres and Links

Motivation

Notion

Quadric complexes are simply connected square complexes satisfying a certain local combinatorial nonpositive curvature condition. They generalize CAT(0) square complexes and are in many ways analogous to systolic complexes.

A quadric complex

Theorem (H.)

Spanning a "bisimplex" on each $K_{m+1,n+1}$ subgraph, with $m, n \ge 1$, of a locally finite "quadric complex" results in a contractible complex with the same 2-skeleton.

Definition?

Definition

A (1,1)-bisimplex $X^{1,1}$ is a square with its usual cell structure.

An (m,n)-bisimplex $\Sigma^{m,n}$, with $m,n\geq 1$, is obtained from $K_{m+1,n+1}$ by first spanning a single $\Sigma^{m',n'}$ on each proper $K_{m'+1,n'+1}$ subgraph with $m',n'\geq 1$ to obtain $\partial \Sigma^{m,n}$ and then plugging the resulting (m+n-1)-sphere with an (m+n)-cell.

Definition?

Definition

A (1,1)-bisimplex $X^{1,1}$ is a square with its usual cell structure.

An (m,n)-bisimplex $X^{m,n}$, with $m,n\geq 1$, is obtained from $K_{m+1,n+1}$ by first spanning a single $X^{m',n'}$ on each proper $K_{m'+1,n'+1}$ subgraph with $m',n'\geq 1$ to obtain $\partial X^{m,n}$ and then plugging the resulting (m+n-1)-sphere with an (m+n)-cell.

In particular, the (m, n)-bisimplex $X^{m,n}$ is a cellulated ball B^{m+n} such that

- the 1-skeleton is $K_{m+1,n+1}$
- there is exactly one higher cell for each $K_{m'+1,n'+1}$ subgraph with $m',n'\geq 1$ and this cell is a $\overline{X}^{m',n'}$

Compare with the *n*-simplex Δ^n which is a cellulated B^n such that

- the 1-skeleton is K_{n+1}
- there is exactly one simplex for each $K_{n'}$ subgraph

Definition?

Definition

A (1,1)-bisimplex $X^{1,1}$ is a square with its usual cell structure.

An (m,n)-bisimplex $\mathbb{X}^{m,n}$, with $m,n\geq 1$, is obtained from $K_{m+1,n+1}$ by first spanning a single $\mathbb{X}^{m',n'}$ on each proper $K_{m'+1,n'+1}$ subgraph with $m',n'\geq 1$ to obtain $\partial\mathbb{X}^{m,n}$ and then plugging the resulting (m+n-1)-sphere with an (m+n)-cell.

Problem!

The inductive step of the definition crucially depends on $\partial \Sigma^{m,n}$ being homeomorphic to S^{m+n-1} .

We will spend the rest of this talk proving that we do indeed have S^{m+n-1} in this inductive step.

Table of Contents

Motivation and Basic Construction

2 Discrete Morse Theory and Forman's Sphere Theorem

PL-spheres and Links

Morse matchings

Terminology

In this talk, *cell complex* means regular CW complex. A CW complex is *regular* if its attaching maps are all embeddings.

Not regular

Regular

Definition

A Forman discrete Morse matching on a cell complex X is a collection of pairs of cells $\{\sigma_i \to \tau_i\}_i$ such that:

- **1** σ_i is a codimension 1 face of τ_i ; we denote this by $\sigma_i \prec \tau_i$
- 2 each cell appears in at most one pair
- **3** there is no cycle of the form: $\sigma_{i_1} \to \tau_{i_1} \succ \sigma_{i_2} \to \tau_{i_2} \succ \cdots \succ \sigma_{i_k} \to \tau_{i_k} \succ \sigma_{i_1}$

A critical cell of a Morse matching is one not appearing in any pair.

Morse matchings

Definition

A Forman discrete Morse matching on a cell complex X is a collection of pairs of cells $\{\sigma_i \to \tau_i\}_i$ such that:

- **1** σ_i is a codimension 1 face of τ_i ; we denote this by $\sigma_i \prec \tau_i$
- 2 each cell appears in at most one pair
- **3** there is no cycle of the form: $\sigma_{i_1} \to \tau_{i_1} \succ \sigma_{i_2} \to \tau_{i_2} \succ \cdots \succ \sigma_{i_k} \to \tau_{i_k} \succ \sigma_{i_1}$

A critical cell of a Morse matching is one not appearing in any pair.

Nonexamples

Examples

The Forman Sphere Theorem

Examples

Theorem (Forman)

If the union of the relative interiors of the critical cells of X forms a subcomplex Y then X collapses onto Y.

Theorem (Forman)

For each d, let N_d be the number of critical cells of X of dimension d. Then X is homotopy equivalent to a CW complex with N_d cells of dimension d.

Theorem (Forman Sphere Theorem)

If X has two critical cells σ_1 and σ_2 then $\min_i \dim \sigma_i = 0$ and X is homotopy equivalent to a sphere of dimension $\max_i \dim \sigma_i$.

The Forman Sphere Theorem

Theorem (Forman Sphere Theorem)

If X has two critical cells σ_1 and σ_2 then $\min_i \dim \sigma_i = 0$ and X is homotopy equivalent to a sphere of dimension $\max_i \dim \sigma_i$.

Example

The critical cells are

- the vertex E
- the square ABCD

so
$$\partial \Sigma^{1,1} \simeq S^2$$
.

Proof strategy

Example

The critical cells are

- the vertex E
- the square ABCD

so
$$\partial \Sigma^{1,1} \simeq S^2$$
.

Fact

We can describe a Morse matching with two critical cells for $\partial \Sigma^{m,n}$ in general!

Problem

This will only tell us that $\partial \Sigma^{m,n}$ is homotopy equivalent to a sphere. We need to show that $\partial \Sigma^{m,n}$ is homeomorphic to a sphere.

Proof strategy

Fact

We can describe a Morse matching with two critical cells for $\partial \Sigma^{m,n}$ in general!

Problem

This will only tell us that $\partial \Sigma^{m,n}$ is homotopy equivalent to a sphere. We need to show that $\partial \Sigma^{m,n}$ is homeomorphic to a sphere.

Theorem (Generalized Poincaré Conjecture)

If a topological manifold is homotopy equivalent to a sphere then it is homeomorphic to a sphere.

How do we prove that a cell complex is a manifold? Something about *links* being *spheres*? Shall we induct on links?

Table of Contents

Motivation and Basic Construction

Discrete Morse Theory and Forman's Sphere Theorem

PL-spheres and Links

The Sphere Recognition Theorem

Theorem (H.)

Let X be a cell complex "with links." If X has a Morse matching with two critical cells and the "link" of every cell of X also has such a Morse matching then X is homeomorphic to a sphere.

Fact

We can ensure that $\partial X^{m,n}$ "has links" and can describe such Morse matchings. So this theorem is all we need to complete our construction of bisimplices!

BS-links and links

Definition

Let X be a cell complex and let $\overrightarrow{BS}(X)$ be the barycentric subdivision of X viewed as a "directed simplicial complex." The BS-link of a cell σ of X, denoted bslink(σ), is the full subcomplex of $\overrightarrow{BS}(X)$ induced by the barycenters of all cells of X containing σ .

Example

Definition

If $\mathsf{bslink}(\sigma)$ is $\overrightarrow{BS}(Y)$ for some cell complex Y then Y is the link of σ , denoted $\mathsf{link}(\sigma)$. If $\mathsf{link}(\sigma)$ exists for every cell σ of X then X has links .

BS-links and links

Definition

Let X be a cell complex and let $\overrightarrow{BS}(X)$ be the barycentric subdivision of X viewed as a "directed simplicial complex." The BS-link of a cell σ of X, denoted bslink(σ), is the full subcomplex of $\overrightarrow{BS}(X)$ induced by the barycenters of all cells of X containing σ .

Definition

If $\mathsf{bslink}(\sigma)$ is $\overrightarrow{BS}(Y)$ for some cell complex Y then Y is the link of σ , denoted $\mathsf{link}(\sigma)$. If $\mathsf{link}(\sigma)$ exists for every cell σ of X then X has links .

Remark

If σ is a d-cell and link(σ) exists then the (k-d-1)-cells of link(σ) are in natural bijection with the k-cells of X that contain σ .

Ensuring that we have links

Remark

The boundary of a cell τ of link(σ) is the link of σ in the boundary of the cell ρ of X corresponding to τ .

So if X has links then so does $\partial \rho$, for every cell ρ of X, and the links of the cells of $\partial \rho$ are all homeomorphic to spheres. In fact, this condition is allso sufficient. So if $\partial \rho$ has links for every cell ρ of X then X has links.

This is how we ensure that $\partial \Sigma^{m,n}$ has links and thus apply the Sphere Recognition Theorem!

Fact

If X has links then the links of simplices of $\overrightarrow{BS}(X)$ are joins of BS-links and barycentric subdivisions of boundaries of cells of X. So if X has spherical links then X is a manifold.

Proving the Sphere Recognition Theorem

Theorem (H.)

Let X be a cell complex with links. If X has a Morse matching with two critical cells and the link of every cell of X also has such a Morse matching then X is homeomorphic to a sphere.

Proof of the Sphere Recognition Theorem.

By the Forman Sphere Theorem, the cell complex X is homotopy equivalent to a sphere. We proceed now by induction. If $\dim X = 0$ then X is a discrete space and so is a 0-dimensional manifold so must be the 0-sphere.

Suppose now that $\dim X=d>0$. We will prove that X is a manifold. For a given cell σ of X we need to show that $\operatorname{link}(\sigma)$ is homeomorphic to a sphere. Let τ be a cell of $\operatorname{link}(\sigma)$ and let ρ be the corresponding cell of X. Then $\operatorname{bslink}(\tau)$, taken in $\operatorname{link}(\sigma)$, is isomorphic to $\operatorname{bslink}(\rho)$. Hence $\operatorname{link}(\sigma)$ has links and has a Morse matching with two critical cells and its links have Morse matchings with two critical cells. Then, by induction, we have that $\operatorname{link}(\sigma)$ is homeomorphic to a sphere. Hence X is a manifold. So, by the Generalized Poincaré Conjecture, X is homeomorphic to a sphere. \square

Motivation and Basic Construction
Discrete Morse Theory and Forman's Sphere Theorem
PL-spheres and Links

Fin