Toric topology of complexity one

Anton Ayzenberg ayzenberga@gmail.com partially based on joint works with M.Masuda and V.Cherepanov

Higher School of Economics, Moscow
May 11, 2020
Workshop on Torus Actions in Topology, Fields Institute, Toronto/Zoom

Standing assumptions

Standing assumptions

- $X=X^{2 n}$: smooth closed connected orientable manifold;
- $T=T^{k}$: compact torus;
- $T \circlearrowright X$: effective action
- $0<\# X^{T}<\infty$. (quasitoric mfds - yes, moment-angle mfds - no)
- These imply $k \leqslant n$.

Definition

The number $n-k$ is called the complexity of the action.

Equivariant cohomology

- $E T \xrightarrow{T} B T$: universal principal T-bundle;
- $B T \simeq\left(\mathbb{C} P^{\infty}\right)^{k}$: classifying space of T;
- $H^{*}(B T)=R\left[v_{1}, \ldots, v_{k}\right]$, the ground ring R is either a field or \mathbb{Z};
- $X_{T}=E T \times{ }_{T} X$: the Borel construction of X;
- $H_{T}^{*}(X)=H^{*}\left(X_{T}\right)$: equivariant cohomology of a T-manifold X.
- $X_{T} \xrightarrow{X} B T$: this fibration induces the spectral sequence
- $E_{2}^{*, *}=H^{*}(B T) \otimes H^{*}(X) \Rightarrow H_{T}^{*}(X)$.

Equivariant formality

- $X_{T} \xrightarrow{X} B T:$ Serre fibration induces
- $E_{2}^{*, *}=H^{*}(B T) \otimes H^{*}(X) \Rightarrow H_{T}^{*}(X)$.

Cohomological equivariant formality in the sense of Goresky-Kottwitz-MacPherson

T-manifold X is called equivariantly formal if $E_{*}^{*, *}$ collapses at E_{2}-page.

Eq.formality implies

$$
H^{*}(X)=H_{T}^{*}(X) \otimes_{H^{*}(B T)} R=H_{T}^{*}(X) /(\text { I.s.o.p. })
$$

where (I.s.o.p.) is a parametric ideal.

Equivariant formality

Simple remark

If $H^{\text {odd }}(X)=0$ then X is equivariantly formal. Indeed, $E_{2}^{p, q}=H^{p}(B T) \otimes H^{q}(X)$ is zero unless p, q are even, so higher differentials vanish.

Equivariant formality

Simple remark

If $H^{\text {odd }}(X)=0$ then X is equivariantly formal. Indeed, $E_{2}^{p, q}=H^{p}(B T) \otimes H^{q}(X)$ is zero unless p, q are even, so higher differentials vanish.

Less obvious

> Proposition (Masuda and Panov'06+Franz and Puppe'06)
> If $0<\# X^{T}<\infty$, then X is equivariantly formal $\Leftrightarrow H^{\text {odd }}(X)=0$.

One more technical assumption

Technical assumption on the action
Suppose for any subgroup $H \subseteq T$ any connected component of the set

$$
X^{H}=\{x \in X \mid H x=x\}
$$

contains a fixed point. In this case we call the action appropriate.

One more technical assumption

Technical assumption on the action

Suppose for any subgroup $H \subseteq T$ any connected component of the set

$$
X^{H}=\{x \in X \mid H x=x\}
$$

contains a fixed point. In this case we call the action appropriate.

Remark (Masuda and Panov'06)

Equivariantly formal action of any complexity is appropriate.

Our interest

Methods of toric topology are well developed in complexity 0 .

Our interest

Methods of toric topology are well developed in complexity 0 .

Problem posed by Buchstaber and Terzic in 2014

Describe relation between

- topology of manifolds with actions of positive complexity;
- topology and combinatorics of the orbit space.

Extend methods of toric topology to general complexity.

Complexity 0

Locally standard actions of complexity 0

Consider the action of $T=T^{n}$ on $X=X^{2 n}$.

Definition

The action $T \circlearrowright X$ is called locally standard if it is locally modelled by the standard representation of T on $\mathbb{C}^{n}=\mathbb{R}^{2 n}$:

$$
\left(t_{1}, \ldots, t_{n}\right)\left(z_{1}, \ldots, z_{n}\right)=\left(t_{1} z_{1}, \ldots, t_{n} z_{n}\right)
$$

up to automorphism of T.

Since $\mathbb{C}^{n} / T^{n} \cong \mathbb{R}_{\geqslant 0}^{n}$, the orbit space X / T is a manifold with corners.

Equivariant formality in complexity 0

Theorem (Masuda and Panov'06)

If all faces of $P=X / T$ are acyclic, then X is equivariantly formal. Conversely, if X is equivariantly formal manifold with complexity 0 action, then the action is locally standard and all faces of P are acyclic.

In these cases rk $H^{2 j}(X)=h_{j}(P), H_{T}^{*}(X) \cong \mathbb{Z}[P]$, and $H^{*}(X) \cong \mathbb{Z}[P] /(I . s . o . p$.$) ,$
(1) h-numbers are computed from combinatorics of P.
(2) $\mathbb{Z}[P]$ is the face ring of the simplicial poset dual to P.

These facts generalize the result of Davis-Januszkiewicz on quasitoric manifolds.

Complexity 1

Complexity 1 , examples

Homogeneous examples of complexity one actions

- $T^{3} \circlearrowright G_{4,2}=U(4) / U(2) \times U(2)$, the Grassmann mfd. of complex 2-planes in \mathbb{C}^{4};

Complexity 1 , examples

Homogeneous examples of complexity one actions

- $T^{3} \circlearrowright G_{4,2}=U(4) / U(2) \times U(2)$, the Grassmann mfd. of complex 2-planes in \mathbb{C}^{4};
- $T^{2} \circlearrowright F_{3}=U(3) / U(1)^{3}$, the mfd. of complete complex flags in \mathbb{C}^{3};

Complexity 1 , examples

Homogeneous examples of complexity one actions

- $T^{3} \circlearrowright G_{4,2}=U(4) / U(2) \times U(2)$, the Grassmann mfd. of complex 2-planes in \mathbb{C}^{4};
- $T^{2} \circlearrowright F_{3}=U(3) / U(1)^{3}$, the mfd. of complete complex flags in \mathbb{C}^{3};
- $T^{3} \circlearrowright \mathbb{H} P^{2}=\operatorname{Sp}(3) / \operatorname{Sp}(1) \times \operatorname{Sp}(2)$, the quaternionic projective plane;

Complexity 1 , examples

Homogeneous examples of complexity one actions

- $T^{3} \circlearrowright G_{4,2}=U(4) / U(2) \times U(2)$, the Grassmann mfd. of complex 2-planes in \mathbb{C}^{4};
- $T^{2} \circlearrowright F_{3}=U(3) / U(1)^{3}$, the mfd. of complete complex flags in \mathbb{C}^{3};
- $T^{3} \circlearrowright \mathbb{H} P^{2}=\operatorname{Sp}(3) / S p(1) \times \operatorname{Sp}(2)$, the quaternionic projective plane;
- $T^{2} \circlearrowright S^{6}=G_{2} / S U(3)$, the almost complex 6 -sphere.

Complexity 1 , examples

Homogeneous examples of complexity one actions

- $T^{3} \circlearrowright G_{4,2}=U(4) / U(2) \times U(2)$, the Grassmann mfd. of complex 2-planes in \mathbb{C}^{4};
- $T^{2} \circlearrowright F_{3}=U(3) / U(1)^{3}$, the mfd. of complete complex flags in \mathbb{C}^{3};
- $T^{3} \circlearrowright \mathbb{H} P^{2}=\operatorname{Sp}(3) / S p(1) \times S p(2)$, the quaternionic projective plane;
- $T^{2} \circlearrowright S^{6}=G_{2} / S U(3)$, the almost complex 6 -sphere.

These manifolds are equivariantly formal since $H^{\text {odd }}(X)=0$.

Complexity 1 , examples

Restrictions of complexity 0 actions

- $T^{n} \circlearrowright X^{2 n}$: a quasitoric manifold;
- $T^{n-1} \circlearrowright X^{2 n}$: induced action of a subtorus $T^{n-1} \subset T^{n}$.
- Assume, fixed point set $X^{T^{n-1}}$ is finite.

The action $T^{n-1} \circlearrowright X^{2 n}$ is equivariantly formal.

Complexity 1, examples

Restrictions of complexity 0 actions

- $T^{n} \circlearrowright X^{2 n}$: a quasitoric manifold;
- $T^{n-1} \circlearrowright X^{2 n}$: induced action of a subtorus $T^{n-1} \subset T^{n}$.
- Assume, fixed point set $X^{T^{n-1}}$ is finite.

The action $T^{n-1} \circlearrowright X^{2 n}$ is equivariantly formal.

Hamiltonian actions

Hamiltonian actions of T^{k} on symplectic $m f d X^{2 n}$ with the moment map $\mu: X \rightarrow t^{*} \cong \mathbb{R}^{k}$.

All Hamiltonian actions are equivariantly formal according to Atiyah, Bott, and Kirwan. Topology of Hamiltonian actions of complexity 1 were extensively studied by Karshon and Tolman.

General position of complexity 1 action

- $x \in X^{T}$: a fixed point
- $\alpha_{x, 1}, \ldots, \alpha_{x, n} \in \operatorname{Hom}\left(T^{n-1}, T^{1}\right) \cong \mathbb{Z}^{n-1}$: weights of the tangent representation $T_{x} X$ i.e.
- $T_{x} X=V\left(\alpha_{x, 1}\right) \oplus \cdots \oplus V\left(\alpha_{x, n}\right)$, where $V(\alpha)$ is the 1-dim. complex (or 2-dim. real) representation given by $t z=\alpha(t) \cdot z$.
- $\alpha_{x, i}$ are defined up to sign.

General position of complexity 1 action

- $x \in X^{T}$: a fixed point
- $\alpha_{x, 1}, \ldots, \alpha_{x, n} \in \operatorname{Hom}\left(T^{n-1}, T^{1}\right) \cong \mathbb{Z}^{n-1}$: weights of the tangent representation $T_{x} X$ i.e.
- $T_{x} X=V\left(\alpha_{x, 1}\right) \oplus \cdots \oplus V\left(\alpha_{x, n}\right)$, where $V(\alpha)$ is the 1-dim. complex (or 2-dim. real) representation given by $t z=\alpha(t) \cdot z$.
- $\alpha_{x, i}$ are defined up to sign.

Definition

The action $T^{n-1} \circlearrowright X^{2 n}$ of complexity 1 is called in general position if $\forall x \in X^{T}$ any $n-1$ of the weights $\alpha_{x, 1}, \ldots, \alpha_{x, n} \in \mathbb{Q}^{n-1}$ are linearly independent.

Actions on $G_{4,2}, F_{3}, \mathbb{H} P^{2}, S^{6}$ are in general position.

Local property of complexity 1 actions

Proposition (A.'18)

For an action $T^{n-1} \circlearrowright X^{2 n}$ in general position, the orbit space X / T is a closed topological manifold.

Local property of complexity 1 actions

Proposition (A.'18)

For an action $T^{n-1} \circlearrowright X^{2 n}$ in general position, the orbit space X / T is a closed topological manifold.

Proposition (Cherepanov'19)

For an action $T^{n-1} \circlearrowright X^{2 n}$, the orbit space X / T is a closed topological manifold with corners. Its boundary is nonempty if and only if the action is not in general position.

Global structure of the orbit spaces

Global structure of the orbit spaces

Our study is motivated by

Theorem (Buchstaber and Terzic'14-18)

$$
G_{4,2} / T^{3} \cong S^{5}, \quad F_{3} / T^{2} \cong S^{4}
$$

obtained from the theory of ($2 n, k$)-manifolds, developed by Buchstaber and Terzic in 2014-18.

Global structure of the orbit spaces

Our study is motivated by

Theorem (Buchstaber and Terzic'14-18)

$$
G_{4,2} / T^{3} \cong S^{5}, \quad F_{3} / T^{2} \cong S^{4}
$$

obtained from the theory of $(2 n, k)$-manifolds, developed by Buchstaber and Terzic in 2014-18.

Both $G_{4,2}$ and F_{3} are Hamiltonian. The results of Buchstaber and Terzic are generalized by

Theorem (Karshon and Tolman'18)

If an action $T^{n-1} \circlearrowright X^{2 n}$ is Hamiltonian and in general position, then X / T is homeomorphic to S^{n+1}.

Non-Hamiltonian examples

Non-Hamiltonian examples

Proposition (A.'18)

Let $T^{n} \circlearrowright X^{2 n}$ be a quasitoric manifold and the restricted action of $T^{n-1} \subset T^{n}$ on X is in general position. Then $X / T^{n-1} \cong S^{n+1}$.

Non-Hamiltonian examples

Proposition (A.'18)

Let $T^{n} \circlearrowright X^{2 n}$ be a quasitoric manifold and the restricted action of $T^{n-1} \subset T^{n}$ on X is in general position. Then $X / T^{n-1} \cong S^{n+1}$.

Theorem (A.'19)

$$
\mathbb{H} P^{2} / T^{3} \cong S^{5}, \quad S^{6} / T^{2} \cong S^{4} .
$$

Non-Hamiltonian examples

Proposition (A.'18)

Let $T^{n} \circlearrowright X^{2 n}$ be a quasitoric manifold and the restricted action of $T^{n-1} \subset T^{n}$ on X is in general position. Then $X / T^{n-1} \cong S^{n+1}$.

Theorem (A.'19)

$$
\mathbb{H} P^{2} / T^{3} \cong S^{5}, \quad S^{6} / T^{2} \cong S^{4}
$$

This is related to the result of Arnold'99: $\mathbb{H} P^{2} / T^{1} \cong S^{7}$, which is a generalization of Kuiper-Massey theorem $\mathbb{C} P^{2} /$ conj $\cong S^{4}$.

General statement for complexity one

General statement for complexity one

Theorem (A. and Masuda'19)

Let R be a field. If $T^{n-1} \circlearrowright X^{2 n}$ is R-equivariantly formal action in general position, then $Q=X / T$ is an R-homology sphere. If, moreover, all stabilizers are connected, then the same holds over \mathbb{Z}. If, moreover, $\pi_{1}(X)=0$, then $X / T \cong S^{n+1}$.

General statement for complexity one

Theorem (A. and Masuda'19)

Let R be a field. If $T^{n-1} \circlearrowright X^{2 n}$ is R-equivariantly formal action in general position, then $Q=X / T$ is an R-homology sphere. If, moreover, all stabilizers are connected, then the same holds over \mathbb{Z}. If, moreover, $\pi_{1}(X)=0$, then $X / T \cong S^{n+1}$.

We have $\pi_{1}(X)=0 \Rightarrow \pi_{1}(Q)=0$ so the last statement is the corollary of generalized Poincare conjecture in topological category.

General statement for complexity one

Theorem (A. and Masuda'19)

Let R be a field. If $T^{n-1} \circlearrowright X^{2 n}$ is R-equivariantly formal action in general position, then $Q=X / T$ is an R-homology sphere. If, moreover, all stabilizers are connected, then the same holds over \mathbb{Z}. If, moreover, $\pi_{1}(X)=0$, then $X / T \cong S^{n+1}$.

We have $\pi_{1}(X)=0 \Rightarrow \pi_{1}(Q)=0$ so the last statement is the corollary of generalized Poincare conjecture in topological category.
This theorem covers the previous results: $G_{4,2}, F_{3}, \mathbb{H} P^{2}, S^{6}$, restricted actions on quasitoric manifolds, and Hamiltonian actions.

Non-general position

What if the action of complexity 1 is not in general position?

Non-general position

What if the action of complexity 1 is not in general position?
The orbit space of equiv.formal action can be almost anything.

Non-general position

What if the action of complexity 1 is not in general position?
The orbit space of equiv.formal action can be almost anything.

Theorem (A. and Cherepanov'19)

Let L be a finite simplicial complex. Then there exists an equivariantly formal action $T^{n-1} \circlearrowright X_{L}^{2 n}$ such that X_{L} / T is homotopy equivalent to $\Sigma^{3} L$.

The example X_{L} is a $\mathbb{C} P^{1}$-bundle over the permutohedral variety (hence projective toric variety, hence Hamiltonian).

Combinatorial structure of complexity 1 actions

Complexity 1

Let $T^{n-1} \circlearrowright X^{2 n}$ be an action of complexity 1 in general position.
Consider

$$
X_{0} \subset X_{1} \subset \cdots \subset X_{n-2} \subset X_{n-1}=X
$$

where X_{i} is the union of $\leqslant i$-dimensional orbits, and

$$
Q_{0} \subset Q_{1} \subset \cdots \subset Q_{n-2} \subset Q_{n-1}=Q
$$

$Q_{i}=X_{i} / T$: the orbit type filtration of the orbit space $Q=X / T$. Recall that Q is a closed topological $(n+1)$-mfd. We have $\operatorname{dim} Q_{i}=i$ for $i<n-1$.

Complexity 1

Let $T^{n-1} \circlearrowright X^{2 n}$ be an action of complexity 1 in general position.
Consider

$$
X_{0} \subset X_{1} \subset \cdots \subset X_{n-2} \subset X_{n-1}=X
$$

where X_{i} is the union of $\leqslant i$-dimensional orbits, and

$$
Q_{0} \subset Q_{1} \subset \cdots \subset Q_{n-2} \subset Q_{n-1}=Q
$$

$Q_{i}=X_{i} / T$: the orbit type filtration of the orbit space $Q=X / T$. Recall that Q is a closed topological $(n+1)$-mfd. We have $\operatorname{dim} Q_{i}=i$ for $i<n-1$.

Definition

The space $Z=Q_{n-2}$ is called the sponge of the action. It is an ($n-2$)-subspace inside $(n+1)$-dimensional manifold Q. The connected components of $Q_{i} \backslash Q_{i-1}, i \leqslant n-2$ are called the faces of a sponge.

Local structure of a sponge

Observation

Each point of a sponge Z is locally homeomorphic to $(n-2)$-skeleton of a simple n-dim polytope.

$$
n=3
$$

$$
\mathrm{n}=4
$$

Examples of sponges

Equivariant formality: criterion

Theorem (A. and Masuda'19)

Let $T^{n-1} \circlearrowright X^{2 n}$ be an equivariantly formal (over R) action in general position, $Q=X / T$ be its orbit space, and $Z \subset Q$ be the sponge of the action. If $R=\mathbb{Z}$, assume stabilizers are connected. Then
(1) The space Q is a homology sphere (i.e. $\forall i \leqslant n: \tilde{H}_{i}(Q ; R)=0$).
(2) Every face F of a sponge Z is acyclic (i.e. $\left.\forall i: \tilde{H}_{i}(F ; R)=0\right)$;
(3) The sponge Z is $(n-3)$-acyclic (i.e. $\forall i \leqslant n-3: H_{i}(Z ; R)=0$); If 3 conditions above hold over $R=\mathbb{Z}$, then the action is equivariantly formal over \mathbb{Z}.

Equivariant formality: criterion

Theorem (A. and Masuda'19)

Let $T^{n-1} \circlearrowright X^{2 n}$ be an equivariantly formal (over R) action in general position, $Q=X / T$ be its orbit space, and $Z \subset Q$ be the sponge of the action. If $R=\mathbb{Z}$, assume stabilizers are connected. Then
(1) The space Q is a homology sphere (i.e. $\forall i \leqslant n: \tilde{H}_{i}(Q ; R)=0$).
(2) Every face F of a sponge Z is acyclic (i.e. $\forall i: \widetilde{H}_{i}(F ; R)=0$);
(3) The sponge Z is $(n-3)$-acyclic (i.e. $\left.\forall i \leqslant n-3: \tilde{H}_{i}(Z ; R)=0\right)$;

If 3 conditions above hold over $R=\mathbb{Z}$, then the action is equivariantly formal over \mathbb{Z}.

Definition

An abstract sponge $=$ space which is locally homeomorphic to ($n-2$)-skeleton of a simple n-polytope. A sponge Z is acyclic if it satisfies conditions (2) and (3) above.

Combinatorics of sponges

Z : an acyclic sponge.

Definition

$f_{i}=$ the number of i-dimensional faces of Z, and $b=\operatorname{rk} \tilde{H}_{n-2}(Z)$. The tuple $\left(\left(f_{0}, \ldots, f_{n-2}\right), b\right)$ is called the extended f-vector of Z.

Combinatorics of sponges

Z : an acyclic sponge.

Definition

$f_{i}=$ the number of i-dimensional faces of Z, and $b=\operatorname{rk} \tilde{H}_{n-2}(Z)$. The tuple $\left(\left(f_{0}, \ldots, f_{n-2}\right), b\right)$ is called the extended f-vector of Z.

Remark $f_{0}-f_{1}+\cdots+(-1)^{n-2} f_{n-2}=1+(-1)^{n-2} b$ since both are equal to $\chi(Z)$. Thus b is expressed by f_{i} 's.

Combinatorics of sponges

Z : an acyclic sponge.

Definition

$f_{i}=$ the number of i-dimensional faces of Z, and $b=\operatorname{rk} \tilde{H}_{n-2}(Z)$. The tuple $\left(\left(f_{0}, \ldots, f_{n-2}\right), b\right)$ is called the extended f-vector of Z.

Remark $f_{0}-f_{1}+\cdots+(-1)^{n-2} f_{n-2}=1+(-1)^{n-2} b$ since both are equal to $\chi(Z)$. Thus b is expressed by f_{i} 's.

Theorem (A. and Masuda'19)
Let $\left(\left(f_{0}, \ldots, f_{n-2}\right), b\right)$ be the extended f -vector of the sponge of an equivariantly formal action $T^{n-1} \circlearrowright X^{2 n}$ in general position. Then

$$
\sum_{i=0}^{n} \beta_{2 i}(X) t^{2 i}=\sum_{i=0}^{n-2} f_{i} t^{2 n-2 i}\left(1-t^{2}\right)^{i}+\left(1+b t^{2}\right)\left(1-t^{2}\right)^{n-1}
$$

Action of T^{3} on $G_{4,2}$.

Extended f-vector $=((6,12,11), 4)$. We have

$$
\begin{array}{r}
\sum_{i=0}^{n} \beta_{2 i}\left(G_{4,2}\right) t^{2 i}=6 t^{8}+12 t^{6}\left(1-t^{2}\right)+11 t^{4}\left(1-t^{2}\right)^{2}+\left(1+4 t^{2}\right)\left(1-t^{2}\right)^{3}= \\
1+t^{2}+2 t^{4}+t^{6}+t^{8}
\end{array}
$$

Action of T^{2} on F_{3}.

Extended f-vector $=((6,9), 4)$. We have
$\sum_{i=0}^{n} \beta_{2 i}\left(F_{3}\right) t^{2 i}=6 t^{6}+9 t^{4}\left(1-t^{2}\right)+\left(1+4 t^{2}\right)\left(1-t^{2}\right)^{2}=1+2 t^{2}+2 t^{4}+t^{6}$.

Combinatorial and topological questions

Definition

Define the h-vector of an acyclic ($n-2$)-sponge by

$$
\sum_{i=0}^{n} h_{i} t^{2 i}=\sum_{i=0}^{n-2} f_{i} t^{2 n-2 i}\left(1-t^{2}\right)^{i}+\left(1+b t^{2}\right)\left(1-t^{2}\right)^{n-1}
$$

Combinatorial and topological questions

Definition

Define the h-vector of an acyclic ($n-2$)-sponge by

$$
\sum_{i=0}^{n} h_{i} t^{2 i}=\sum_{i=0}^{n-2} f_{i} t^{2 n-2 i}\left(1-t^{2}\right)^{i}+\left(1+b t^{2}\right)\left(1-t^{2}\right)^{n-1}
$$

Questions

For any acyclic abstract sponge we want to prove
(1) $h_{i}=h_{n-i}$, "Dehn-Sommerville relations" (work in progress with Cherepanov);

Combinatorial and topological questions

Definition

Define the h-vector of an acyclic ($n-2$)-sponge by

$$
\sum_{i=0}^{n} h_{i} t^{2 i}=\sum_{i=0}^{n-2} f_{i} t^{2 n-2 i}\left(1-t^{2}\right)^{i}+\left(1+b t^{2}\right)\left(1-t^{2}\right)^{n-1}
$$

Questions

For any acyclic abstract sponge we want to prove
(1) $h_{i}=h_{n-i}$, "Dehn-Sommerville relations" (work in progress with Cherepanov);
(2) $h_{i} \geqslant 0$, "Lower bound conjecture" (open);

Combinatorial and topological questions

Definition

Define the h-vector of an acyclic ($n-2$)-sponge by

$$
\sum_{i=0}^{n} h_{i} t^{2 i}=\sum_{i=0}^{n-2} f_{i} t^{2 n-2 i}\left(1-t^{2}\right)^{i}+\left(1+b t^{2}\right)\left(1-t^{2}\right)^{n-1}
$$

Questions

For any acyclic abstract sponge we want to prove
(1) $h_{i}=h_{n-i}$, "Dehn-Sommerville relations" (work in progress with Cherepanov);
(2) $h_{i} \geqslant 0$, "Lower bound conjecture" (open);
(3) Is there a theory of "face rings" of sponges? Can we describe equivariant cohomology of complexity one actions using these rings?

Arbitrary complexity

Actions of any complexity

Let $T^{k} \circlearrowright X^{2 n}$ be an action with isolated fixed points. For a fixed point $x \in X^{T}$ consider the tangent weights

$$
\alpha_{x, 1}, \ldots, \alpha_{x, n} \in \operatorname{Hom}\left(T^{k}, T^{1}\right) \cong \mathbb{Z}^{k}
$$

Actions of any complexity

Let $T^{k} \circlearrowright X^{2 n}$ be an action with isolated fixed points. For a fixed point $x \in X^{T}$ consider the tangent weights

$$
\alpha_{x, 1}, \ldots, \alpha_{x, n} \in \operatorname{Hom}\left(T^{k}, T^{1}\right) \cong \mathbb{Z}^{k}
$$

Definition

The action is called in j-general position if, at each $x \in X^{T}$, any j of the weights $\alpha_{x, 1}, \ldots, \alpha_{x, n}$ are linearly independent.

- Isolated fixed points $=$ the action is in 1-general position.
- For GKM-manifolds the action is in 2-general position.
- Complexity 1 action $T^{n-1} \circlearrowright X^{2 n}$ is in general position \Leftrightarrow it is in ($n-1$)-general position.

General result on general complexity

Theorem (A. and Masuda'19)

If $T^{k} \circlearrowright X^{2 n}$ is an equivariantly formal action in j-general position, then X / T is $(j+1)$-acyclic (i.e. $\tilde{H}_{i}(Q)=0$ for $i \leqslant j+1$).

We assume that either R is a field; or $R=\mathbb{Z}$ and all stabilizers are connected.

General result on general complexity

Theorem (A. and Masuda'19)

If $T^{k} \circlearrowright X^{2 n}$ is an equivariantly formal action in j-general position, then X / T is $(j+1)$-acyclic (i.e. $\tilde{H}_{i}(Q)=0$ for $i \leqslant j+1$).

We assume that either R is a field; or $R=\mathbb{Z}$ and all stabilizers are connected.

The degree of acyclicity cannot be improved.

General result on general complexity

Theorem (A. and Masuda'19)

If $T^{k} \circlearrowright X^{2 n}$ is an equivariantly formal action in j-general position, then X / T is $\left(j+1\right.$)-acyclic (i.e. $\tilde{H}_{i}(Q)=0$ for $i \leqslant j+1$).

We assume that either R is a field; or $R=\mathbb{Z}$ and all stabilizers are connected.

The degree of acyclicity cannot be improved.

Proposition (A. and Cherepanov'19)

For any finite simplicial complex L there exists an equivariantly formal torus action of complexity 1 in j-general position such that X / T is homotopy equivalent to $\Sigma^{j+2} L$.

Directions of further work

Directions of further work

- Search for criterion of equivariant formality in complexity 1 without assumption on general position.

Directions of further work

- Search for criterion of equivariant formality in complexity 1 without assumption on general position.
- Algebraic combinatorics of sponges.

Directions of further work

- Search for criterion of equivariant formality in complexity 1 without assumption on general position.
- Algebraic combinatorics of sponges.
- Develop general theory for real versions of complexity 1 actions.

Directions of further work

- Search for criterion of equivariant formality in complexity 1 without assumption on general position.
- Algebraic combinatorics of sponges.
- Develop general theory for real versions of complexity 1 actions.
- Study relations between sponges and tropical cohomology theory.

Thank you for listening!

