Distributions of functions in noncommuting random variables

Serban T. Belinschi

CNRS - Institut de Mathématiques de Toulouse

COSy
Canadian Operator Symposium 2020
25-29 May 2020, Fields Institute
Toronto

Contents

(1) Noncommutative distributions

- Noncommutative (joint) distributions
- Analytic transforms of noncommutative distributions
(2) Applications
- Distributions of polynomials and analytic functions in noncommuting variables
- Freeness

Contents

(1) Noncommutative distributions

- Noncommutative (joint) distributions
- Analytic transforms of noncommutative distributions
(2) Applications
- Distributions of polynomials and analytic functions in noncommuting variables
- Freeness

Noncommutative probability

The process of passing from "commutative" to "noncommutative" [insert object here] is (most) often done by switching the perspective from the [object] to some algebra of functions defined on the [object], and trying to eliminate the commutativity assumption on that algebra.

Noncommutative probability spaces generalize $\left(L^{\infty}([0,1], \mathrm{d} x), \mathbb{E}[\cdot]=\int \cdot \mathrm{d} x\right)$.
Thus,
noncommutative probability space $=$ von Neumann algebra with state.
Here we take a slightly (very slightly!) different approach: we assume that (spaces of) noncommutative functions are known, and we define Noncommutative distributions = linear functionals on spaces of noncommutative functions

Noncommutative probability

The process of passing from "commutative" to "noncommutative" [insert object here] is (most) often done by switching the perspective from the [object] to some algebra of functions defined on the [object], and trying to eliminate the commutativity assumption on that algebra.

Noncommutative probability spaces generalize $\left(L^{\infty}([0,1], \mathrm{d} x), \mathbb{E}[\cdot]=\int \cdot \mathrm{d} x\right)$.
Thus,
noncommutative probability space $=$ von Neumann algebra with state.
Here we take a slightly (very slightly!) different approach: we assume that (spaces of) noncommutative functions are known, and we define Noncommutative distributions = linear functionals on spaces of noncommutative functions

Noncommutative (joint) distributions

Classical distribution on $\mathbb{R}^{n}=$ linear functional, continuous on some space of test functions on \mathbb{R}^{n}.

Our class of noncommutative test functions is $\mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$, the algebra of polynomials in n selfadjoint noncommuting indeterminates ${ }^{1}$ (so $X_{1}, X_{2}, \ldots, X_{n}$ satisfy no algebraic relation)

[^0]
Noncommutative (joint) distributions

Classical distribution on $\mathbb{R}^{n}=$ linear functional, continuous on some space of test functions on \mathbb{R}^{n}.

Our class of noncommutative test functions is $\mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$, the algebra of polynomials in n selfadjoint noncommuting indeterminates ${ }^{1}$ (so $X_{1}, X_{2}, \ldots, X_{n}$ satisfy no algebraic relation)
(1) A noncommutative distribution is a linear $\mu: \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle \rightarrow \mathbb{C}$ such that $\mu(1)=1$;
(0) μ is tracial if $\mu(P Q)=\mu(Q P)$ for any P, Q The set of positive, bounded tracial distributions is denoted by Σ_{0}
${ }^{1}$ For the rest of the talk, think $n=2$!

Noncommutative (joint) distributions

Classical distribution on $\mathbb{R}^{n}=$ linear functional, continuous on some space of test functions on \mathbb{R}^{n}.

Our class of noncommutative test functions is $\mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$, the algebra of polynomials in n selfadjoint noncommuting indeterminates ${ }^{1}$ (so $X_{1}, X_{2}, \ldots, X_{n}$ satisfy no algebraic relation)
(1) A noncommutative distribution is a linear $\mu: \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle \rightarrow \mathbb{C}$ such that $\mu(1)=1$;
(2) μ is positive if $\mu\left(P^{*} P\right) \geq 0$ for all $P \in \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$;
 The set of positive, bounded tracial distributions is denoted by Σ_{0}.
${ }^{1}$ For the rest of the talk, think $n=2$!

Noncommutative (joint) distributions

Classical distribution on $\mathbb{R}^{n}=$ linear functional, continuous on some space of test functions on \mathbb{R}^{n}.

Our class of noncommutative test functions is $\mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$, the algebra of polynomials in n selfadjoint noncommuting indeterminates ${ }^{1}$ (so $X_{1}, X_{2}, \ldots, X_{n}$ satisfy no algebraic relation)
(1) A noncommutative distribution is a linear $\mu: \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle \rightarrow \mathbb{C}$ such that $\mu(1)=1$;
(2) μ is positive if $\mu\left(P^{*} P\right) \geq 0$ for all $P \in \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$;
(3) μ is bounded if for any $P \in \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$ there is an $R_{P}>0$ such that $\mu\left(\left(P^{*} P\right)^{k}\right)<R_{P}^{2 k}$ for all $k \in \mathbb{N}$;
© μ is tracial if $\mu(P Q)=\mu(Q P)$ for any $P, Q \in \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$
The set of positive, bounded tracial distributions is denoted by Σ_{0}.
${ }^{1}$ For the rest of the talk, think $n=2$!

Noncommutative (joint) distributions

Classical distribution on $\mathbb{R}^{n}=$ linear functional, continuous on some space of test functions on \mathbb{R}^{n}.

Our class of noncommutative test functions is $\mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$, the algebra of polynomials in n selfadjoint noncommuting indeterminates ${ }^{1}$ (so $X_{1}, X_{2}, \ldots, X_{n}$ satisfy no algebraic relation)
(1) A noncommutative distribution is a linear $\mu: \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle \rightarrow \mathbb{C}$ such that $\mu(1)=1$;
(2) μ is positive if $\mu\left(P^{*} P\right) \geq 0$ for all $P \in \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$;
(0) μ is bounded if for any $P \in \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$ there is an $R_{P}>0$ such that $\mu\left(\left(P^{*} P\right)^{k}\right)<R_{P}^{2 k}$ for all $k \in \mathbb{N}$;
(9) μ is tracial if $\mu(P Q)=\mu(Q P)$ for any $P, Q \in \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle$.

The set of positive, bounded tracial distributions is denoted by Σ_{0}.

[^1]
Realizing and encoding nc distributions

As in classical probability: one can realize a given distribution $\mu \in \Sigma_{0}$ as the distribution of a tuple of selfadjoint elements ("random variables") $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in a tracial C^{*}-algebra, here via the GNS construction with respect to $\langle P, Q\rangle_{\mu}=\mu\left(Q^{*} P\right)$. We write μ_{x} when we view μ as the distribution of the variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$

encodes μ.
(Note the similarity with the classical problem of moments.)

Realizing and encoding nc distributions

As in classical probability: one can realize a given distribution $\mu \in \Sigma_{0}$ as the distribution of a tuple of selfadjoint elements ("random variables") $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in a tracial C^{*}-algebra, here via the GNS construction with respect to $\langle P, Q\rangle_{\mu}=\mu\left(Q^{*} P\right)$. We write μ_{x} when we view μ as the distribution of the variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$

Convention: Upper case X_{j} denote indeterminates, lower case x_{j} denote random variables in a tracial C^{*} - or W^{*}-algebra.

By linearity, the matrix of moments (or moment matrix) $M(\mu)$ given by $M(\mu)_{v, w}=\mu\left(\left(X^{w}\right)^{*} X^{v}\right), v, w \in \mathbb{F}_{n}^{+}$, the free semigroup in n generators, encodes μ.
(Note the similarity with the classical problem of moments.)

Contents

(1) Noncommutative distributions

- Noncommutative (joint) distributions
- Analytic transforms of noncommutative distributions
(2) Applications
- Distributions of polynomials and analytic functions in noncommuting variables
- Freeness

Free noncommutative transforms (nc transforms)

Cauchy transform $G_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(z_{j}-t_{j}\right)^{-1} \mathrm{~d} \mu\left(t_{1}, \ldots, t_{n}\right)$
encodes the classical distribution μ (see, for instance, Koranyi);
Nc Cauchy transform² encodes the noncommutative distribution μ : Let $\mathbf{x}=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right), G_{\mu, 1}(b)=\left(\mu \otimes \mathrm{id}_{\mathbb{C}^{n \times n}}\right)\left[(b-\mathbf{x})^{-1}\right]$. Amplify:

Free noncommutative transforms (nc transforms)

Cauchy transform $G_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(z_{j}-t_{j}\right)^{-1} \mathrm{~d} \mu\left(t_{1}, \ldots, t_{n}\right)$ encodes the classical distribution μ (see, for instance, Koranyi);

Nc Cauchy transform ${ }^{2}$ encodes the noncommutative distribution μ : Let $\mathbf{x}=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right), G_{\mu, 1}(b)=\left(\mu \otimes \operatorname{id}_{\mathbb{C}^{n \times n}}\right)\left[(b-\mathbf{x})^{-1}\right]$. Amplify:

$$
G_{\mu, m}(b)=\left(\mu \otimes \mathrm{id}_{\mathbb{C}^{m n \times m n}}\right)\left[\left(b-\mathbf{x} \otimes I_{m}\right)^{-1}\right], \quad m \in \mathbb{N}, b \in \mathbb{C}^{m n \times m n}
$$

\square

[^2]
Free noncommutative transforms (nc transforms)

Cauchy transform $G_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(z_{j}-t_{j}\right)^{-1} \mathrm{~d} \mu\left(t_{1}, \ldots, t_{n}\right)$ encodes the classical distribution μ (see, for instance, Koranyi);

Nc Cauchy transform ${ }^{2}$ encodes the noncommutative distribution μ : Let $\mathbf{x}=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right), G_{\mu, 1}(b)=\left(\mu \otimes \operatorname{id}_{\mathbb{C}^{n \times n}}\right)\left[(b-\mathbf{x})^{-1}\right]$. Amplify:

$$
G_{\mu, m}(b)=\left(\mu \otimes \operatorname{id}_{\mathbb{C}^{m n \times m n}}\right)\left[\left(b-\mathbf{x} \otimes I_{m}\right)^{-1}\right], \quad m \in \mathbb{N}, b \in \mathbb{C}^{m n \times m n}
$$

$G_{\mu, m}\left(b^{-1}\right)$ extends to a nbhd of 0 as $\left(\mu \otimes \mathrm{id}_{\mathbb{C}^{m n \times m n}}\left[b\left(1-\left(\mathbf{x} \otimes I_{m}\right) b\right)^{-1}\right]\right.$. By choosing an appropriate b (an upper diagonal $m \times m$ matrix of $n \times n$ permutation matrices will do), the expansion of $G_{\mu, m}\left(b^{-1}\right)$ yields any entry $M(\mu)_{v, w},|v|+|w| \leq m-2$.

[^3]
Free noncommutative transforms (nc transforms)

Cauchy transform $G_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(z_{j}-t_{j}\right)^{-1} \mathrm{~d} \mu\left(t_{1}, \ldots, t_{n}\right)$ encodes the classical distribution μ (see, for instance, Koranyi);

Nc Cauchy transform ${ }^{2}$ encodes the noncommutative distribution μ : Let $\mathbf{x}=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right), G_{\mu, 1}(b)=\left(\mu \otimes \operatorname{id}_{\mathbb{C}^{n \times n}}\right)\left[(b-\mathbf{x})^{-1}\right]$. Amplify:

$$
G_{\mu, m}(b)=\left(\mu \otimes \operatorname{id}_{\mathbb{C}^{m n \times m n}}\right)\left[\left(b-\mathbf{x} \otimes I_{m}\right)^{-1}\right], \quad m \in \mathbb{N}, b \in \mathbb{C}^{m n \times m n}
$$

$G_{\mu, m}\left(b^{-1}\right)$ extends to a nbhd of 0 as $\left(\mu \otimes \mathrm{id}_{\mathbb{C}^{m n \times m n}}\left[b\left(1-\left(\mathbf{x} \otimes I_{m}\right) b\right)^{-1}\right]\right.$. By choosing an appropriate b (an upper diagonal $m \times m$ matrix of $n \times n$ permutation matrices will do), the expansion of $G_{\mu, m}\left(b^{-1}\right)$ yields any entry $M(\mu)_{v, w},|v|+|w| \leq m-2$.

It extends analytically as an nc function to the nc upper half-plane $H^{+}=\{b: \Im b>0\},-G_{\mu}\left(H^{+}\right) \subseteq H^{+}$. (See Voiculescu, Popa-Vinnikov.)

[^4]
Aside: Approximation of nc transforms

Nc distributions $\left\{\mu_{k}\right\}_{k \in \mathbb{N}} \subset \Sigma_{0}$ converge to distribution $\mu \in \Sigma_{0}$ if and only if the nc Cauchy transforms $G_{\mu_{k}} \rightarrow G_{\mu}$ as $k \rightarrow \infty$.

Denote

Stating that $\left\{G_{\mu}: \mu \in \Sigma_{0}^{\text {fin }}\right\}$ is dense in the space of nc functions that map H^{+}to $H^{-}=-H^{+}$and vanish at infinity with residue one ${ }^{3}$ is equivalent to stating that all bounded positive tracial distributions have microstates (see J. Williams), which we now know to be false.

Contrast that with the fact that classical distributions are approximable by atomic ones, corresponding to functions of the type

Aside: Approximation of nc transforms

Nc distributions $\left\{\mu_{k}\right\}_{k \in \mathbb{N}} \subset \Sigma_{0}$ converge to distribution $\mu \in \Sigma_{0}$ if and only if the nc Cauchy transforms $G_{\mu k} \rightarrow G_{\mu}$ as $k \rightarrow \infty$.

Denote

$$
\begin{aligned}
& \Sigma_{0}^{\text {fin }}=\left\{\mu \in \Sigma_{0}: \text { there exists } d \in \mathbb{N}, x_{1}, \ldots x_{n} \in \mathbb{C}^{d \times d}\right. \text { such that } \\
&\left.\mu(P)=\operatorname{tr}_{d}\left(P\left(x_{1}, \ldots, x_{d}\right)\right) \text { for all } P \in \mathbb{C}\left\langle X_{1}, \ldots, x_{n}\right\rangle\right\} .
\end{aligned}
$$

Stating that $\left\{G_{\mu}: \mu \in \sum_{0}^{\mathrm{fin}}\right\}$ is dense in the space of nc functions that map H^{+}to $H^{-}=-H^{+}$and vanish at infinity with residue one ${ }^{3}$ is equivalent to stating that all bounded positive tracial distributions have microstates (see J. Williams), which we now know to be false.

Contrast that with the fact that classical distributions are approximable by atomic ones, corresponding to functions of the type

Aside: Approximation of nc transforms

Nc distributions $\left\{\mu_{k}\right\}_{k \in \mathbb{N}} \subset \Sigma_{0}$ converge to distribution $\mu \in \Sigma_{0}$ if and only if the nc Cauchy transforms $G_{\mu_{k}} \rightarrow G_{\mu}$ as $k \rightarrow \infty$.

Denote

$$
\begin{aligned}
& \Sigma_{0}^{\text {fin }}=\left\{\mu \in \Sigma_{0}: \text { there exists } d \in \mathbb{N}, x_{1}, \ldots x_{n} \in \mathbb{C} d \times d\right. \\
&\left.\mu(P)=\operatorname{tr}_{d}\left(P\left(x_{1}, \ldots, x_{d}\right)\right) \text { for all } P \in \mathbb{C}\left\langle X_{1}, \ldots, X_{n}\right\rangle\right\} .
\end{aligned}
$$

Stating that $\left\{G_{\mu}: \mu \in \Sigma_{0}^{\mathrm{fin}}\right\}$ is dense in the space of nc functions that map H^{+}to $H^{-}=-H^{+}$and vanish at infinity with residue one ${ }^{3}$ is equivalent to stating that all bounded positive tracial distributions have microstates (see J. Williams), which we now know to be false.

Contrast that with the fact that classical distributions are approximable by atomic ones, corresponding to functions of the type
${ }^{3}$ That is, $\lim _{b \rightarrow 0} G\left(b^{-1}\right) b^{-1}=\lim _{b \rightarrow 0} b^{-1} G\left(b^{-1}\right)=1$.

Aside: Approximation of nc transforms

Nc distributions $\left\{\mu_{k}\right\}_{k \in \mathbb{N}} \subset \Sigma_{0}$ converge to distribution $\mu \in \Sigma_{0}$ if and only if the nc Cauchy transforms $G_{\mu_{k}} \rightarrow G_{\mu}$ as $k \rightarrow \infty$.

Denote

$$
\begin{aligned}
& \Sigma_{0}^{\text {fin }}=\left\{\mu \in \Sigma_{0}: \text { there exists } d \in \mathbb{N}, x_{1}, \ldots x_{n} \in \mathbb{C}^{d \times d}\right. \text { such that } \\
&\left.\mu(P)=\operatorname{tr}_{d}\left(P\left(x_{1}, \ldots, x_{d}\right)\right) \text { for all } P \in \mathbb{C}\left\langle X_{1}, \ldots, x_{n}\right\rangle\right\} .
\end{aligned}
$$

Stating that $\left\{G_{\mu}: \mu \in \sum_{0}^{\text {in }}\right\}$ is dense in the space of nc functions that map H^{+}to $\mathrm{H}^{-}=-\mathrm{H}^{+}$and vanish at infinity with residue one ${ }^{3}$ is equivalent to stating that all bounded positive tracial distributions have microstates (see J. Williams), which we now know to be false.

Contrast that with the fact that classical distributions are approximable by atomic ones, corresponding to functions of the type $\left(z_{1}, \ldots, z_{n}\right) \mapsto \sum_{i=1}^{N} \alpha_{i} \prod_{j=1}^{n} \frac{1}{z_{j}-s_{j}^{(i)}}, N \in \mathbb{N}, \alpha_{i} \geq 0, \sum_{i=1}^{N} \alpha_{j}=1, s_{j}^{(i)} \in \mathbb{R}$. ${ }^{3}$ That is, $\lim _{b \rightarrow 0} G\left(b^{-1}\right) b^{-1}=\lim _{b \rightarrow 0} b^{-1} G\left(b^{-1}\right)=1$.

Contents

(1) Noncommutative distributions

- Noncommutative (joint) distributions
- Analytic transforms of noncommutative distributions
(2) Applications
- Distributions of polynomials and analytic functions in noncommuting variables
- Freeness

Extending the nc Cauchy transform I

Observe: $\mathbf{x}=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} \otimes e_{i, i}$. Allowing instead

$$
\begin{equation*}
\mathbf{x}=\sum_{j=1}^{n} x_{j} \otimes c_{j}-1 \otimes c_{0}, \quad c_{j}=c_{j}^{*} \in \mathbb{C}^{d \times d}, d \in \mathbb{N} \tag{1}
\end{equation*}
$$

allows for explicit computations of $\mu(P)$ for arbitrary nc polynomials, or even rational functions, P (realization/linearization of P).

Thus, from now on,

Extending the nc Cauchy transform I

Observe: $\mathbf{x}=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} \otimes e_{i, i}$. Allowing instead

$$
\begin{equation*}
\mathbf{x}=\sum_{j=1}^{n} x_{j} \otimes c_{j}-1 \otimes c_{0}, \quad c_{j}=c_{j}^{*} \in \mathbb{C}^{d \times d}, d \in \mathbb{N} \tag{1}
\end{equation*}
$$

allows for explicit computations of $\mu(P)$ for arbitrary nc polynomials, or even rational functions, P (realization/linearization of P).

Thus, from now on,

$$
\begin{aligned}
G_{\mu_{\mathrm{x}}}(b) & =\left(\mu \otimes \mathrm{id}_{\mathbb{C}^{d \times d}}\right)\left[(1 \otimes b-\mathbf{x})^{-1}\right] \\
& =\left(\mu \otimes \mathrm{id}_{\mathbb{C}^{d \times d}}\right)\left[\left(1 \otimes\left(b+c_{0}\right)-\sum_{j=1}^{n} x_{j} \otimes c_{j}\right)^{-1}\right] .
\end{aligned}
$$

Extending the nc Cauchy transform II

Allowing further

$$
\begin{equation*}
\mathbf{x}=\sum_{j=1}^{n} x_{j} \otimes c_{j}-1 \otimes c_{0}, \quad c_{j}=c_{j}^{*} \in \mathbb{C}^{d \times d}, d \in \mathbb{N} \cup \aleph_{0} \tag{2}
\end{equation*}
$$

allows for "explicit" computations of $\mu(f)$ for nc analytic functions f in variables x_{1}, \ldots, x_{n}.

If f is an entire analytic function, then realization (2) can be done with compacts $c_{1}, \ldots, c_{n} \in B\left(\ell^{2}(\mathbb{N})\right)$, and thus convergence of $\left(1 \otimes p_{j}\right)\left(x+1 \otimes c_{0}\right)\left(1 \otimes p_{j}\right) \rightarrow x+1 \otimes c_{0}$ as $j \rightarrow \infty$ is in norm (p_{j} is the projection on $\left.\operatorname{span}\{1, \ldots, j\} \subset B\left(\ell^{2}(\mathbb{N})\right)\right)$.

Extending the nc Cauchy transform II

Allowing further

$$
\begin{equation*}
\mathbf{x}=\sum_{j=1}^{n} x_{j} \otimes c_{j}-1 \otimes c_{0}, \quad c_{j}=c_{j}^{*} \in \mathbb{C}^{d \times d}, d \in \mathbb{N} \cup \aleph_{0} \tag{2}
\end{equation*}
$$

allows for "explicit" computations of $\mu(f)$ for nc analytic functions f in variables x_{1}, \ldots, x_{n}.

If f is an entire analytic function, then realization (2) can be done with compacts $c_{1}, \ldots, c_{n} \in B\left(\ell^{2}(\mathbb{N})\right)$, and thus convergence of $\left(1 \otimes p_{j}\right)\left(\mathbf{x}+1 \otimes c_{0}\right)\left(1 \otimes p_{j}\right) \rightarrow \mathbf{x}+1 \otimes c_{0}$ as $j \rightarrow \infty$ is in norm (p_{j} is the projection on $\left.\operatorname{span}\{1, \ldots, j\} \subset B\left(\ell^{2}(\mathbb{N})\right)\right)$.

Contents

(1) Noncommutative distributions
 - Noncommutative (joint) distributions
 - Analytic transforms of noncommutative distributions

(2) Applications

- Distributions of polynomials and analytic functions in noncommuting variables
- Freeness

Freeness via analytic nc functions

As nc Cauchy transforms characterize nc distributions, any form of independence must be describable via (some modification of) nc Cauchy transforms.
Voiculescu's free independence (or freeness) has the following characterization in terms of nc Cauchy transforms (2000):

Definition/Theorem (Voiculescu)

Tuples $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ are free iff there exist nc self-maps ω_{1}, ω_{2} of H^{+}such that

$$
\begin{aligned}
& \left(\omega_{1}(b)+\omega_{2}(b)-b\right)^{-1} \\
& \quad=\quad G_{\mu_{\mathbf{x}+\mathrm{y}}}(b)=G_{\mu_{\mathbf{x}}}\left(\omega_{1}(b)\right)=G_{\mu_{\mathbf{y}}}\left(\omega_{2}(b)\right)
\end{aligned}
$$

as an equality of nc maps.
(Moreover,

$$
\begin{equation*}
E_{\mathbf{x}}\left[(b-\mathbf{x}-\mathbf{y})^{-1}\right]=\left(\omega_{1}(b)-\mathbf{x}\right)^{-1} \tag{3}
\end{equation*}
$$

and the same for \mathbf{y}.)
Here \mathbf{x}, \mathbf{y} should be understood in the sense of Equation (1)!

Atoms of polynomials in free variables I

Consider the case $n=1$ in Voiculescu's Definition/Theorem, and let $P=P^{*}$ be polynomial in two noncommuting indeterminates.

Question: Under what conditions on x_{1}, y_{1}, P is it possible that $\operatorname{ker} P\left(x_{1}, y_{1}\right) \neq\{0\}$?

Many negative answers, starting with Shlyakhtenko-Skoufranis (2013).

Atoms of polynomials in free variables I

Consider the case $n=1$ in Voiculescu's Definition/Theorem, and let $P=P^{*}$ be polynomial in two noncommuting indeterminates.

Question: Under what conditions on x_{1}, y_{1}, P is it possible that $\operatorname{ker} P\left(x_{1}, y_{1}\right) \neq\{0\}$?

Many negative answers, starting with Shlyakhtenko-Skoufranis (2013).

Atoms of polynomials in free variables II

Question: Under what conditions $\operatorname{ker} P\left(x_{1}, y_{1}\right) \neq\{0\}$?
We answer this question in joint work with H. Bercovici and W. Liu (2019), in two steps.
(1) We find a realization

$$
L\left(x_{1}, y_{1}\right)=x_{1} \otimes c_{1}+y_{1} \otimes c_{2}-1 \otimes c_{0}, \quad c_{j} \in \mathbb{C}^{d \times d}
$$

such that

$$
\operatorname{ker}\left(A \otimes e_{1,1}+L\left(x_{1}, y_{1}\right)\right) \stackrel{\text { MvN }}{\sim} \operatorname{ker}\left(A-P\left(x_{1}, y_{1}\right)\right) \oplus\left(1 \otimes 0_{d-1}\right) ;
$$

(2) We use the Julia-Carathéodory derivative of the reciprocals of the Cauchy transforms of the distributions of $L\left(x_{1}, y_{1}\right), x_{1} \otimes c_{1}, y_{1} \otimes c_{2}$.
\square
Part 2 involves several technical sub-steps. The answer is explicit in terms of the Julia-Carathéodory derivatives of ω_{1}, ω_{2}, which are in principle fully computable, via Voiculescu's relations (3) The only drawback: with our methods, $d \in \mathbb{N}$ may be very large and the technical sub-steps quite involved.

Atoms of polynomials in free variables II

Question: Under what conditions $\operatorname{ker} P\left(x_{1}, y_{1}\right) \neq\{0\}$?
We answer this question in joint work with H. Bercovici and W. Liu (2019), in two steps.
(1) We find a realization

$$
L\left(x_{1}, y_{1}\right)=x_{1} \otimes c_{1}+y_{1} \otimes c_{2}-1 \otimes c_{0}, \quad c_{j} \in \mathbb{C}^{d \times d}
$$

such that

$$
\operatorname{ker}\left(A \otimes e_{1,1}+L\left(x_{1}, y_{1}\right)\right) \stackrel{M \sim N}{\sim} \operatorname{ker}\left(A-P\left(x_{1}, y_{1}\right)\right) \oplus\left(1 \otimes 0_{d-1}\right) ;
$$

(2) We use the Julia-Carathéodory derivative of the reciprocals of the Cauchy transforms of the distributions of $L\left(x_{1}, y_{1}\right), x_{1} \otimes c_{1}, y_{1} \otimes c_{2}$.
Part 2 involves several technical sub-steps. The answer is explicit in terms of the Julia-Carathéodory derivatives of ω_{1}, ω_{2}, which are in principle fully computable, via Voiculescu's relations (3).
The only drawback: with our methods, $d \in \mathbb{N}$ may be very large and the technical sub-steps quite involved.

Atoms of polynomials in free variables III

Specifically, with the notation $\Pi=\operatorname{ker}\left(L\left(x_{1}, y_{1}\right)\right)$, we know how to "safely cut" the expectation of this kernel left and right with projections $p_{1}, p_{2} \in \mathbb{C}^{d \times d}$ so that the expectation of
$\tilde{\Pi}=\operatorname{kerdiag}\left(p_{1}, p_{2}\right)\left[\begin{array}{cc}0 & L\left(x_{1}, y_{1}\right) \\ L\left(x_{1}, y_{1}\right) & 0\end{array}\right] \operatorname{diag}\left(p_{1}, p_{2}\right)$ is invertible in the reduced algebra diag $\left(p_{1}, p_{2}\right) \mathbb{C}^{2 d \times 2 d} \operatorname{diag}\left(p_{1}, p_{2}\right)$. Voiculescu's Definition/Theorem still holds for the "cut" random variables, so we may apply (with the new ω_{1}, ω_{2})

Theorem (B., Bercovici, Liu '19)

Under the above invertibility assumption,

$$
\begin{aligned}
& \operatorname{ker}\left(\omega_{1}^{\prime}\left(c_{0}\right)(1)^{-\frac{1}{2}}\left(x_{1} \otimes c_{1}-\omega_{1}\left(c_{0}\right)\right) \omega_{1}^{\prime}\left(c_{0}\right)(1)^{-\frac{1}{2}}\right)=E_{X_{1}}\left[\omega_{1}^{\prime}\left(c_{0}\right)(1)^{\frac{1}{2}} \tilde{\Pi} \omega_{1}^{\prime}\left(c_{0}\right)(1)^{\frac{1}{2}}\right] \\
& \text { and } \tau(\tilde{\Pi})+1=\tau\left(E_{X_{1}}\left[\omega_{1}^{\prime}\left(c_{0}\right)(1)^{\frac{1}{2}} \tilde{\Pi} \omega_{1}^{\prime}\left(c_{0}\right)(1)^{\frac{1}{2}}\right]+E_{y_{1}}\left[\omega_{2}^{\prime}\left(c_{0}\right)(1)^{\frac{1}{2}} \tilde{\Pi} \omega_{2}^{\prime}\left(c_{0}\right)(1)^{\frac{1}{2}}\right]\right) .
\end{aligned}
$$

(Here τ is the trace on the reduced algebra.)

Entire nc functions in free variables

 Joint work in progress with V. Vinnikov
We construct

$$
L\left(x_{1}, y_{1}\right)=1 \otimes c_{0}+x_{1} \otimes c_{1}+y_{1} \otimes c_{2}, \quad c_{1}, c_{2} \in B\left(\ell^{2}(\mathbb{N})\right) \text { compact }
$$

Approximation with finite-rank operators allows us to recover Voiculescu's result (3);
The Murray-von Neumann equivalence of projections $\operatorname{ker}\left(A \otimes e_{1,1}+L\left(x_{1}, y_{1}\right)\right) \stackrel{M v N}{\sim} \operatorname{ker}\left(A-f\left(x_{1}, y_{1}\right)\right) \oplus\left(1 \otimes 0_{d-1}\right)$ still holds with d infinite;
The formulation of the condition for the existence of the kernel in terms of the Julia-Carathéodory derivatives of ω_{1}, ω_{2} still holds, with some modifications;
However, the full extent of properties imposed upon x_{1}, y_{1} by these conditions is not clear to us yet.

Thank you!
And a special Thank You! to Sarah, George, Ilijas, and Paul!

[^0]: ${ }^{1}$ For the rest of the talk, think $n=2$!

[^1]: ${ }^{1}$ For the rest of the talk, think $n=2$!

[^2]: ${ }^{2}$ Restricted version.

[^3]: ${ }^{2}$ Restricted version.

[^4]: ${ }^{2}$ Restricted version.

