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Noncommutative probability

The process of passing from “commutative” to “noncommutative”
[insert object here] is (most) often done by switching the
perspective from the [object] to some algebra of functions defined
on the [object], and trying to eliminate the commutativity
assumption on that algebra.

Noncommutative probability spaces generalize
(L∞([0,1],dx),E[ · ] =

∫
·dx).

Thus,
noncommutative probability space = von Neumann algebra with state.

Here we take a slightly (very slightly!) different approach: we assume
that (spaces of) noncommutative functions are known, and we define
Noncommutative distributions = linear functionals on spaces of
noncommutative functions
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Noncommutative (joint) distributions

Classical distribution on Rn = linear functional, continuous on some
space of test functions on Rn.

Our class of noncommutative test functions is C〈X1, . . . ,Xn〉, the
algebra of polynomials in n selfadjoint noncommuting indeterminates1

(so X1,X2, . . . ,Xn satisfy no algebraic relation)

1 A noncommutative distribution is a linear µ : C〈X1, . . . ,Xn〉 → C
such that µ(1) = 1;

2 µ is positive if µ(P∗P) ≥ 0 for all P ∈ C〈X1, . . . ,Xn〉;
3 µ is bounded if for any P ∈ C〈X1, . . . ,Xn〉 there is an RP > 0 such

that µ((P∗P)k ) < R2k
P for all k ∈ N;

4 µ is tracial if µ(PQ) = µ(QP) for any P,Q ∈ C〈X1, . . . ,Xn〉.

The set of positive, bounded tracial distributions is denoted by Σ0.

1For the rest of the talk, think n = 2!
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Realizing and encoding nc distributions

As in classical probability: one can realize a given distribution µ ∈ Σ0
as the distribution of a tuple of selfadjoint elements (“random
variables”) x = (x1, . . . , xn) in a tracial C∗-algebra, here via the GNS
construction with respect to 〈P,Q〉µ = µ(Q∗P). We write µx when we
view µ as the distribution of the variables x = (x1, . . . , xn)

Convention: Upper case Xj denote indeterminates, lower case xj
denote random variables in a tracial C∗- or W ∗-algebra.

By linearity, the matrix of moments (or moment matrix) M(µ) given by

M(µ)v ,w =µ
(
(X w )

∗ X v) , v ,w ∈ F+
n , the free semigroup in n generators,

encodes µ.

(Note the similarity with the classical problem of moments.)
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Free noncommutative transforms (nc transforms)

Cauchy transform Gµ(z1, . . . , zn) =
∫
Rn

∏n
j=1(zj − tj)−1 dµ(t1, . . . , tn)

encodes the classical distribution µ (see, for instance, Koranyi);

Nc Cauchy transform2 encodes the noncommutative distribution µ: Let
x = diag(x1, . . . , xn), Gµ,1(b) = (µ⊗ idCn×n )

[
(b − x)−1]. Amplify:

Gµ,m(b)=(µ⊗ idCmn×mn )
[
(b − x⊗ Im)−1

]
, m ∈ N,b ∈ Cmn×mn.

Gµ,m(b−1) extends to a nbhd of 0 as (µ⊗ idCmn×mn)
[
b(1−(x⊗ Im)b)−1].

By choosing an appropriate b (an upper diagonal m ×m matrix of
n × n permutation matrices will do), the expansion of Gµ,m(b−1) yields
any entry M(µ)v ,w , |v |+ |w | ≤ m − 2.

It extends analytically as an nc function to the nc upper half-plane
H+ = {b : =b > 0},−Gµ(H+) ⊆ H+. (See Voiculescu, Popa-Vinnikov.)

2Restricted version.
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Aside: Approximation of nc transforms

Nc distributions {µk}k∈N ⊂ Σ0 converge to distribution µ ∈ Σ0 if and
only if the nc Cauchy transforms Gµk → Gµ as k →∞.

Denote

Σfin
0 = {µ∈ Σ0 : there exists d ∈ N, x1, . . . xn ∈ Cd×d such that

µ(P) = trd (P(x1, . . . , xd )) for all P ∈ C〈X1, . . . ,Xn〉}.

Stating that {Gµ : µ ∈ Σfin
0 } is dense in the space of nc functions that

map H+ to H− = −H+ and vanish at infinity with residue one3 is
equivalent to stating that all bounded positive tracial distributions have
microstates (see J. Williams), which we now know to be false.

Contrast that with the fact that classical distributions are approximable
by atomic ones, corresponding to functions of the type
(z1, . . . , zn) 7→

∑N
i=1 αi

∏n
j=1

1
zj−s(i)j

,N ∈ N, αi ≥ 0,
∑N

i=1 αj = 1, s(i)
j ∈ R.

3That is, limb→0 G(b−1)b−1 = limb→0 b−1G(b−1) = 1.
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Extending the nc Cauchy transform I

Observe: x = diag(x1, . . . , xn) =
∑n

i=1 xi ⊗ ei,i . Allowing instead

x =
n∑

j=1

xj ⊗ cj − 1⊗ c0, cj = c∗j ∈ Cd×d ,d ∈ N, (1)

allows for explicit computations ofµ(P) for arbitrary nc polynomials, or
even rational functions, P (realization/linearization of P).

Thus, from now on,

Gµx(b) =(µ⊗ idCd×d )
[
(1⊗ b − x)−1

]
=(µ⊗ idCd×d )


1⊗ (b + c0)−

n∑
j=1

xj ⊗ cj

−1
 .
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Extending the nc Cauchy transform II

Allowing further

x =
n∑

j=1

xj ⊗ cj − 1⊗ c0, cj = c∗j ∈ Cd×d ,d ∈ N ∪ ℵ0, (2)

allows for “explicit” computations ofµ(f ) for nc analytic functions f in
variables x1, . . . , xn.

If f is an entire analytic function, then realization (2) can be done with
compacts c1, . . . , cn ∈ B(`2(N)), and thus convergence of
(1⊗ pj)(x + 1⊗ c0)(1⊗ pj)→ x + 1⊗ c0 as j →∞ is in norm (pj is the
projection on span{1, . . . , j} ⊂ B(`2(N))).
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Freeness via analytic nc functions
As nc Cauchy transforms characterize nc distributions, any form of
independence must be describable via (some modification of) nc
Cauchy transforms.
Voiculescu’s free independence (or freeness) has the following
characterization in terms of nc Cauchy transforms (2000):

Definition/Theorem (Voiculescu)
Tuples (x1, . . . , xn) and (y1, . . . , yn) are free iff there exist nc self-maps
ω1, ω2 of H+ such that

(ω1(b) + ω2(b)− b)−1

= Gµx+y(b) = Gµx(ω1(b)) = Gµy(ω2(b)),

as an equality of nc maps.
(Moreover,

Ex

[
(b − x− y)−1

]
= (ω1(b)− x)−1, (3)

and the same for y.)
Here x,y should be understood in the sense of Equation (1)!
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Atoms of polynomials in free variables I

Consider the case n = 1 in Voiculescu’s Definition/Theorem, and let
P = P∗ be polynomial in two noncommuting indeterminates.

Question: Under what conditions on x1, y1,P is it possible that
ker P(x1, y1) 6= {0}?

Many negative answers, starting with Shlyakhtenko-Skoufranis (2013).
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Atoms of polynomials in free variables II

Question: Under what conditions ker P(x1, y1) 6= {0}?
We answer this question in joint work with H. Bercovici and W. Liu
(2019), in two steps.

1 We find a realization

L(x1, y1) = x1 ⊗ c1 + y1 ⊗ c2 − 1⊗ c0, cj ∈ Cd×d ,

such that

ker(A⊗ e1,1 + L(x1, y1))
MvN∼ ker(A− P(x1, y1))⊕ (1⊗ 0d−1);

2 We use the Julia-Carathéodory derivative of the reciprocals of the
Cauchy transforms of the distributions of L(x1, y1), x1 ⊗ c1, y1 ⊗ c2.

Part 2 involves several technical sub-steps. The answer is explicit in
terms of the Julia-Carathéodory derivatives of ω1, ω2, which are in
principle fully computable, via Voiculescu’s relations (3).
The only drawback: with our methods, d ∈ N may be very large and
the technical sub-steps quite involved.

Serban T. Belinschi (CNRS-IMT) Nc distributions Toronto 05/29/2020 16 / 19



Atoms of polynomials in free variables II

Question: Under what conditions ker P(x1, y1) 6= {0}?
We answer this question in joint work with H. Bercovici and W. Liu
(2019), in two steps.

1 We find a realization

L(x1, y1) = x1 ⊗ c1 + y1 ⊗ c2 − 1⊗ c0, cj ∈ Cd×d ,

such that

ker(A⊗ e1,1 + L(x1, y1))
MvN∼ ker(A− P(x1, y1))⊕ (1⊗ 0d−1);

2 We use the Julia-Carathéodory derivative of the reciprocals of the
Cauchy transforms of the distributions of L(x1, y1), x1 ⊗ c1, y1 ⊗ c2.

Part 2 involves several technical sub-steps. The answer is explicit in
terms of the Julia-Carathéodory derivatives of ω1, ω2, which are in
principle fully computable, via Voiculescu’s relations (3).
The only drawback: with our methods, d ∈ N may be very large and
the technical sub-steps quite involved.
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Atoms of polynomials in free variables III

Specifically, with the notation Π = ker(L(x1, y1)), we know how to
“safely cut” the expectation of this kernel left and right with projections
p1,p2 ∈ Cd×d so that the expectation of

Π̃ = ker diag(p1,p2)

[
0 L(x1, y1)

L(x1, y1) 0

]
diag(p1,p2) is invertible in

the reduced algebra diag(p1,p2)C2d×2ddiag(p1,p2). Voiculescu’s
Definition/Theorem still holds for the “cut” random variables, so we
may apply (with the new ω1, ω2)

Theorem (B., Bercovici, Liu ‘19)

Under the above invertibility assumption,

ker(ω′1(c0)(1)−
1
2(x1 ⊗ c1 − ω1(c0))ω′1(c0)(1)−

1
2 ) = Ex1 [ω′1(c0)(1)

1
2 Π̃ω′1(c0)(1)

1
2 ]

and τ(Π̃)+1=τ(Ex1 [ω′1(c0)(1)
1
2 Π̃ω′1(c0)(1)

1
2 ] + Ey1 [ω′2(c0)(1)

1
2 Π̃ω′2(c0)(1)

1
2 ]).

(Here τ is the trace on the reduced algebra.)
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Entire nc functions in free variables
Joint work in progress with V. Vinnikov

We construct

L(x1, y1) = 1⊗ c0 + x1 ⊗ c1 + y1 ⊗ c2, c1, c2 ∈ B(`2(N)) compact;

Approximation with finite-rank operators allows us to recover
Voiculescu’s result (3);
The Murray-von Neumann equivalence of projections
ker(A⊗ e1,1 + L(x1, y1))

MvN∼ ker(A− f (x1, y1))⊕ (1⊗ 0d−1) still holds
with d infinite;
The formulation of the condition for the existence of the kernel in terms
of the Julia-Carathéodory derivatives of ω1, ω2 still holds, with some
modifications;
However, the full extent of properties imposed upon x1, y1 by these
conditions is not clear to us yet.
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Thank you!
And a special Thank You! to Sarah, George, Ilijas, and Paul!
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