Geometric model for groups quasi-isometric to RAAGs

Jingyin Huang (Ohio State University) joint with Bruce Kleiner

May 2020, Workshop on Polyhedral Products in Geometric Group
Theory

 $f: X_1 \to X_2$ is a quasi-isometry iff there are constants L, A > 0 s.t.

- 2 $f(X_1)$ is A-dense in X_2 .

 $f: X_1 \to X_2$ is a quasi-isometry iff there are constants L, A > 0 s.t.

- \circ $f(X_1)$ is A-dense in X_2 .

Different Cayley graphs of a finitely generated group are quasi-isometric.

 $f: X_1 \to X_2$ is a quasi-isometry iff there are constants L, A > 0 s.t.

- 2 $f(X_1)$ is A-dense in X_2 .

Different Cayley graphs of a finitely generated group are quasi-isometric. (QI classification): classify finitely generated groups up to quasi-isometry.

 $f: X_1 \to X_2$ is a quasi-isometry iff there are constants L, A > 0 s.t.

- \circ $f(X_1)$ is A-dense in X_2 .

Different Cayley graphs of a finitely generated group are quasi-isometric. (QI classification): classify finitely generated groups up to quasi-isometry.

(Gromov) G and H are quasi-isometric iff there exist commuting, properly discontinuous actions of G and H on some locally compact space X, such that the action of each of the groups G and H has compact fundamental domain.

 $f: X_1 \to X_2$ is a quasi-isometry iff there are constants L, A > 0 s.t.

- \circ $f(X_1)$ is A-dense in X_2 .

Different Cayley graphs of a finitely generated group are quasi-isometric. (QI classification): classify finitely generated groups up to quasi-isometry.

(Gromov) G and H are quasi-isometric iff there exist commuting, properly discontinuous actions of G and H on some locally compact space X, such that the action of each of the groups G and H has compact fundamental domain.

Definition: G and H are $Measure\ Equivalent\ (ME)$ if there exist commuting, measure-preserving, free actions of G and H on some standard measure space, such that the action of each of the groups F and A admits a finite measure fundamental domain.

Let G' be a higher rank simple Lie group, and let $G \leq G'$ be an irreducible lattice.

Let G' be a higher rank simple Lie group, and let $G \leq G'$ be an irreducible lattice.

Theorem (Kleiner-Leeb, Eskin-Farb, Eskin)

Any finitely generated group H quasi-isometric to G is virtually a lattice in G'.

Let G' be a higher rank simple Lie group, and let $G \leq G'$ be an irreducible lattice.

Theorem (Kleiner-Leeb, Eskin-Farb, Eskin)

Any finitely generated group H quasi-isometric to G is virtually a lattice in G'.

Theorem (Furman)

Any finitely generated group H measure equivalent to G is virtually a lattice in G'.

Let G' be a higher rank simple Lie group, and let $G \leq G'$ be an irreducible lattice.

Theorem (Kleiner-Leeb, Eskin-Farb, Eskin)

Any finitely generated group H quasi-isometric to G is virtually a lattice in G'.

Theorem (Furman)

Any finitely generated group H measure equivalent to G is virtually a lattice in G'.

Q: How "rigid" is polyhedron product structure under quasi-isometry or measure equivalence?

Let G' be a higher rank simple Lie group, and let $G \leq G'$ be an irreducible lattice.

Theorem (Kleiner-Leeb, Eskin-Farb, Eskin)

Any finitely generated group H quasi-isometric to G is virtually a lattice in G'.

Theorem $\overline{(Furman)}$

Any finitely generated group H measure equivalent to G is virtually a lattice in G'.

Q: How "rigid" is polyhedron product structure under quasi-isometry or measure equivalence?

 Γ - finite simplicial graph $V=\{v_1,v_2,\cdots,v_n\}$ - the vertex set of Γ

F-product

 Γ - finite simplicial graph $V=\{v_1,v_2,\cdots,v_n\}$ - the vertex set of Γ Associate each $v\in V$ with a pointed metric space (Z_v,\star_v) .

 Γ - finite simplicial graph $V = \{v_1, v_2, \cdots, v_n\}$ - the vertex set of Γ Associate each $v \in V$ with a pointed metric space (Z_v, \star_v) . The Γ -product of $\{(Z_v, \star_v)\}_{v \in V(\Gamma)}$ is obtained by

 Γ - finite simplicial graph

$$V = \{v_1, v_2, \cdots, v_n\}$$
 - the vertex set of Γ

Associate each $v \in V$ with a pointed metric space (Z_v, \star_v) . The Γ -product of $\{(Z_v, \star_v)\}_{v \in V(\Gamma)}$ is obtained by

• complete subgraph $\Delta \subset \Gamma \leadsto Z_\Delta = \prod_{v \in \Delta} Z_v \times \prod_{v \notin \Delta} \{\star_v\}$

 Γ - finite simplicial graph

$$V = \{v_1, v_2, \cdots, v_n\}$$
 - the vertex set of Γ

Associate each $v \in V$ with a pointed metric space (Z_v, \star_v) . The Γ -product of $\{(Z_v, \star_v)\}_{v \in V(\Gamma)}$ is obtained by

- **①** complete subgraph $\Delta \subset \Gamma \leadsto Z_\Delta = \prod_{v \in \Delta} Z_v \times \prod_{v \notin \Delta} \{\star_v\}$
- $② \ \Delta_1 \subset \Delta_2 \leadsto Z_{\Delta_1} \hookrightarrow Z_{\Delta_2}. \ \mathsf{Glue \ all} \ Z_{\Delta} \mathsf{'s \ together}.$

Γ - finite simplicial graph

$$V = \{v_1, v_2, \cdots, v_n\}$$
 - the vertex set of Γ

Associate each $v \in V$ with a pointed metric space (Z_v, \star_v) . The Γ -product of $\{(Z_v, \star_v)\}_{v \in V(\Gamma)}$ is obtained by

- **①** complete subgraph $\Delta \subset \Gamma \leadsto Z_\Delta = \prod_{v \in \Delta} Z_v \times \prod_{v \notin \Delta} \{\star_v\}$
- $② \ \Delta_1 \subset \Delta_2 \leadsto Z_{\Delta_1} \hookrightarrow Z_{\Delta_2}. \ \mathsf{Glue \ all} \ Z_\Delta \mathsf{'s \ together}.$

Let $S(\Gamma)$ (Salvetti complex) be the Γ -product of unit circles.

 Γ - finite simplicial graph

$$V = \{v_1, v_2, \cdots, v_n\}$$
 - the vertex set of Γ

Associate each $v \in V$ with a pointed metric space (Z_v, \star_v) . The Γ -product of $\{(Z_v, \star_v)\}_{v \in V(\Gamma)}$ is obtained by

- complete subgraph $\Delta \subset \Gamma \leadsto Z_\Delta = \prod_{v \in \Delta} Z_v \times \prod_{v \notin \Delta} \{\star_v\}$
- $② \ \Delta_1 \subset \Delta_2 \leadsto Z_{\Delta_1} \hookrightarrow Z_{\Delta_2}. \ \mathsf{Glue} \ \mathsf{all} \ Z_\Delta \mathsf{'s} \ \mathsf{together}.$

Let $S(\Gamma)$ (Salvetti complex) be the Γ -product of unit circles.

Definition: a right-angled Artin group (RAAG) with defining graph Γ is the fundamental group of $S(\Gamma)$.

Γ - finite simplicial graph

$$V = \{v_1, v_2, \cdots, v_n\}$$
 - the vertex set of Γ

Associate each $v \in V$ with a pointed metric space (Z_v, \star_v) . The Γ -product of $\{(Z_v, \star_v)\}_{v \in V(\Gamma)}$ is obtained by

- complete subgraph $\Delta \subset \Gamma \leadsto Z_\Delta = \prod_{v \in \Delta} Z_v \times \prod_{v \notin \Delta} \{\star_v\}$
- $② \ \Delta_1 \subset \Delta_2 \leadsto Z_{\Delta_1} \hookrightarrow Z_{\Delta_2}. \ \mathsf{Glue} \ \mathsf{all} \ Z_\Delta \mathsf{'s} \ \mathsf{together}.$

Let $S(\Gamma)$ (Salvetti complex) be the Γ -product of unit circles.

Definition: a right-angled Artin group (RAAG) with defining graph Γ is the fundamental group of $S(\Gamma)$.

 $G(\Gamma)=\{v_1,v_2,\cdots,v_n|\ [v_i,v_j]=1\ \text{iff vertex}\ v_i\ \text{and}\ v_j\ \text{are joined by an}\ \text{edge}\}$

 Γ - finite simplicial graph

$$V = \{v_1, v_2, \cdots, v_n\}$$
 - the vertex set of Γ

Associate each $v \in V$ with a pointed metric space (Z_v, \star_v) . The Γ -product of $\{(Z_v, \star_v)\}_{v \in V(\Gamma)}$ is obtained by

- complete subgraph $\Delta \subset \Gamma \leadsto Z_\Delta = \prod_{v \in \Delta} Z_v \times \prod_{v \notin \Delta} \{\star_v\}$
- $② \ \Delta_1 \subset \Delta_2 \leadsto Z_{\Delta_1} \hookrightarrow Z_{\Delta_2}. \ \mathsf{Glue} \ \mathsf{all} \ Z_\Delta \mathsf{'s} \ \mathsf{together}.$

Let $S(\Gamma)$ (Salvetti complex) be the Γ -product of unit circles.

Definition: a right-angled Artin group (RAAG) with defining graph Γ is the fundamental group of $S(\Gamma)$.

$$G(\Gamma)=\{v_1,v_2,\cdots,v_n|\ [v_i,v_j]=1\ \text{iff vertex}\ v_i\ \text{and}\ v_j\ \text{are joined by an}\ \text{edge}\}$$

Isomorphism problem: $G(\Gamma_1)\cong G(\Gamma_2)\Leftrightarrow \Gamma_1\cong \Gamma_2$ (C. Droms, 1987)

 $X(\Gamma)$ - Universal cover of $S(\Gamma)$.

 $X(\Gamma)$ - Universal cover of $S(\Gamma)$. $X(\Gamma)$ is a CAT(0) cube complex.

 $X(\Gamma)$ - Universal cover of $S(\Gamma)$. $X(\Gamma)$ is a CAT(0) cube complex. $G(\Gamma)$ acts on $X(\Gamma)$ geometrically (properly and cocompactly by isometries).

 $X(\Gamma)$ - Universal cover of $S(\Gamma)$. $X(\Gamma)$ is a CAT(0) cube complex. $G(\Gamma)$ acts on $X(\Gamma)$ geometrically (properly and cocompactly by isometries).

Cliques in $\Gamma \iff$ Standard tori in $S(\Gamma)$

```
X(\Gamma) - Universal cover of S(\Gamma). X(\Gamma) is a CAT(0) cube complex. G(\Gamma) acts on X(\Gamma) geometrically (properly and cocompactly by isometries).
```

```
Cliques in \Gamma \iff Standard tori in S(\Gamma)
\iff Standard Abelian subgroups of G(\Gamma)
```

```
X(\Gamma) - Universal cover of S(\Gamma). X(\Gamma) is a CAT(0) cube complex. G(\Gamma) acts on X(\Gamma) geometrically (properly and cocompactly by isometries).
```

```
Cliques in \Gamma \iff Standard tori in S(\Gamma)
\iff Standard Abelian subgroups of G(\Gamma)
```

Standard flats in $X(\Gamma)$ - lifts of standard tori in $S(\Gamma)$.

```
X(\Gamma) - Universal cover of S(\Gamma). X(\Gamma) is a CAT(0) cube complex. G(\Gamma) acts on X(\Gamma) geometrically (properly and cocompactly by isometries).
```

```
Cliques in \Gamma \iff Standard tori in S(\Gamma)
\iff Standard Abelian subgroups of G(\Gamma)
```

```
Standard flats in X(\Gamma) - lifts of standard tori in S(\Gamma).
Cosets of standard Abelian subgroup in G(\Gamma) \iff Standard flats in X(\Gamma).
```

```
X(\Gamma) - Universal cover of S(\Gamma). X(\Gamma) is a CAT(0) cube complex. G(\Gamma) acts on X(\Gamma) geometrically (properly and cocompactly by isometries).
```

```
Cliques in \Gamma \iff Standard tori in S(\Gamma)
\iff Standard Abelian subgroups of G(\Gamma)
```

Standard flats in $X(\Gamma)$ - lifts of standard tori in $S(\Gamma)$. Cosets of standard Abelian subgroup in $G(\Gamma) \iff$ Standard flats in $X(\Gamma)$.

 $X(\Gamma)$ is a union of standard flats.

 $G = G(\Gamma)$ is a lattice in the locally compact topological group Isom $(X(\Gamma))$.

 $G = G(\Gamma)$ is a lattice in the locally compact topological group Isom $(X(\Gamma))$.

Q: (1) Suppose H is quasi-isometric $G(\Gamma)$. Is H virtually a lattice in $Isom(X(\Gamma))$?

 $G = G(\Gamma)$ is a lattice in the locally compact topological group Isom $(X(\Gamma))$.

Q: (1) Suppose H is quasi-isometric $G(\Gamma)$. Is H virtually a lattice in $Isom(X(\Gamma))$? (2) Is H commensurable to $G(\Gamma)$?

 $G = G(\Gamma)$ is a lattice in the locally compact topological group Isom $(X(\Gamma))$.

Q: (1) Suppose H is quasi-isometric $G(\Gamma)$. Is H virtually a lattice in $Isom(X(\Gamma))$? (2) Is H commensurable to $G(\Gamma)$?

Suppose H is quasi-isometric to $G(\Gamma)$.

 $G = G(\Gamma)$ is a lattice in the locally compact topological group Isom $(X(\Gamma))$.

Q: (1) Suppose H is quasi-isometric $G(\Gamma)$. Is H virtually a lattice in $Isom(X(\Gamma))$? (2) Is H commensurable to $G(\Gamma)$?

Suppose H is quasi-isometric to $G(\Gamma)$.

Let $q: H \to G(\Gamma)$ be a q.i. Let q^{-1} be the q.i. inverse of q, i.e. $d(q^{-1} \circ q(x), x) < A$ for any $x \in H$

 $G = G(\Gamma)$ is a lattice in the locally compact topological group Isom $(X(\Gamma))$.

Q: (1) Suppose H is quasi-isometric $G(\Gamma)$. Is H virtually a lattice in $Isom(X(\Gamma))$? (2) Is H commensurable to $G(\Gamma)$?

Suppose H is quasi-isometric to $G(\Gamma)$.

Let $q: H \to G(\Gamma)$ be a q.i. Let q^{-1} be the q.i. inverse of q, i.e. $d(q^{-1} \circ q(x), x) < A$ for any $x \in H$

Left action $\rho': H \curvearrowright H \leadsto \text{quasi-action } \rho = q \circ \rho' \circ q^{-1}: H \curvearrowright G(\Gamma)$.

 $G = G(\Gamma)$ is a lattice in the locally compact topological group Isom $(X(\Gamma))$.

Q: (1) Suppose H is quasi-isometric $G(\Gamma)$. Is H virtually a lattice in $Isom(X(\Gamma))$? (2) Is H commensurable to $G(\Gamma)$?

Suppose H is quasi-isometric to $G(\Gamma)$.

Let $q: H \to G(\Gamma)$ be a q.i. Let q^{-1} be the q.i. inverse of q, i.e. $d(q^{-1} \circ q(x), x) < A$ for any $x \in H$

Left action $\rho': H \curvearrowright H \leadsto \text{quasi-action } \rho = q \circ \rho' \circ q^{-1}: H \curvearrowright G(\Gamma)$.

A quasi-action is an "action" by quasi-isometries such that the composition law holds up to bounded distance.

Regularity of a single quasi-isometry: step 1

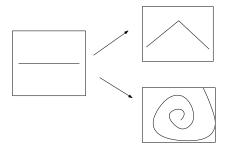
A quasi-isometry $q: X(\Gamma_1) \to X(\Gamma_2)$.

A quasi-isometry $q: X(\Gamma_1) \to X(\Gamma_2)$.

Top dimensional flats.

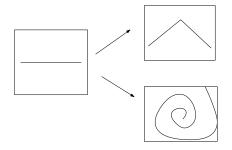
A quasi-isometry $q: X(\Gamma_1) \to X(\Gamma_2)$.

Top dimensional flats.



A quasi-isometry $q: X(\Gamma_1) \to X(\Gamma_2)$.

Top dimensional flats.



Theorem

Let $\phi: X(\Gamma_1) \to X(\Gamma_2)$ be a quasi-isometry. Then ϕ maps top dimensional flats to top dimensional flats up to finite Hausdorff distance.

Reduction to standard flats.

Reduction to standard flats.

Quasi-isometries does not preserve standard flats in general.

Reduction to standard flats.

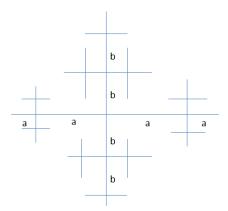
Quasi-isometries does not preserve standard flats in general.

Example: take
$$G = F_2 = \langle a, b \rangle$$
, then $X(\Gamma) = \widetilde{\infty}$

Reduction to standard flats.

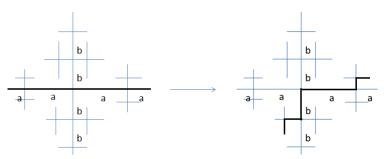
Quasi-isometries does not preserve standard flats in general.

Example: take
$$G = F_2 = \langle a, b \rangle$$
, then $X(\Gamma) = \widetilde{\infty}$

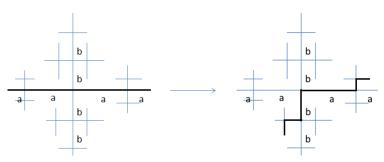


Let $h: F_2 \to F_2$ be the automorphism defined by $a \to ab$ and $b \to b$.

Let $h: F_2 \to F_2$ be the automorphism defined by $a \to ab$ and $b \to b$.



Let $h: F_2 \to F_2$ be the automorphism defined by $a \to ab$ and $b \to b$.



Theorem

If there is no transvection in $Aut(G(\Gamma_1))$, then q maps standard flats to standard flats up to finite Hausdorff distance.

Straighten the quasi-isometry $q: X(\Gamma_1) \to X(\Gamma_2)$.

Straighten the quasi-isometry $q: X(\Gamma_1) \to X(\Gamma_2)$.

Pick vertex $v \in X(\Gamma_1)$. $\{F_i\}_{i=1}^n$ are maximal standard flats containing v.

Straighten the quasi-isometry $q: X(\Gamma_1) \to X(\Gamma_2)$.

Pick vertex $v \in X(\Gamma_1)$. $\{F_i\}_{i=1}^n$ are maximal standard flats containing v.

 $F_i \subset X(\Gamma_1) \stackrel{q}{\to} F_i' \subset X(\Gamma_2)$. F_i' is also a maximal standard flat.

Straighten the quasi-isometry $q: X(\Gamma_1) \to X(\Gamma_2)$.

Pick vertex $v \in X(\Gamma_1)$. $\{F_i\}_{i=1}^n$ are maximal standard flats containing v.

 $F_i \subset X(\Gamma_1) \stackrel{q}{\to} F_i' \subset X(\Gamma_2)$. F_i' is also a maximal standard flat.

Idea: define $\bar{q}: X^0(\Gamma_1) \to X^0(\Gamma_2)$ by sending $v = \bigcap_{i=1}^n F_i$ to $\bigcap_{i=1}^n F_i'$.

Straighten the quasi-isometry $q: X(\Gamma_1) \to X(\Gamma_2)$.

Pick vertex $v \in X(\Gamma_1)$. $\{F_i\}_{i=1}^n$ are maximal standard flats containing v.

 $F_i \subset X(\Gamma_1) \stackrel{q}{\to} F_i' \subset X(\Gamma_2)$. F_i' is also a maximal standard flat.

Idea: define $\bar{q}: X^0(\Gamma_1) \to X^0(\Gamma_2)$ by sending $v = \bigcap_{i=1}^n F_i$ to $\bigcap_{i=1}^n F_i'$.

Theorem

If in addition $Aut(G(\Gamma))$ does not contain partial conjugation, then $\bigcap_{i=1}^n F_i'$ is exactly a point, hence \bar{q} is well-defined in this case.

Straighten the quasi-isometry $q: X(\Gamma_1) \to X(\Gamma_2)$.

Pick vertex $v \in X(\Gamma_1)$. $\{F_i\}_{i=1}^n$ are maximal standard flats containing v.

 $F_i \subset X(\Gamma_1) \stackrel{q}{\to} F_i' \subset X(\Gamma_2)$. F_i' is also a maximal standard flat.

Idea: define $\bar{q}: X^0(\Gamma_1) \to X^0(\Gamma_2)$ by sending $v = \bigcap_{i=1}^n F_i$ to $\bigcap_{i=1}^n F_i'$.

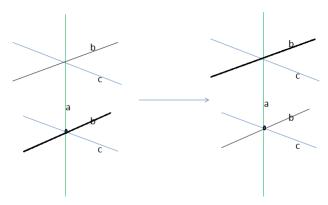
Theorem

If in addition $Aut(G(\Gamma))$ does not contain partial conjugation, then $\bigcap_{i=1}^n F_i'$ is exactly a point, hence \bar{q} is well-defined in this case.

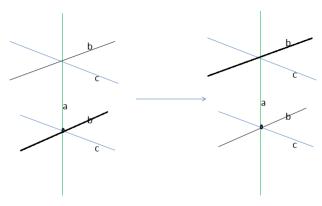
Note that \bar{q} sends vertices in a standard flat bijectively to vertices in a standard flat. Such map is called *flat-preserving* map.

Let $h: F_3 \to F_3$ s.t. h(a) = a, $h(b) = aba^{-1}$, h(c) = c.

Let $h: F_3 \to F_3$ s.t. h(a) = a, $h(b) = aba^{-1}$, h(c) = c.



Let $h: F_3 \to F_3$ s.t. h(a) = a, $h(b) = aba^{-1}$, h(c) = c.



$$\{b^i\}_{i\in\mathbb{Z}} \stackrel{h}{\longrightarrow} \{ab^ia^{-1}\}_{i\in\mathbb{Z}}.$$

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2 and $G(\Gamma_1) \neq \mathbb{Z}$. Then we can replace any q.i. $q: G(\Gamma_1) \rightarrow G(\Gamma_2)$ by a unique flat-preserving bijection $\bar{q}: G(\Gamma_1) \rightarrow G(\Gamma_2)$ at finite distance from q.

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2 and $G(\Gamma_1) \neq \mathbb{Z}$. Then we can replace any q.i. $q:G(\Gamma_1) \rightarrow G(\Gamma_2)$ by a unique flat-preserving bijection $\bar{q}:G(\Gamma_1) \rightarrow G(\Gamma_2)$ at finite distance from q.

Theorem (H. 2017)

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2. Then $G(\Gamma_1)$ and $G(\Gamma_2)$ are quasi-isometric if and only if they are isomorphic.

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2 and $G(\Gamma_1) \neq \mathbb{Z}$. Then we can replace any q.i. $q:G(\Gamma_1) \rightarrow G(\Gamma_2)$ by a unique flat-preserving bijection $\bar{q}:G(\Gamma_1) \rightarrow G(\Gamma_2)$ at finite distance from q.

Theorem (H. 2017)

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2. Then $G(\Gamma_1)$ and $G(\Gamma_2)$ are quasi-isometric if and only if they are isomorphic.

H q.i. to $G(\Gamma) \rightsquigarrow$ quasi-action $H \curvearrowright G(\Gamma)$

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2 and $G(\Gamma_1) \neq \mathbb{Z}$. Then we can replace any q.i. $q:G(\Gamma_1) \rightarrow G(\Gamma_2)$ by a unique flat-preserving bijection $\bar{q}:G(\Gamma_1) \rightarrow G(\Gamma_2)$ at finite distance from q.

Theorem (H. 2017)

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2. Then $G(\Gamma_1)$ and $G(\Gamma_2)$ are quasi-isometric if and only if they are isomorphic.

H q.i. to $G(\Gamma) \rightsquigarrow \text{quasi-action } H \curvearrowright G(\Gamma)$

We assume $\rho: H \curvearrowright G(\Gamma)$ is an action by flat-preserving bijections.

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2 and $G(\Gamma_1) \neq \mathbb{Z}$. Then we can replace any q.i. $q:G(\Gamma_1) \rightarrow G(\Gamma_2)$ by a unique flat-preserving bijection $\bar{q}:G(\Gamma_1) \rightarrow G(\Gamma_2)$ at finite distance from q.

Theorem (H. 2017)

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2. Then $G(\Gamma_1)$ and $G(\Gamma_2)$ are quasi-isometric if and only if they are isomorphic.

H q.i. to $G(\Gamma) \rightsquigarrow$ quasi-action $H \curvearrowright G(\Gamma)$

We assume $\rho: H \curvearrowright G(\Gamma)$ is an action by flat-preserving bijections.

A flat-preserving map may not be an isometry. It may not respect the order on each standard geodesic line.

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2 and $G(\Gamma_1) \neq \mathbb{Z}$. Then we can replace any q.i. $q:G(\Gamma_1) \rightarrow G(\Gamma_2)$ by a unique flat-preserving bijection $\bar{q}:G(\Gamma_1) \rightarrow G(\Gamma_2)$ at finite distance from q.

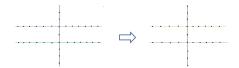
Theorem (H. 2017)

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2. Then $G(\Gamma_1)$ and $G(\Gamma_2)$ are quasi-isometric if and only if they are isomorphic.

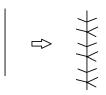
H q.i. to $G(\Gamma) \rightsquigarrow$ quasi-action $H \curvearrowright G(\Gamma)$

We assume $\rho: H \curvearrowright G(\Gamma)$ is an action by flat-preserving bijections.

A flat-preserving map may not be an isometry. It may not respect the order on each standard geodesic line.



Rough idea: replace each standard line in $X(\Gamma)$ by a "branched line".



Rough idea: replace each standard line in $X(\Gamma)$ by a "branched line".



Replace each standard flat in $X(\Gamma)$ by a "branched flat", and glue these branched flats together.

 $S(\Gamma)$ – Salvetti complex – Γ -product of circles $S_e(\Gamma)$ – exploded Salvetti complex – Γ -product of lollipops

 $S(\Gamma)$ – Salvetti complex – Γ -product of circles $S_e(\Gamma)$ – exploded Salvetti complex – Γ -product of lollipops

 $S(\Gamma)$ – Salvetti complex – Γ -product of circles $S_e(\Gamma)$ – exploded Salvetti complex – Γ -product of lollipops

A natural map $S_e(\Gamma) \to S(\Gamma)$ by collapsing all the horizontal edges.

 $S(\Gamma)$ – Salvetti complex – Γ -product of circles $S_e(\Gamma)$ – exploded Salvetti complex – Γ -product of lollipops

A natural map $S_e(\Gamma) \to S(\Gamma)$ by collapsing all the horizontal edges.It sends "vertical torus" in $S_e(\Gamma)$ isometrically to standard torus in $S(\Gamma)$

 $S(\Gamma)$ – Salvetti complex – Γ -product of circles $S_e(\Gamma)$ – exploded Salvetti complex – Γ -product of lollipops

A natural map $S_e(\Gamma) \to S(\Gamma)$ by collapsing all the horizontal edges.It sends "vertical torus" in $S_e(\Gamma)$ isometrically to standard torus in $S(\Gamma)$

Induced map between the universal covers $p_1: X_e(\Gamma) \to X(\Gamma)$.

$$S(\Gamma)$$
 – Salvetti complex – Γ -product of circles $S_e(\Gamma)$ – exploded Salvetti complex – Γ -product of lollipops

A natural map $S_e(\Gamma) \to S(\Gamma)$ by collapsing all the horizontal edges.It sends "vertical torus" in $S_e(\Gamma)$ isometrically to standard torus in $S(\Gamma)$

Induced map between the universal covers $p_1: X_e(\Gamma) \to X(\Gamma)$. p_1 maps vertical flats to standard flats in $X(\Gamma)$

 $S(\Gamma)$ – Salvetti complex – Γ -product of circles $S_e(\Gamma)$ – exploded Salvetti complex – Γ -product of lollipops

A natural map $S_e(\Gamma) \to S(\Gamma)$ by collapsing all the horizontal edges.It sends "vertical torus" in $S_e(\Gamma)$ isometrically to standard torus in $S(\Gamma)$

Induced map between the universal covers $p_1: X_e(\Gamma) \to X(\Gamma)$. p_1 maps vertical flats to standard flats in $X(\Gamma)$

Collapsing all the vertical flats of $X_e(\Gamma)$: $p_2: X_e(\Gamma) \to |\mathcal{B}|$.

 $S(\Gamma)$ – Salvetti complex – Γ -product of circles $S_e(\Gamma)$ – exploded Salvetti complex – Γ -product of lollipops

A natural map $S_e(\Gamma) \to S(\Gamma)$ by collapsing all the horizontal edges.It sends "vertical torus" in $S_e(\Gamma)$ isometrically to standard torus in $S(\Gamma)$

Induced map between the universal covers $p_1: X_e(\Gamma) \to X(\Gamma)$. p_1 maps vertical flats to standard flats in $X(\Gamma)$

Collapsing all the vertical flats of $X_e(\Gamma)$: $p_2: X_e(\Gamma) \to |\mathcal{B}|$. $|\mathcal{B}|$ is a CAT(0) cube complex (it is the right-angled building associated with $G(\Gamma)$).

 $S(\Gamma)$ – Salvetti complex – Γ -product of circles $S_e(\Gamma)$ – exploded Salvetti complex – Γ -product of lollipops

A natural map $S_e(\Gamma) \to S(\Gamma)$ by collapsing all the horizontal edges.It sends "vertical torus" in $S_e(\Gamma)$ isometrically to standard torus in $S(\Gamma)$

Induced map between the universal covers $p_1: X_e(\Gamma) \to X(\Gamma)$. p_1 maps vertical flats to standard flats in $X(\Gamma)$

Collapsing all the vertical flats of $X_e(\Gamma)$: $p_2: X_e(\Gamma) \to |\mathcal{B}|$. $|\mathcal{B}|$ is a CAT(0) cube complex (it is the right-angled building associated with $G(\Gamma)$). vertices in $|\mathcal{B}| \iff$ vertical flats in $X_e(\Gamma) \iff$ standard flats in $X(\Gamma)$

 $S(\Gamma)$ – Salvetti complex – Γ -product of circles $S_e(\Gamma)$ – exploded Salvetti complex – Γ -product of lollipops

A natural map $S_e(\Gamma) \to S(\Gamma)$ by collapsing all the horizontal edges.It sends "vertical torus" in $S_e(\Gamma)$ isometrically to standard torus in $S(\Gamma)$

Induced map between the universal covers $p_1: X_e(\Gamma) \to X(\Gamma)$. p_1 maps vertical flats to standard flats in $X(\Gamma)$

Collapsing all the vertical flats of $X_e(\Gamma)$: $p_2: X_e(\Gamma) \to |\mathcal{B}|$. $|\mathcal{B}|$ is a CAT(0) cube complex (it is the right-angled building associated with $G(\Gamma)$). vertices in $|\mathcal{B}| \iff$ vertical flats in $X_e(\Gamma) \iff$ standard flats in $X(\Gamma)$

 $|\mathcal{B}|$ encodes the intersection pattern of standard flats in $X(\Gamma)$.

 $S(\Gamma)$ – Salvetti complex – Γ -product of circles $S_e(\Gamma)$ – exploded Salvetti complex – Γ -product of lollipops

A natural map $S_e(\Gamma) \to S(\Gamma)$ by collapsing all the horizontal edges.It sends "vertical torus" in $S_e(\Gamma)$ isometrically to standard torus in $S(\Gamma)$

Induced map between the universal covers $p_1: X_e(\Gamma) \to X(\Gamma)$. p_1 maps vertical flats to standard flats in $X(\Gamma)$

Collapsing all the vertical flats of $X_e(\Gamma)$: $p_2: X_e(\Gamma) \to |\mathcal{B}|$. $|\mathcal{B}|$ is a CAT(0) cube complex (it is the right-angled building associated with $G(\Gamma)$). vertices in $|\mathcal{B}| \iff$ vertical flats in $X_e(\Gamma) \iff$ standard flats in $X(\Gamma)$

 $|\mathcal{B}|$ encodes the intersection pattern of standard flats in $X(\Gamma)$. H acts on $|\mathcal{B}|$ by isometries.

An example

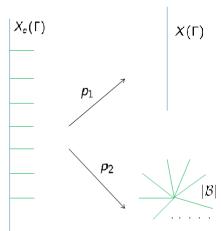
Take Γ = one point.

An example

Take $\Gamma =$ one point. $S_e(\Gamma)$ is a lollipop. $S(\Gamma)$ is a circle.

An example

Take $\Gamma =$ one point. $S_e(\Gamma)$ is a circle.



Suppose $Out(G(\Gamma))$ is finite and $G(\Gamma) \neq \mathbb{Z}$. Let $\rho : H \curvearrowright G(\Gamma)$ be a quasi-action. Then ρ is quasi-isometrically conjugate to an isometric action $\rho' : H \curvearrowright X'$ such that

Suppose $Out(G(\Gamma))$ is finite and $G(\Gamma) \neq \mathbb{Z}$. Let $\rho : H \curvearrowright G(\Gamma)$ be a quasi-action. Then ρ is quasi-isometrically conjugate to an isometric action $\rho' : H \curvearrowright X'$ such that

• X' is uniformly locally finite CAT(0) cube complex and is quasi-isometric to $G(\Gamma)$.

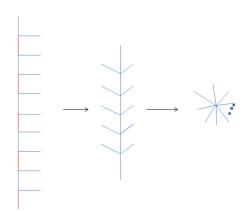
Suppose $Out(G(\Gamma))$ is finite and $G(\Gamma) \neq \mathbb{Z}$. Let $\rho : H \curvearrowright G(\Gamma)$ be a quasi-action. Then ρ is quasi-isometrically conjugate to an isometric action $\rho' : H \curvearrowright X'$ such that

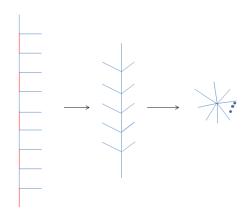
- **1** X' is uniformly locally finite CAT(0) cube complex and is quasi-isometric to $G(\Gamma)$.
- 2 X' is obtained from $X_e(\Gamma)$ by collapsing certain vertical

edges:

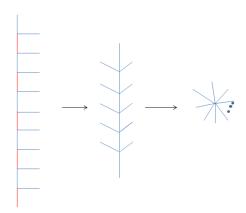
Suppose $Out(G(\Gamma))$ is finite and $G(\Gamma) \neq \mathbb{Z}$. Let $\rho : H \curvearrowright G(\Gamma)$ be a quasi-action. Then ρ is quasi-isometrically conjugate to an isometric action $\rho' : H \curvearrowright X'$ such that

- **1** X' is uniformly locally finite CAT(0) cube complex and is quasi-isometric to $G(\Gamma)$.
- $oldsymbol{o}$ X' is obtained from $X_{e}(\Gamma)$ by collapsing certain vertical





(1) can't collapse all vertical edges, since X' should be q.i. to $G(\Gamma)$ and uniformly locally finite.



- (1) can't collapse all vertical edges, since X' should be q.i. to $G(\Gamma)$ and uniformly locally finite.
- (2) When the action does not respect the order along the line, collapsing edges are necessary.

Theorem (H.-Kleiner, 2018)

Suppose $Out(G(\Gamma))$ is finite and $G(\Gamma) \neq \mathbb{Z}$. Let $\rho : H \curvearrowright G(\Gamma)$ be a quasi-action. Then ρ is quasi-isometrically conjugate to an isometric action $\rho' : H \curvearrowright X'$ such that

- **1** X' is uniformly locally finite CAT(0) cube complex and is quasi-isometric to $G(\Gamma)$.
- 2 X' is obtained from $X_e(\Gamma)$ by collapsing certain vertical edges.

Theorem (H.-Kleiner, 2018)

Suppose Out($G(\Gamma)$) is finite and $G(\Gamma) \neq \mathbb{Z}$. Let $\rho : H \curvearrowright G(\Gamma)$ be a quasi-action. Then ρ is quasi-isometrically conjugate to an isometric action $\rho' : H \curvearrowright X'$ such that

- **1** X' is uniformly locally finite CAT(0) cube complex and is quasi-isometric to $G(\Gamma)$.
- ② X' is obtained from $X_e(\Gamma)$ by collapsing certain vertical edges.

Corollary

Suppose $Out(G(\Gamma))$ is finite. If H is quasi-isometric to $G(\Gamma)$, then H acts geometrically on a CAT(0) cube complex.

ME classification and QI classification are in generally different.

ME classification and QI classification are in generally different.

All infinite countable amenable groups are ME (Ornstein-Weiss).

ME classification and QI classification are in generally different.

All infinite countable amenable groups are ME (Ornstein-Weiss). E.g. \mathbb{Z}^n is ME to \mathbb{Z}^m .

ME classification and QI classification are in generally different.

All infinite countable amenable groups are ME (Ornstein-Weiss). E.g. \mathbb{Z}^n is ME to \mathbb{Z}^m .

Theorem (Horbez-H. 2020)

Suppose $Out(G(\Gamma_i))$ is finite for i=1,2. Then $G(\Gamma_1)$ and $G(\Gamma_2)$ are measure-equivalence if and only if they are isomorphic.

Thank you!