Ivan Arzhantsev (HSE University, Moscow)

Infinite transitivity, finite generation, and Demazure roots

with Karine Kuyumzhiyan and Mikhail Zaidenberg

Advances in Mathematics 351 (2019) 1–32

Infinite Transitivity

Definition

Let G be a group, X a set, and m a positive integer. An action $G \times X \to X$ is called m-transitive if for any two tuples (a_1, \ldots, a_m) and (b_1, \ldots, b_m) of pairwise distinct points on X there is an element $g \in G$ such that $(ga_1, \ldots, ga_m) = (b_1, \ldots, b_m)$.

Definition

An action $G \times X \to X$ is *infinitely transitive* if it is *m*-transitive for any positive integer m.

Example

- 1) Let X be an infinite set and G the group of all permutations on X.
- 2) Let X be an infinite set and G the group of all permutations with finite support on X.

Affine Spaces

Theorem

The group $\operatorname{Aut}(\mathbb{A}^n)$ is infinitely transitive on \mathbb{A}^n for any $n \ge 2$.

Idea (n=2): use parallel translations (x_1+a,x_2) , (x_1,x_2+b) and their replicas $(x_1+af_1(x_2),x_2)$, $(x_1,x_2+bf_2(x_1))$, where $a,b\in K$.

Example

The group $\operatorname{Aut}(\mathbb{A}^1)$ is isomorphic to $K^{\times} \times K$. It is 2-transitive, but not 3-transitive on \mathbb{A}^1 .

General Problems

Let X be an affine algebraic variety over the field \mathbb{C} .

When the group Aut(X) of polynomial automorphisms of X is infinitely transitive on X?

If X is singular, we ask this question for the smooth locus X^{reg} .

Idea: to use \mathbb{G}_a -subgroups in the group $\operatorname{Aut}(X)$ and their replicas. Here $\mathbb{G}_a=(\mathbb{C},+)$.

Notation: SAut(X) is the subgroup of Aut(X) generated by all \mathbb{G}_a -subgroups.

Locally Nilpotent Derivations

Definition

A derivation $D: A \to A$ of an algebra A is *locally nilpotent* if for any $a \in A$ there is a positive integer k such that $D^k(a) = 0$.

Locally nilpotent derivations on
$$\mathbb{C}[X] \Leftrightarrow \mathbb{G}_a$$
-subgroups in $\operatorname{Aut}(X)$
 $D \in \operatorname{LND}(\mathbb{C}[X]) \iff \exp(\mathbb{C}D) \subseteq \operatorname{Aut}(X)$

If $D \in LND(A)$ and $f \in Ker(D)$, then $fD \in LND(A)$.

 \mathbb{G}_a -subgroups corresponding to LNDs of the form fD are replicas of the \mathbb{G}_a -subgroup corresponding to D.

Flexibility vs Infinite Transitivity

Definition

An affine variety X is *flexible* if the tangent space $T_x(X)$ at any smooth point $x \in X^{\text{reg}}$ is generated by velocity vectors to orbits of \mathbb{G}_a -subgroups passing through x.

Theorem (A.-Flenner-Kaliman-Kutzschebauch-Zaidenberg'2013)

Let X be an irreducible affine variety of dimension $\geqslant 2$. The following conditions are equivalent:

- (a) the group SAut(X) acts transitively on X^{reg} ;
- (b) the group SAut(X) acts infinitely transitively on X^{reg} ;
- (c) the variety X is flexible.

Examples of Flexible Varieties

- Suspensions Susp(X, f) given by uv = f(x) in $\mathbb{A}^2 \times X$ over a flexible variety X;
- Non-degenerate ($\mathbb{C}[X]^{\times} = \mathbb{C}^{\times}$) affine toric varieties;
- Non-degenerate horospherical varieties of reductive groups;
- Homogeneous spaces G/F, where G is semisimple and F is reductive:
- Normal affine SL(2)-embeddings;
- Affine cones over flag varieties and del Pezzo surfaces.

Root Subgroups and Demazure Roots

Let X be a variety with an action of a torus T. A \mathbb{G}_a -subgroup H in $\operatorname{Aut}(X)$ is called a *root subgroup* if H is normalized in $\operatorname{Aut}(X)$ by the torus T. In this case T acts on H by some character e. Such a character is called a *root* of the T-variety X.

Assume X is toric with acting torus T. What are the roots of X? Let p_1, \ldots, p_s be the primitive lattice vectors on rays of the fan Σ_X .

Definition

A Demazure root of the fan Σ_X in a character $e \in M$ such that there exists $1 \leqslant i \leqslant s$ with $\langle e, p_i \rangle = -1$ and $\langle e, p_j \rangle \geqslant 0$ for $j \neq i$.

Theorem (Demazure' 1970)

Let X be a complete or an affine toric varieties. Then root subgroups on X are in bijection with Demazure roots of the fan Σ_X .

Finite generation

Conjecture A. Any generically flexible affine variety X admits a finite collection $\{H_1, \ldots, H_k\}$ of \mathbb{G}_a -subgroups of $\operatorname{Aut}(X)$ such that the group $G = \langle H_1, \ldots, H_k \rangle$ acts infinitely transitively on its open orbit.

Idea of the proof:

- Step 1. Find $G = \langle H_1, \ldots, H_s \rangle$ that acts on X with an open orbit;
- Step 2. Prove that the closure \overline{G} of the subgroup G in Aut(X) in ind-topology contains 'many other' \mathbb{G}_a -subgroups;
- Step 3. Prove that \overline{G} acts infinitely transitively on the open orbit;
- Step 4. Prove that G acts infinitely transitively on the open orbit.
- Step 3 \Rightarrow Step 4 turns out to be true in general.

A Conjecture on Locally Nilpotent Derivations

To Step 2:

Conjecture B. Let X be an affine variety, and $A = \mathbb{C}[X]$ be its structure algebra. Consider the group $G = \langle H_1, \ldots, H_k \rangle$ generated by a finite collection of \mathbb{G}_a -subgroups $H_i = \exp(\mathbb{C}D_i) \subset \mathrm{SAut}(X)$, where $D_i \in \mathrm{LND}(A)$, $i = 1, \ldots, k$.

Then the \mathbb{G}_{a} -subgroup $H = \exp(\mathbb{C}D) \subset \mathsf{SAut}(X)$, where $D \in \mathsf{LND}(A)$, is contained in \overline{G} if and only if $D \in \mathrm{Lie}\,\langle D_1, \dots, D_k \rangle$.

The Toric Case

Theorem (A.-Kuyumzhiyan-Zaidenberg'2019)

For any non-degererate affine toric variety X of dimension at least 2, which is smooth in codimention 2, one can find a finite collection of root subgroups such that the group generated by these subgroups acts infinitely transitively on the smooth locus X^{reg} .

In the proof we use Cox rings and the quotient presentation $\pi\colon \mathbb{A}^s \to X$ by an action of a quasitorus.

Finite Generation for Affine Spaces - I

Theorem (Bodnarchuk'2001)

For any $n \geqslant 3$ and any triangular $h \in \operatorname{Aut}(\mathbb{A}^n) \setminus \operatorname{Aff}_n$ we have $\langle \operatorname{Aff}_n, h \rangle = \operatorname{Tame}_n$.

Corollary

For any $n \geqslant 3$ and any non-affine root subgroup H in $\operatorname{Aut}(\mathbb{A}^n)$ the group $\langle Aff_n, H \rangle$ acts on \mathbb{A}^n infinitely transitively. In particular, one can find n+2 root subgroups which generate a subgroup acting infinitely transitively on \mathbb{A}^n .

Theorem (A.-Kuyumzhiyan-Zaidenberg'2019)

For any $n \ge 3$ one can find three \mathbb{G}_a -subgroups of $\operatorname{Aut}(\mathbb{A}^n)$ which generate a subgroup acting infinitely transitively on \mathbb{A}^n .

Finite Generation for Affine Spaces - II

Let H be the \mathbb{G}_a -subgroup of $\operatorname{Aut}(\mathbb{A}^n)$ given by

$$(x_1+ax_2^2,x_2,\ldots,x_n).$$

Theorem (A.-Kuyumzhiyan-Zaidenberg'2019)

Consider the action of the symmetric group $\mathbb{S}(n)$ on \mathbb{A}^n by permutations. Then for any $n \geqslant 3$ the subgroup

$$G = \langle H, \mathbb{S}(n) \rangle \subset \operatorname{Aut}(\mathbb{A}^n)$$

acts infinitely transitively in $\mathbb{A}^n \setminus \{0\}$.

Finite Generation for Affine Plane - I

Let H_k and R_s be the \mathbb{G}_a -subgroups of $\operatorname{Aut}(\mathbb{A}^2)$ given by

$$(x_1 + ax_2^k, x_2)$$
 and $(x_1, x_2 + bx_1^s)$, respectively.

Let $G_{k,s} = \langle H_k, R_s \rangle$. We claim that if $ks \neq 2$ then $G_{k,s}$ can not be 2-transitive.

Indeed, if k = 0 or s = 0, then there are only parallel translations along one coordinate.

If k = s = 1, then $G_{1,1}$ is the group SL(2) and it preserves collinearity.

If ks>2, we take a root of unity ω of degree ks-1 and consider the set

$$S = \{(P, Q) \in \mathbb{A}^2 \times \mathbb{A}^2 \mid P = (x_1, x_2), \ Q = (\omega x_1, \omega^s x_2)\}$$

$$P' = (x_1 + ax_2^k, x_2), \ Q' = (\omega x_1 + a(\omega^s x_2)^k, \omega^s x_2) = (\omega(x_1 + ax_2^k), \omega^s x_2)$$

$$P'' = (x_1, x_2 + bx_1^s), \ Q'' = (\omega x_1, \omega^s x_2 + b(\omega x_1)^s) = (\omega x_1, \omega^s (x_2 + bx_1^s))$$

Finite Generation for Affine Plane - II

Theorem (Lewis-Perry-Straub'2019)

The group $G_{1,2}$ generated by two subgroups

$$(x_1 + ax_2, x_2)$$
 and $(x_1, x_2 + bx_1^2)$

acts infinitely transitively on $\mathbb{A}^2 \setminus \{0\}$.

The proof is based on a detailed study of the Polydegree Conjecture for plane polynomial automorphisms.

Tits Alternative

Theorem (A.-Zaidenberg'2020)

Let X be an affine toric variety. Consider a collection of one-parameter unipotent subgroups U_1, \ldots, U_s of Aut(X) which are normalized by the torus acting on X. Then the group G generated by U_1, \ldots, U_s verifies the Tits alternative, and, moreover, either is a unipotent algebraic group, or contains a nonabelian free subgroup.

Corollary

If G is infinitely transitive, then G contains a nonabelian free subgroup, and so, is of exponential growth.

Some references - I

- [1] Arzhantsev-Flenner-Kaliman-Kutzschebauch-Zaidenberg. Flexible varieties and automorphism groups. Duke Math. J. 162 (2013), 767–823
- [2] Arzhantsev-Flenner-Kaliman-Kutzschebauch-Zaidenberg. Infinite transitivity on affine varieties. In: Birational Geometry, Rational Curves, and Arithmetic, 1–14. Springer-Verlag, 2013
- [3] Arzhantsev-Kuyumzhiyan-Zaidenberg. Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity. Sb. Math. 203 (2012), 3–30
- [4] Arzhantsev-Perepechko-Süss. Infinite transitivity on universal torsors. J. London Math. Soc. 89 (2014), 762–778
- [5] Berest-Eshmatov-Eshmatov. Multitransitivity of Calogero-Moser spaces. Transform. Groups 21 (2016), 35–50

Some references - II

- [6] Bogomolov-Karzhemanov-Kuyumzhiyan. Unirationality and existence of infinitely transitive models. In: Birational Geometry, Rational Curves, and Arithmetic, 77–92. Springer-Verlag, 2013
- [7] Demazure. Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. (4) (1970), 507–588
- [8] Flenner-Kaliman-Zaidenberg. The Gromov-Winkelmann theorem for flexible varieties. J. Eur. Math. Soc. 18 (2016), 2483–2510
- [9] Freudenburg. Algebraic theory of locally nilpotent derivations. Encyclopaedia Math. Sci. 136, Springer-Verlag, 2006
- [10] Furter-Kraft. On the geometry of the automorphism group of affine n-space. arXiv:1809.04175

Some references -III

- [11] Gaifullin-Shafarevich. Flexibility of normal affine horospherical varieties. Proc. Amer. Math. Soc. 147 (2019), 3317–3330
- [12] Kovalenko. Transitivity of automorphism groups of Gizatullin surfaces. Int. Math. Res. Notices 21 (2015), 11433–11484
- [13] Lewis-Perry-Straub. An algorithmic approach to the polydegree conjecture for plane polynomial automorphisms. J. Pure Appl. Algebra 223 (2019), 5346–5359
- [14] Park-Won. Flexible affine cones over del Pezzo surfaces of degree 4. Eur. J. Math. 2 (2016), 304–318
- [15] Perepechko. Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5. Func. Anal. Appl. 47 (2013), 45–52
- [16] Shafarevich. Flexibility of affine horospherical varieties of semisimple groups. Sbornik: Math. 208 (2017), 285–310